Skip navigation

DSpace JSPUI

DSpace preserves and enables easy and open access to all types of digital content including text, images, moving images, mpegs and data sets

Learn More
DSpace logo
English
中文
  • Browse
    • Communities
      & Collections
    • Publication Year
    • Author
    • Title
    • Subject
    • Advisor
  • Search TDR
  • Rights Q&A
    • My Page
    • Receive email
      updates
    • Edit Profile
  1. NTU Theses and Dissertations Repository
  2. 醫學院
  3. 解剖學暨細胞生物學科所
Please use this identifier to cite or link to this item: http://tdr.lib.ntu.edu.tw/jspui/handle/123456789/60329
Full metadata record
???org.dspace.app.webui.jsptag.ItemTag.dcfield???ValueLanguage
dc.contributor.advisor龔秀妮(Hsiu-Ni Kung)
dc.contributor.authorHsiang-Yun Huangen
dc.contributor.author黃湘芸zh_TW
dc.date.accessioned2021-06-16T10:15:40Z-
dc.date.issued2013
dc.date.submitted2013-08-18
dc.identifier.citation1. Ko YC, W. J., Wu CC, Huang WT, Lin MC. (2005) Lung Cancer at a Medical Center in Southern Taiwan. Chang Gung Med J 28, 387-395
2. Jemal, A., Bray, F., Center, M. M., Ferlay, J., Ward, E., and Forman, D. (2011) Global cancer statistics. CA: a cancer journal for clinicians 61, 69-90
3. Parkin, D. M., Bray, F., Ferlay, J., and Pisani, P. (2005) Global cancer statistics, 2002. CA: a cancer journal for clinicians 55, 74-108
4. Ferlay, J., Shin, H. R., Bray, F., Forman, D., Mathers, C., and Parkin, D. M. (2010) Estimates of worldwide burden of cancer in 2008: GLOBOCAN 2008. International journal of cancer. Journal international du cancer 127, 2893-2917
5. LAUREN G. COLLINS, C. H., ROBERT PERKEL, and ROBERT E. ENCK (2007) Lung Cancer: Diagnosis and Management. American Family Physician 75, 56-63
6. Malcolm M. DeCamp, J., Simon Ashiku and Robert Thurer. (2005) The Role of Surgery in N2 Non–Small Cell Lung Cancer. Clinical cancer research : an official journal of the American Association for Cancer Research 11, 5033-5037
7. Le Chevalier T, A. R., Quoix E, Ruffie P, Martin M, Tarayre M, Lacombe-Terrier MJ, Douillard JY, Laplanche A. (1991) Radiotherapy Alone Versus Combined Chemotherapy and Radiotherapy in Nonresectable Non-Small-Cell Lung Cancer: First Analysis of a Randomized Trial in 353 Patients. J Natl Cancer Inst 83, 417-423
8. Dillman RO, S. S., Propert KJ, Guerra J, Eaton WL, Perry MC, Carey RW, Frei EF 3rd, Green MR. (1990) A randomized trial of induction chemotherapy plus high-dose radiation versus radiation alone in stage III non-small-cell lung cancer. N Engl J Med 323, 940-945
9. Schaake-Koning, C., van den Bogaert, W., Dalesio, O., Festen, J., Hoogenhout, J., van Houtte, P., Kirkpatrick, A., Koolen, M., Maat, B., Nijs, A., Renaud, A. R., P.Schuster-Uitterhoeve, L.Sculier, JP., and van Zandwijk, N. B., H. (1992) Effects of concomitant cisplatin and radiotherapy on inoperable non-small-cell lung cancer. N Engl J Med 326, 524-530
10. Ardizzoni, A., Boni, L., Tiseo, M., Fossella, F. V., Schiller, J. H., Paesmans, M., Radosavljevic, D., Paccagnella, A., Zatloukal, P., Mazzanti, P., Bisset, D., Rosell, R., and Group, C. M.-a. (2007) Cisplatin- versus carboplatin-based chemotherapy in first-line treatment of advanced non-small-cell lung cancer: an individual patient data meta-analysis. J Natl Cancer Inst 99, 847-857
11. Prestayko, A. W., D'Aoust, J. C., Issell, B. F., and Crooke, S. T. (1979) Cisplatin (cis-diamminedichloroplatinum II). Cancer treatment reviews 6, 17-39
12. Hotta, K., Matsuo, K., Ueoka, H., Kiura, K., Tabata, M., and Tanimoto, M. (2004) Meta-analysis of randomized clinical trials comparing Cisplatin to Carboplatin in patients with advanced non-small-cell lung cancer. Journal of clinical oncology : official journal of the American Society of Clinical Oncology 22, 3852-3859
13. Yao X, P. K., Kurtzman N, Nugent K. (2007) Cisplatin nephrotoxicity: a review. Am J Med Sci 334, 115-124
14. Pabla, N., and Dong, Z. (2008) Cisplatin nephrotoxicity: mechanisms and renoprotective strategies. Kidney international 73, 994-1007
15. Cornelison TL, R. E. (1993) Nephrotoxicity and hydration management for cisplatin, carboplatin, and ormaplatin. Gynecol Oncol 50, 147-158
16. Siddik, Z. H. (2003) Cisplatin: mode of cytotoxic action and molecular basis of resistance. Oncogene 22, 7265-7279
17. Niedner H, C. R., Lin X, Kondo A, Howell SB. (2001) Identification of genes that mediate sensitivity to cisplatin. Molecular pharmacology 60, 1153-1160
18. Farrand, L., Byun, S., Kim, J. Y., Im-Aram, A., Lee, J., Lim, S., Lee, K. W., Suh, J. Y., Lee, H. J., and Tsang, B. K. (2013) Piceatannol enhances cisplatin sensitivity in ovarian cancer via modulation of p53, XIAP and mitochondrial fission. The Journal of biological chemistry
19. Bratasz, A., Weir, N. M., Parinandi, N. L., Zweier, J. L., Sridhar, R., Ignarro, L. J., and Kuppusamy, P. (2006) Reversal to cisplatin sensitivity in recurrent human ovarian cancer cells by NCX-4016, a nitro derivative of aspirin. Proceedings of the National Academy of Sciences of the United States of America 103, 3914-3919
20. Pouliot, L. M., Chen, Y. C., Bai, J., Guha, R., Martin, S. E., Gottesman, M. M., and Hall, M. D. (2012) Cisplatin sensitivity mediated by WEE1 and CHK1 is mediated by miR-155 and the miR-15 family. Cancer research 72, 5945-5955
21. van Jaarsveld, M. T., Helleman, J., Boersma, A. W., van Kuijk, P. F., van Ijcken, W. F., Despierre, E., Vergote, I., Mathijssen, R. H., Berns, E. M., Verweij, J., Pothof, J., and Wiemer, E. A. (2012) miR-141 regulates KEAP1 and modulates cisplatin sensitivity in ovarian cancer cells. Oncogene
22. Lu, Y., and Cederbaum, A. (2007) The mode of cisplatin-induced cell death in CYP2E1-overexpressing HepG2 cells: modulation by ERK, ROS, glutathione, and thioredoxin. Free radical biology & medicine 43, 1061-1075
23. Karl A. Brand , U. H. (1997) Aerobic glycolysis by proliferating cells: a protective strategy against reactive oxygen species. FASEB journal : official publication of the Federation of American Societies for Experimental Biology 11, 388-395
24. Michael Ho‥ckel, P. V. (2001) Tumor Hypoxia: Definitions and Current Clinical, Biologic, and Molecular Aspects. J Natl Cancer Inst 93, 266-276
25. Feala, J. D., Coquin, L., Zhou, D., Haddad, G. G., Paternostro, G., and McCulloch, A. D. (2009) Metabolism as means for hypoxia adaptation: metabolic profiling and flux balance analysis. BMC systems biology 3, 91
26. TPA Devasagayam, J. T., KK Boloor, Ketaki S Sane,, and Saroj S Ghaskadbi, R. L. (2004) Free Radicals and Antioxidants in Human Health: Current Status and Future Prospects. J Assoc Physicians India 52, 794-804
27. Cabiscol E, T. J., Ros J. (2000) Oxidative stress in bacteria and protein damage by reactive oxygen species. International Microbiology 3, 3-8
28. Wohlkoenig, C., Leithner, K., Deutsch, A., Hrzenjak, A., Olschewski, A., and Olschewski, H. (2011) Hypoxia-induced cisplatin resistance is reversible and growth rate independent in lung cancer cells. Cancer letters 308, 134-143
29. Wang, J., Biju, M. P., Wang, M. H., Haase, V. H., and Dong, Z. (2006) Cytoprotective effects of hypoxia against cisplatin-induced tubular cell apoptosis: involvement of mitochondrial inhibition and p53 suppression. Journal of the American Society of Nephrology : JASN 17, 1875-1885
30. Lewis, K. N., Mele, J., Hayes, J. D., and Buffenstein, R. (2010) Nrf2, a guardian of healthspan and gatekeeper of species longevity. Integrative and comparative biology 50, 829-843
31. Gold, R., Kappos, L., Arnold, D. L., Bar-Or, A., Giovannoni, G., Selmaj, K., Tornatore, C., Sweetser, M. T., Yang, M., Sheikh, S. I., Dawson, K. T., and Investigators, D. S. (2012) Placebo-controlled phase 3 study of oral BG-12 for relapsing multiple sclerosis. N Engl J Med 367, 1098-1107
32. Itoh K, W. N., Katoh Y, Ishii T, Igarashi K, Engel JD, Yamamoto M. (1999) Keap1 represses nuclear activation of antioxidant responsive elements by Nrf2 through binding to the amino-terminal Neh2 domain. Genes Dev. 13, 76-86
33. Kwak, M. K., Itoh, K., Yamamoto, M., and Kensler, T. W. (2002) Enhanced Expression of the Transcription Factor Nrf2 by Cancer Chemopreventive Agents: Role of Antioxidant Response Element-Like Sequences in the nrf2 Promoter. Molecular and cellular biology 22, 2883-2892
34. Jakoby, W. B., and Ziegler, D. M. (1990) The enzymes of detoxication. The Journal of biological chemistry 265, 20715-20718
35. Itoh K, C. T., Takahashi S, Ishii T, Igarashi K, Katoh Y, Oyake T, Hayashi N, Satoh K, Hatayama I, Yamamoto M, Nabeshima Y. (1997) An Nrf2/Small Maf Heterodimer Mediates the Induction of Phase II Detoxifying Enzyme Genes through Antioxidant Response Elements. Biochemical and biophysical research communications 236, 313-322
36. Ohta, T., Iijima, K., Miyamoto, M., Nakahara, I., Tanaka, H., Ohtsuji, M., Suzuki, T., Kobayashi, A., Yokota, J., Sakiyama, T., Shibata, T., Yamamoto, M., and Hirohashi, S. (2008) Loss of Keap1 function activates Nrf2 and provides advantages for lung cancer cell growth. Cancer research 68, 1303-1309
37. Singh, A., Misra, V., Thimmulappa, R. K., Lee, H., Ames, S., Hoque, M. O., Herman, J. G., Baylin, S. B., Sidransky, D., Gabrielson, E., Brock, M. V., and Biswal, S. (2006) Dysfunctional KEAP1-NRF2 interaction in non-small-cell lung cancer. PLoS medicine 3, e420
38. Jeyapaul, J., and Jaiswal, A. K. (2000) Nrf2 and c-Jun regulation of antioxidant response element (ARE)-mediated expression and induction of gamma-glutamylcysteine synthetase heavy subunit gene. Biochemical pharmacology 59, 1433-1439
39. Guise, C. P., Abbattista, M. R., Singleton, R. S., Holford, S. D., Connolly, J., Dachs, G. U., Fox, S. B., Pollock, R., Harvey, J., Guilford, P., Donate, F., Wilson, W. R., and Patterson, A. V. (2010) The bioreductive prodrug PR-104A is activated under aerobic conditions by human aldo-keto reductase 1C3. Cancer research 70, 1573-1584
40. Udomsinprasert, R., Pongjaroenkit, S., Wongsantichon, J., Oakley, A. J., Prapanthadara, L. A., Wilce, M. C., and Ketterman, A. J. (2005) Identification, characterization and structure of a new Delta class glutathione transferase isoenzyme. The Biochemical journal 388, 763-771
41. Sheehan, D., Meade, G., Foley, V. M., and Dowd, C. A. (2001) Structure, function and evolution of glutathione transferases: implications for classification of non-mammalian members of an ancient enzyme superfamily. The Biochemical journal 360, 1-16
42. Allocati, N., Federici, L., Masulli, M., and Di Ilio, C. (2009) Glutathione transferases in bacteria. The FEBS journal 276, 58-75
43. Mannervik, B. (1987) The enzymes of glutathione metabolism: an overview. Biochemical Society transactions 15, 717-718
44. Meister, A. (1988) Glutathione metabolism and its selective modification. The Journal of biological chemistry 263, 17205-17208
45. Bentley, A. R., Emrani, P., and Cassano, P. A. (2008) Genetic variation and gene expression in antioxidant related enzymes and risk of COPD: a systematic review. Thorax 63, 956-961
46. Chen, J., Zhao, S., Nakada, K., Kuge, Y., Tamaki, N., Okada, F., Wang, J., Shindo, M., Higashino, F., Takeda, K., Asaka, M., Katoh, H., Sugiyama, T., Hosokawa, M., and Kobayashi, M. (2003) Dominant-negative hypoxia-inducible factor-1 alpha reduces tumorigenicity of pancreatic cancer cells through the suppression of glucose metabolism. The American journal of pathology 162, 1283-1291
47. Kung, A. L., Wang, S., Klco, J. M., Kaelin, W. G., and Livingston, D. M. (2000) Suppression of tumor growth through disruption of hypoxia-inducible transcription. Nature medicine 6, 1335-1340
48. Stoeltzing, O., McCarty, M. F., Wey, J. S., Fan, F., Liu, W., Belcheva, A., Bucana, C. D., Semenza, G. L., and Ellis, L. M. (2004) Role of hypoxia-inducible factor 1alpha in gastric cancer cell growth, angiogenesis, and vessel maturation. J Natl Cancer Inst 96, 946-956
49. Malec, V., Gottschald, O. R., Li, S., Rose, F., Seeger, W., and Hanze, J. (2010) HIF-1 alpha signaling is augmented during intermittent hypoxia by induction of the Nrf2 pathway in NOX1-expressing adenocarcinoma A549 cells. Free radical biology & medicine 48, 1626-1635
50. Kim, T. H., Hur, E. G., Kang, S. J., Kim, J. A., Thapa, D., Lee, Y. M., Ku, S. K., Jung, Y., and Kwak, M. K. (2011) NRF2 blockade suppresses colon tumor angiogenesis by inhibiting hypoxia-induced activation of HIF-1alpha. Cancer research 71, 2260-2275
dc.identifier.urihttp://tdr.lib.ntu.edu.tw/jspui/handle/123456789/60329-
dc.description.abstract肺癌在台灣及全世界的癌症死亡排名一直蟬聯首位。肺癌的治療策略大部份以含鉑藥物的化療配合基因篩檢的標靶治療為主。但是癌細胞對化療藥物的抗藥性以及化療副作用使肺癌的根治困難。因此增加化療藥物療效,或是使用合併藥劑減輕化療藥物使用劑量,一直是大家熱衷的議題。癌細胞在人體內所處的微環境並不一致,在遠離微血管或處於腫瘤中心的微環境通常較缺氧,使得適應惡劣環境的癌細胞更惡化,產生較強的抗藥性,但是對於癌細胞在缺氧環境增加抗藥性的機制並不甚瞭解。因此,在本篇研究中,我們將探討藉由抑制A549非小細胞肺腺癌細胞株適應缺氧的機制的啟動,是否可以回復肺癌常用化療藥物順鉑的療效。研究結果顯示,跟正常氧氣量的細胞相比,缺氧的狀態下的A549細胞對順鉑有更強的抗藥性。接著我們發現可以抵銷活性氧化物質的第二相抗氧化酵素 (phase II antioxidant enzyme) 的製造,如glutathione-cysteine ligase catalytic subunit (GCLC)及 glutathione-cysteine ligase modifier subunit (GCLM),在8小時內的低氧環境下的表現量均有上升,但是另一個下游酵素NADPH dehydrogenase Quinone 1 (NQO1)則無改變。我們利用GCL的抑制劑buthionine sulfoximine (BSO)或NQO1的抑制劑 Dicoumarol加上順鉑的合併投藥,可以發現順鉑的抗癌效率大大增加,而且上游Nrf2的蛋白質表現量也同樣出現增加的趨勢。Nrf2是個轉錄因子,它的表現可促進下游基因產生可以第二相抗氧化酵素,抵銷細胞在低氧環境壓力產生的活性氧化物質 (ROS) ,使得ROS沒有在24小時之內增加。我們認為,利用Nrf2與其下游第二相抗氧化酵素的抑制劑與化療藥物順鉑的合併投藥的治療方式也許可以改善現今臨床上對於肺癌治療上面臨的抗藥性及副作用的限制。zh_TW
dc.description.abstractLung cancer remains the leading cause of death in Taiwan and worldwide. The main treatment for lung cancer is chemotherapy combined with target therapy, but the drug resistance and side effects make it hard to overcome the disease. Therefore, drug resistance and side effects of chemotherapy still considered as important issues. The tumor microenvironments differ in tumors. Previous researches have shown that cancer cells in hypoxic microenvironment are more aggravated and more resistant to cisplatin, a locally advanced chemotherapy drug used in the first-line treatment of non-small-cell lung cancer (NSCLC). Here we discussed that by inhibiting the mechanism of hypoxic adaptation could we return the efficacy of common anti-cancer drug cisplatin. The result showed that A549 human lung carcinoma cells had a stronger drug resistance under hypoxic condition than normal oxygen state. We used the combination of cisplatin with buthionine sulfoximine (BSO), a glutamine-cysteine ligase (GCL) inhibitor, or dicoumarol, a NQO1 inhibitor, leading more cell death under both hypoxic and normoxic condition. Western blot showed the increased protein expressions of glutamine-cysteine ligase catalytic subunit (GCLC) and glutamine-cysteine ligase modifier subunit (GCLM). However, another phase II antioxidant enzyme, NADPH dehydrogenase Quinone 1 (NQO1), didn’t change in protein level. Also, we spotted the increased protein level of Nrf2, a transcription factor which induce antioxidant pathway, which triggers its downstream genes to synthesize phase II enzymes. The induced Nrf2 and its downstream phase II enzymes might consume the reactive oxygen species (ROS) produced under hypoxia, resulting in steady levels of ROS under hypoxia within 24 hours. To summarize the result above, the present study reveals that using the combination of inhibitor of Nrf2 antioxidant pathway and cisplatin may be a better strategy to decrease the dose usage of anti-cancer drug and the side effects but maintaining the efficacy of chemotherapy.en
dc.description.provenanceMade available in DSpace on 2021-06-16T10:15:40Z (GMT). No. of bitstreams: 1
ntu-102-R00446010-1.pdf: 2114867 bytes, checksum: 3ce6e9977247f3499882d9001982e0b3 (MD5)
Previous issue date: 2013
en
dc.description.tableofcontents中文摘要 i
ABSTRACT iii
1. Introduction 1
2. Materials and Methods 8
2.1 Cell culture and hypoxia treatment 8
2.2 MTT assay 8
2.3 Flow cytometry assay 9
2.4 Reverse transcription PCR 9
2.5 Western blot 11
2.6 Immunocytochemistry (ICC) 12
2.7 Nuclear and cytoplasmic protein extraction 13
2.8 Glutathione Assay 13
2.9 Statistical analysis 14
3. Result 16
3.1 Hypoxia increases the resistance of A549 lung carcinoma cell to anticancer chemotherapy 16
3.2 The expression level of Nrf2 and its downstream antioxidant enzymes increase under hypoxia 16
3.3 ROS levels are lower in the short-time exposure of hypoxia then control level. 18
3.4 Inhibition of Phase II antioxidant enzyme increases the cytotoxicity of cisplatin 18
4. Discussion 20
5. Figures 24
Figure. 1 24
Figure. 2 26
Figure. 3 28
Figure. 4 30
Figure. 5 35
Figure. 6 37
Figure. 7 39
Figure. 8 42
Figure. 9 44
6. Reference 46
dc.language.isoen
dc.subject(NQO1)zh_TW
dc.subject順鉑zh_TW
dc.subject抗藥性zh_TW
dc.subjectA549非小細胞肺癌細胞zh_TW
dc.subject第二相抗氧化酵素zh_TW
dc.subject低氧環境zh_TW
dc.subject穀胱甘&#32957zh_TW
dc.subject半胱胺酸連接&#37238zh_TW
dc.subject(GCL)zh_TW
dc.subject醌zh_TW
dc.subject氧化還原&#37238zh_TW
dc.subject穀胱甘&#32957zh_TW
dc.subject(GSH)zh_TW
dc.subjectDrug resistanceen
dc.subjectGlutathioneen
dc.subjectNADPH dehydrogenase Quinone 1(NQO1)en
dc.subjectGlutamine-cysteine ligase (GCL)en
dc.subjectHypoxiaen
dc.subjectCisplatinen
dc.subjectPhase II enzymeen
dc.subjectA549 lung carcinoma cellen
dc.title第二相抗氧化酵素是A549人類肺腺癌細胞在低氧狀況下抗藥性的重要決定因子zh_TW
dc.titlePhase II Antioxidant Enzyme Plays a Key Role in Drug Resistance in A549 Human Lung Carcinoma Cells under Hypoxia Conditionen
dc.typeThesis
dc.date.schoolyear101-2
dc.description.degree碩士
dc.contributor.oralexamcommittee盧國賢,王淑慧,陳瑩,周逸鵬
dc.subject.keyword順鉑,抗藥性,A549非小細胞肺癌細胞,第二相抗氧化酵素,低氧環境,穀胱甘&#32957,半胱胺酸連接&#37238,(GCL),醌,氧化還原&#37238,(NQO1),穀胱甘&#32957,(GSH),zh_TW
dc.subject.keywordCisplatin,Drug resistance,A549 lung carcinoma cell,Phase II enzyme,Hypoxia,Glutamine-cysteine ligase (GCL),NADPH dehydrogenase Quinone 1(NQO1),Glutathione,en
dc.relation.page52
dc.rights.note有償授權
dc.date.accepted2013-08-19
dc.contributor.author-college醫學院zh_TW
dc.contributor.author-dept解剖學暨細胞生物學研究所zh_TW
Appears in Collections:解剖學暨細胞生物學科所

Files in This Item:
File SizeFormat 
ntu-102-1.pdf
  Restricted Access
2.07 MBAdobe PDF
Show simple item record


Items in DSpace are protected by copyright, with all rights reserved, unless otherwise indicated.

社群連結
聯絡資訊
10617臺北市大安區羅斯福路四段1號
No.1 Sec.4, Roosevelt Rd., Taipei, Taiwan, R.O.C. 106
Tel: (02)33662353
Email: ntuetds@ntu.edu.tw
意見箱
相關連結
館藏目錄
國內圖書館整合查詢 MetaCat
臺大學術典藏 NTU Scholars
臺大圖書館數位典藏館
本站聲明
© NTU Library All Rights Reserved