Skip navigation

DSpace

機構典藏 DSpace 系統致力於保存各式數位資料(如:文字、圖片、PDF)並使其易於取用。

點此認識 DSpace
DSpace logo
English
中文
  • 瀏覽論文
    • 校院系所
    • 出版年
    • 作者
    • 標題
    • 關鍵字
    • 指導教授
  • 搜尋 TDR
  • 授權 Q&A
    • 我的頁面
    • 接受 E-mail 通知
    • 編輯個人資料
  1. NTU Theses and Dissertations Repository
  2. 醫學院
  3. 生物化學暨分子生物學科研究所
請用此 Handle URI 來引用此文件: http://tdr.lib.ntu.edu.tw/jspui/handle/123456789/60315
完整後設資料紀錄
DC 欄位值語言
dc.contributor.advisor詹迺立
dc.contributor.authorHsiang-Yen Taien
dc.contributor.author戴香嚴zh_TW
dc.date.accessioned2021-06-16T10:15:23Z-
dc.date.available2015-09-24
dc.date.copyright2013-09-24
dc.date.issued2013
dc.date.submitted2013-08-19
dc.identifier.citation1. Wu, H.Y., Shyy, S., Wang, J.C. and Liu, L.F. (1988) Transcription Generates Positively and Negatively Supercoiled Domains in the Template. Cell, 53, 433-440.
2. Corbett, K.D. and Berger, J.M. (2004) Structure, molecular mechanisms, and evolutionary relationships in DNA topoisomerases. Annual Review of Biophysics and Biomolecular Structure, 33, 95-118.
3. Champoux, J.J. (2001) DNA topoisomerases: Structure, function, and mechanism. Annual Review of Biochemistry, 70, 369-413.
4. Corbett, K.D. and Berger, J.M. (2004) Structure, molecular mechanisms, and evolutionary relationships in DNA topoisomerases. Annual Review of Biophysics and Biomolecular Structure, 33, 95-118.
5. Rodriguez, A.C. (2002) Studies of a positive supercoiling machine - Nucleotide hydrolysis and a multifunctional 'latch' in the mechanism of reverse gyrase. Journal of Biological Chemistry, 277, 29865-29873.
6. Wang, J.C. (1996) DNA topoisomerases. Annual Review of Biochemistry, 65, 635-692.
7. Vos, S.M., Tretter, E.M., Schmidt, B.H. and Berger, J.M. (2011) All tangled up: how cells direct, manage and exploit topoisomerase function. Nature Reviews Molecular Cell Biology, 12, 827-841.
8. Gadelle, D., Filee, J., Buhler, C. and Forterre, P. (2003) Phylogenomics of type II DNA topoisomerases. Bioessays, 25, 232-242.
9. Forterre, P., Gribaldo, S., Gadelle, D. and Serre, M.C. (2007) Origin and evolution of DNA topoisomerases. Biochimie, 89, 427-446.
10. Bergerat, A., Gadelle, D. and Forterre, P. (1994) Purification of a DNA Topoisomerase-Ii from the Hyperthermophilic Archaeon Sulfolobus-Shibatae - a Thermostable Enzyme with Both Bacterial and Eucaryal Features. Journal of Biological Chemistry, 269, 27663-27669.
11. Bergerat, A., deMassy, B., Gadelle, D., Varoutas, P.C., Nicolas, A. and Forterre, P. (1997) An atypical topoisomerase II from archaea with implications for meiotic recombination. Nature, 386, 414-417.
12. Schoeffler, A.J. and Berger, J.M. (2005) Recent advances in understanding structure-function relationships in the type II topoisomerase mechanism. Biochemical Society Transactions, 33, 1465-1470.
13. Nitiss, J.L. (2009) DNA topoisomerase II and its growing repertoire of biological functions. Nature Review Cancer, 9, 327-337.
14. Kato, J., Nishimura, Y., Imamura, R., Niki, H., Hiraga, S. and Suzuki, H. (1990) New topoisomerase essential for chromosome segregation in E. coli. Cell, 63, 393-404.
15. Dutta, R. and Inouye, M. (2000) GHKL, an emergent ATPase/kinase superfamily. Trends in Biochemical Sciences, 25, 24-28.
16. Wigley, D.B., Davies, G.J., Dodson, E.J., Maxwell, A. and Dodson, G. (1991) Crystal-Structure of an N-Terminal Fragment of the DNA Gyrase B-Protein. Nature, 351, 624-629.
17. Corbett, K.D. and Berger, J.M. (2003) Structure of the topoisomerase VI-B subunit: implications for type II topoisomerase mechanism and evolution. EMBO Journal, 22, 151-163.
18. Roca, J. and Wang, J.C. (1994) DNA Transport by a Type-Ii DNA Topoisomerase - Evidence in Favor of a 2-Gate Mechanism. Cell, 77, 609-616.
19. Roca, J., Berger, J.M., Harrison, S.C. and Wang, J.C. (1996) DNA transport by a type II topoisomerase: Direct evidence for a two-gate mechanism. Proceedings of the National Academy of Sciences of the United States of America, 93, 4057-4062.
20. Williams, N.L. and Maxwell, A. (1999) Locking the DNA gate of DNA gyrase: Investigating the effects on DNA cleavage and ATP hydrolysis. Biochemistry, 38, 14157-14164.
21. Kampranis, S.C., Bates, A.D. and Maxwell, A. (1999) A model for the mechanism of strand passage by DNA gyrase. Proceedings of the National Academy of Sciences of the United States of America, 96, 8414-8419.
22. Zechiedrich, E.L., Khodursky, A.B., Bachellier, S., Schneider, R., Chen, D., Lilley, D.M. and Cozzarelli, N.R. (2000) Roles of topoisomerases in maintaining steady-state DNA supercoiling in Escherichia coli. Journal of Biological Chemistry, 275, 8103-8113.
23. Funnell, B.E., Baker, T.A. and Kornberg, A. (1986) Complete Enzymatic Replication of Plasmids Containing the Origin of the Escherichia-Coli Chromosome. Journal of Biological Chemistry, 261, 5616-5624.
24. Liu, L.F. and Wang, J.C. (1987) Supercoiling of the DNA-Template during Transcription. Proceedings of the National Academy of Sciences of the United States of America, 84, 7024-7027.
25. Nollmann, M., Crisona, N.J. and Arimondo, P.B. (2007) Thirty years of Escherichia coli DNA gyrase: from in vivo function to single-molecule mechanism. Biochimie, 89, 490-499.
26. Huang, W.M. (1996) Bacterial diversity based on type II DNA topoisomerase genes. Annual Review of Genetics, 30, 79-107.
27. Levine, C., Hiasa, H. and Marians, K.J. (1998) DNA gyrase and topoisomerase IV: Biochemical activities, physiological roles during chromosome replication, and drug sensitivities. Biochimica Et Biophysica Acta-Gene Structure and Expression, 1400, 29-43.
28. Sissi, C. and Palumbo, M. (2010) In front of and behind the replication fork: bacterial type IIA topoisomerases. Cellular and Molecular Life Sciences, 67, 2001-2024.
29. Nollmann, M., Crisona, N.J. and Arimondo, P.B. (2007) Thirty years of Escherichia coli DNA gyrase: From in vivo function to single-molecule mechanism. Biochimie, 89, 490-499.
30. Ullsperger, C. and Cozzarelli, N.R. (1996) Contrasting enzymatic activities of topoisomerase IV and DNA gyrase from Escherichia coli. Journal of Biological Chemistry, 271, 31549-31555.
31. Marians, K.J. (1987) DNA Gyrase-Catalyzed Decatenation of Multiply Linked DNA Dimers. Journal of Biological Chemistry, 262, 10362-10368.
32. Hiasa, H. and Marians, K.J. (1996) Two distinct modes of strand unlinking during theta-type DNA replication. Journal of Biological Chemistry, 271, 21529-21535.
33. Corbett, K.D., Schoeffler, A.J., Thomsen, N.D. and Berger, J.M. (2005) The structural basis for substrate specificity in DNA topoisomerase IV. Journal of Molecular Biology, 351, 545-561.
34. Manjunatha, U.H., Dalal, M., Chatterji, M., Radha, D.R., Visweswariah, S.S. and Nagaraja, V. (2002) Functional characterisation of mycobacterial DNA gyrase: an efficient decatenase. Nucleic Acids Research, 30, 2144-2153.
35. Aubry, A., Fisher, L.M., Jarlier, V. and Cambau, E. (2006) First functional characterization of a singly expressed bacterial type II topoisomerase: The enzyme from Mycohacterium wherculosis. Biochemical and Biophysical Research Communications, 348, 158-165.
36. Tretter, E.M. and Berger, J.M. (2012) Mechanisms for Defining Supercoiling Set Point of DNA Gyrase Orthologs II-The shape of the GyrA subunit C-terminal domain (CTD) is not a sole determinant for controlling supercoiling efficiency. Journal of Biological Chemistry, 287, 18645-18654.
37. Reece, R.J. and Maxwell, A. (1991) The C-Terminal Domain of the Escherichia-Coli DNA Gyrase-a Subunit Is a DNA-Binding Protein. Nucleic Acids Research, 19, 1399-1405.
38. Corbett, K.D., Shultzaberger, R.K. and Berger, J.M. (2004) The C-terminal domain of DNA gyrase A adopts a DNA-bending beta-pinwheel fold. Proceedings of the National Academy of Sciences of the United States of America, 101, 7293-7298.
39. Neuman, K.C. (2010) Evolutionary twist on topoisomerases: conversion of gyrase to topoisomerase IV. Proceedings of the National Academy of Sciences of the United States of America, 107, 22363-22364.
40. Crisona, N.J., Strick, T.R., Bensimon, D., Croquette, V. and Cozzarelli, N.R. (2000) Preferential relaxation of positively supercoiled DNA by E-coli topoisomerase IV in single-molecule and ensemble measurements. Genes & Development, 14, 2881-2892.
41. Stone, M.D., Bryant, Z., Crisona, N.J., Smith, S.B., Vologodskii, A., Bustamante, C. and Cozzarelli, N.R. (2003) Chirality sensing by Escherichia coli topoisomerase IV and the mechanism of type II topoisomerases. Proceedings of the National Academy of Sciences of the United States of America, 100, 8654-8659.
42. Neuman, K.C., Charvin, G., Bensimon, D. and Croquette, V. (2009) Mechanisms of chiral discrimination by topoisomerase IV. Proceedings of the National Academy of Sciences of the United States of America, 106, 6986-6991.
43. Maxwell, A. (1997) DNA gyrase as a drug target. Trends in Microbiology, 5, 102-109.
44. Collin, F., Karkare, S. and Maxwell, A. (2011) Exploiting bacterial DNA gyrase as a drug target: current state and perspectives. Applied Microbiology and Biotechnology, 92, 479-497.
45. Oliphant, C.M. and Green, G.M. (2002) Quinolones: A comprehensive review. American Family Physician, 65, 455-464.
46. Laponogov, I., Sohi, M.K., Veselkov, D.A., Pan, X.S., Sawhney, R., Thompson, A.W., McAuley, K.E., Fisher, L.M. and Sanderson, M.R. (2009) Structural insight into the quinolone-DNA cleavage complex of type IIA topoisomerases. Nature Structural & Molecular Biology, 16, 667-669.
47. Laponogov, I., Pan, X.S., Veselkov, D.A., McAuley, K.E., Fisher, L.M. and Sanderson, M.R. (2010) Structural Basis of Gate-DNA Breakage and Resealing by Type II Topoisomerases. PLoS ONE, 5, e11338
48. Wohlkonig, A., Chan, P.F., Fosberry, A.P., Homes, P., Huang, J.Z., Kranz, M., Leydon, V.R., Miles, T.J., Pearson, N.D., Perera, R.L. et al. (2010) Structural basis of quinolone inhibition of type IIA topoisomerases and target-mediated resistance. Nature Structural & Molecular Biology, 17, 1152-1153.
49. Pommier, Y., Leo, E., Zhang, H.L. and Marchand, C. (2010) DNA Topoisomerases and Their Poisoning by Anticancer and Antibacterial Drugs. Chemistry & Biology, 17, 421-433.
50. Wu, C.C., Li, T.K., Farh, L., Lin, L.Y., Lin, T.S., Yu, Y.J., Yen, T.J., Chiang, C.W. and Chan, N.L. (2011) Structural Basis of Type II Topoisomerase Inhibition by the Anticancer Drug Etoposide. Science, 333, 459-462.
51. Lamour, V., Hoermann, L., Jeltsch, J.M., Oudet, P. and Moras, D. (2002) An open conformation of the Thermus thermophilus gyrase B ATP-binding domain. Journal of Biological Chemistry, 277, 18947-18953.
52. Lewis, R.J., Singh, O.M.P., Smith, C.V., Skarzynski, T., Maxwell, A., Wonacott, A.J. and Wigley, D.B. (1996) The nature of inhibition of DNA gyrase by the coumarins and the cyclothialidines revealed by X-ray crystallography. EMBO Journal, 15, 1412-1420.
53. Gellert, M., Mizuuchi, K., Odea, M.H. and Nash, H.A. (1976) DNA Gyrase - Enzyme That Introduces Superhelical Turns into DNA. Proceedings of the National Academy of Sciences of the United States of America, 73, 3872-3876.
54. Kampranis, S.C. and Maxwell, A. (1996) Conversion of DNA gyrase into a conventional type II topoisomerase. Proceedings of the National Academy of Sciences of the United States of America, 93, 14416-14421.
55. Kramlinger, V.M. and Hiasa, H. (2006) The 'GyrA-box' is required for the ability of DNA gyrase to wrap DNA and catalyze the supercoiling reaction. Journal of Biological Chemistry, 281, 3738-3742.
56. Liu, L.F. and Wang, J.C. (1978) DNA-DNA Gyrase Complex - Wrapping of DNA Duplex Outside Enzyme. Cell, 15, 979-984.
57. Kirkegaard, K. and Wang, J.C. (1981) Mapping the Topography of DNA Wrapped around Gyrase by Nucleolytic and Chemical Probing of Complexes of Unique DNA-Sequences. Cell, 23, 721-729.
58. Ruthenburg, A.J., Graybosch, D.M., Huetsch, J.C. and Verdine, G.L. (2005) A superhelical spiral in the Escherichia coli DNA gyrase A C-terminal domain imparts unidirectional supercoiling bias. Journal of Biological Chemistry, 280, 26177-26184.
59. Brown, P.O. and Cozzarelli, N.R. (1979) Sign Inversion Mechanism for Enzymatic Supercoiling of DNA. Science, 206, 1081-1083.
60. Schoeffler, A.J., May, A.P. and Berger, J.M. (2010) A domain insertion in Escherichia coli GyrB adopts a novel fold that plays a critical role in gyrase function. Nucleic Acids Research, 38, 7830-7844.
61. Tretter, E.M., Lerman, J.C. and Berger, J.M. (2010) A naturally chimeric type IIA topoisomerase in Aquifex aeolicus highlights an evolutionary path for the emergence of functional paralogs. Proceedings of the National Academy of Sciences of the United States of America, 107, 22055-22059.
62. Hsieh, T.J., Yen, T.J., Lin, T.S., Chang, H.T., Huang, S.Y., Hsu, C.H., Farh, L. and Chan, N.L. (2010) Twisting of the DNA-binding surface by a beta-strand-bearing proline modulates DNA gyrase activity. Nucleic Acids Research, 38, 4173-4181.
63. Gubaev, A. and Klostermeier, D. (2011) DNA-induced narrowing of the gyrase N-gate coordinates T-segment capture and strand passage. Proceedings of the National Academy of Sciences of the United States of America, 108, 14085-14090.
64. Lanz, M.A. and Klostermeier, D. (2011) Guiding strand passage: DNA-induced movement of the gyrase C-terminal domains defines an early step in the supercoiling cycle. Nucleic Acids Research, 39, 9681-9694.
65. Lanz, M.A. and Klostermeier, D. (2012) The GyrA-box determines the geometry of DNA bound to gyrase and couples DNA binding to the nucleotide cycle. Nucleic Acids Research, 40, 10893-10903.
66. Costenaro, L., Grossmann, J.G., Ebel, C. and Maxwell, A. (2005) Small-angle X-ray scattering reveals the solution structure of the full-length DNA gyrase A subunit. Structure, 13, 287-296.
67. Baker, N.M., Weigand, S., Maar-Mathias, S. and Mondragon, A. (2011) Solution structures of DNA-bound gyrase. Nucleic Acids Research, 39, 755-766.
68. Fisher, L.M., Mizuuchi, K., Odea, M.H., Ohmori, H. and Gellert, M. (1981) Site-Specific Interaction of DNA Gyrase with DNA. Proceedings of the National Academy of Sciences of the United States of America-Biological Sciences, 78, 4165-4169.
69. Lockshon, D. and Morris, D.R. (1985) Sites of reaction of Escherichia coli DNA gyrase on pBR322 in vivo as revealed by oxolinic acid-induced plasmid linearization. Journal of Molecular Biology, 181, 63-74.
70. Leo, E., Gould, K.A., Pan, X.S., Capranico, G., Sanderson, M.R., Palumbo, M. and Fisher, L.M. (2005) Novel symmetric and asymmetric DNA scission determinants for Streptococcus pneumoniae topoisomerase IV and gyrase are clustered at the DNA breakage site. Journal of Biological Chemistry, 280, 14252-14263.
71. Fisher, L.M., Mizuuchi, K., O'Dea, M.H., Ohmori, H. and Gellert, M. (1981) Site-specific interaction of DNA gyrase with DNA. Proceedings of the National Academy of Sciences of the United States of America-Biological Sciences, 78, 4165-4169.
72. Bax, B.D., Chan, P.F., Eggleston, D.S., Fosberry, A., Gentry, D.R., Gorrec, F., Giordano, I., Hann, M.M., Hennessy, A., Hibbs, M. et al. (2010) Type IIA topoisomerase inhibition by a new class of antibacterial agents. Nature, 466, 935-U951.
73. Lavasani, L.S. and Hiasa, H. (2001) A ParE-ParC fusion protein is a functional topoisomerase. Biochemistry, 40, 8438-8443.
74. Trigueros, S. and Roca, J. (2002) A GyrB-GyrA fusion protein expressed in yeast cells is able to remove DNA supercoils but cannot substitute eukaryotic topoisomerase II. Genes Cells, 7, 249-257.
75. Gellert, M., Mizuuchi, K., Odea, M.H., Itoh, T. and Tomizawa, J.I. (1977) Nalidixic-Acid Resistance - 2nd Genetic Character Involved in DNA Gyrase Activity. Proceedings of the National Academy of Sciences of the United States of America, 74, 4772-4776.
76. Papillon, J., Menetret, J.F., Batisse, C., Helye, R., Schultz, P., Potier, N. and Lamour, V. (2013) Structural insight into negative DNA supercoiling by DNA gyrase, a bacterial type 2A DNA topoisomerase. Nucleic Acids Research. in press.
77. Morrison, A. and Cozzarelli, N.R. (1979) Site-Specific Cleavage of DNA by Escherichia-Coli DNA Gyrase. Cell, 17, 175-184.
78. a, T.I.t.i.b., new class of antibacterial agentsFisher, L.M., Mizuuchi, K., Odea, M.H., Ohmori, H. and Gellert, M. (1981) Site-Specific Interaction of DNA Gyrase with DNA. Proceedings of the National Academy of Sciences of the United States of America-Biological Sciences, 78, 4165-4169.
79. Wang, J.C. (2002) Cellular roles of DNA topoisomerases: A molecular perspective. Nature Reviews Molecular Cell Biology, 3, 430-440.
80. Schoeffler, A.J. and Berger, J.M. (2008) DNA topoisomerases: harnessing and constraining energy to govern chromosome topology. Quarterly Reviews of Biophysics, 41, 41-101.
81. Dong, K.C. and Berger, J.M. (2007) Structural basis for gate-DNA recognition and bending by type IIA topoisomerases. Nature, 450, 1201-U1204.
dc.identifier.urihttp://tdr.lib.ntu.edu.tw/jspui/handle/123456789/60315-
dc.description.abstractDNA拓樸異構酶可藉由其切割—接合DNA的活性造成DNA拓樸結構的改變,進而影響DNA的生理活性。在四大類拓樸異構酶家族中,Type IIA拓樸異構酶廣泛的分布於細菌與真核生物界。本型酵素可暫時性的切斷雙股DNA,並利用ATP結合和水解所引發的蛋白構形變化來驅動另一雙股DNA通過斷裂處,以因應生物體所面臨的DNA拓樸問題。
所有細菌都含有DNA gyrase (DNA旋轉酶)此種功能特異化的Type IIA酵素,它可藉由ATP水解所提供的能量在DNA中引入負超螺旋,gyrase也是目前已知唯一具有此功能的拓樸異構酶。此特殊活性使得gyrase能有效的移除複製叉和RNA聚合酶前方的DNA正超螺旋,並可使細菌基因體處於適度的負超螺旋態。由於gyrase在細菌中扮演不可或缺的角色,所以它是良好的藥物標的蛋白,如fluoroquinolones類型的抗生素可嵌進gyrase誘發的DNA斷裂處,抑制其酵素活性並引發DNA損傷,達成抑菌的效果。
文獻指出gyrase功能的特異性,主要取決於其GyrA subunit上之C-terminal domain (CTD) 能以右旋方式纏繞DNA,形成一個正向的DNA交叉,再利用Type IIA酵素典型的催化機制將此交叉翻轉為負超螺旋,去除CTD的gyrase會喪失引入負超螺旋的活性。雖然gyrase CTD與DNA-binding and cleavage core (DBCC)之晶體結構以及gyrase引入負超螺旋的可能模式已於近年陸續發表,但目前對於其催化反應的詳細動態過程依舊不清楚,所以本研究希望以蛋白質結晶學技術,試著培養以融合蛋白型式表達包含CTD與DBCC二者之融合蛋白、並解析其與DNA與fluoroquinolones形成之三重複合體的晶體結構,以嘗試解答CTD如何與DNA交互作用並與DBCC搭配,以執行其引入負超螺旋的活性。目前已成功得到大量高品質且具有DNA結合與切割活性的融合蛋白,並已展開三重複合體的晶體培養。
zh_TW
dc.description.abstractDNA topoisomerases are essential enzymes that are responsible for modulating the topological states of cellular DNA. Among the four classes of topoisomerases, the type IIA family is widely distributed in bacteria and eukaryotes and is involved in several types of topological transformations, such as catenation and decatenation of DNA rings, relaxation of supercoiled DNA, and introduction of negative DNA supercoils. The catalytic cycle of type IIA enzyme includes transient cleavage of a double-stranded DNA and passage of another duplex DNA through followed by relegation of this break. DNA gyrase is a functionally specialized bacterial type IIA topoisomerase with an unique ATP-dependent negative supercoiling activity. As the only enzyme capable of introducing negative DNA supercoils, gyrase is particularly effective in removing the positive DNA supercoils that are accumulated in front of the replication fork or advancing RNA polymerases. In addition, gyrase keeps the bacterial genome in a slightly negative supercoiled state to facilitate various DNA transactions. Because of its vital roles in bacteria, gyrase has served as a primary target of antibacterial drugs. For example, the fluoroquinlone compounds are highly successful antibiotics which can induce DNA damage in bacteria and thus their death by stabilizing the gyrase-mediated DNA breaks.
Previous studies revealed that the unique negative supercoiling activity of gyrase is dependent on the C-terminal domain of the GyrA subunit (GyrA-CTD), which can wrap a duplex DNA segment into a positive crossover to facilitate its subsequent conversion into a negative DNA superhelical turn. Removal of GyrA-CTD abolishes gyrase’s activity to introduce negative supercoils. Therefore, GyrA-CTD is required for the unique supercoiling activity of gyrase.
To elucidate the structural basis of gyrase-catalyzed negative supercoiling reaction, it is important to understand how a piece of DNA is bound and shaped by the enzyme. Although the crystal structure of GyrA-CTD and gyrase DNA-binding and cleavage core (DBCC) has been determined, no information is available regarding how the functional coordination is achieved between this domain and the enzyme’s core catalytic module. Therefore, we would like to address this question by determining the structure of gyrase-DNA complex. To facilitate structural determination, we created a N-terminal ATPase domain-truncated GyrBA DBCC fusion protein that contains the C-terminal region of GyrB (residues 395-804) and the full-length GyrA (residues 1-875). The fusion protein has been successfully expressed and purified to homogeneity. Crystallization trials of this fusion protein in complexes with a 40-bp DNA duplex and antibacterial fluoroquinlones have been initiated.
en
dc.description.provenanceMade available in DSpace on 2021-06-16T10:15:23Z (GMT). No. of bitstreams: 1
ntu-102-R00442025-1.pdf: 3549303 bytes, checksum: 0ebb9a3736817d619a00c5e40ea3327c (MD5)
Previous issue date: 2013
en
dc.description.tableofcontents口試委員會審定書 II
謝誌 III
中文摘要 IV
英文摘要 VI
目錄 VIII
圖目錄 XI
表目錄 XIII
縮寫表 XIV
一、 前言 1
1-1 DNA拓樸結構問題與拓樸異構酶 1
1-2拓樸異構酶的分類與功能 2
1-3 Type ІІA拓樸異構酶之結構與分子機制 3
1-4 原核生物之Type ІІA拓樸異構酶 5
1-5 DNA gyrase為抑菌藥物之標的蛋白 7
1-6 DNA gyrase的功能特異性 8
1-7 研究目的 9
二、 材料與方法 11
2-1 蛋白質表現質體之構築 11
2-1-1 pET21b-GyrB、pET21b-GyrA 11
2-1-2 pET21b-His6-GyrB395-804-L18 11
2-1-3 pET21b-His6-GyrB395-804-L18-GyrA1-875 17
2-2 蛋白質表現量之測試 19
2-2-1 pET21b-His6-GyrB395-804-L18-GyrA1-875 (GyrBA DBCC融合蛋白)之表達 19
2-3 蛋白純化 23
2-3-1 GyrBA DBCC融合蛋白之純化 23
2-4 蛋白質濃縮與定量 28
2-5 蛋白質均質性測定 29
2-6 蛋白晶體培養 29
2-6-1 GyrBA DBCC融合蛋白晶體樣品製備 29
2-6-2 GyrBA DBCC融合蛋白-DNA-levofloxacin複合體樣品製備 29
2-6-3 PCT (Pre-Crystallization Test) 31
2-6-4 晶體生長條件測試 32
2-6-5 微調養晶條件 33
2-7 蛋白質晶體之X-ray繞射數據的分析與收集 33
2-7-1 蛋白質晶體冷凍保護 (cryo-protection) 33
2-7-2 單晶繞射實驗 33
2-8 蛋白活性功能測試 34
2-8-1 電泳遷移率改變實驗 (Electrophoretic Mobility Shift Assay, EMSA) 34
2-8-2 DNA gyrase cleavage assay with pBluescript SK+ (pBSK+)
35
2-8-3 DNA gyrase cleavage assay with 40-bp dsDNA 37
三、 結果 38
3-1 構築pET21b-His6-GyrB395-804-L18表達質體 38
3-2 構築pET21b-His6-GyrB395-804-L18-GyrA1-875表達質體 38
3-3 GyrBA DBCC融合蛋白表現 39
3-4 西方墨點法 39
3-5 GyrBA DBCC融合蛋白純化 40
3-5-1 鎳離子親和性管柱層析 (Ni2+-affinity column) 40
3-5-2 HiPrep Heparin FF 16/10管柱層析 40
3-5-3分子篩管柱層析法與蛋白均質性測定 41
3-5-4 以Protease Inhibitor進行蛋白穩定度測試 41
3-6蛋白晶體培養 42
3-6-1 GyrBA DBCC融合蛋白的晶體培養 42
3-6-2 GyrBA DBCC融合蛋白-DNA-levofloxacin複合體的晶體培養 43
3-7 GyrBA DBCC融合蛋白-DNA-levofloxacin複合體的數據收集 43
3-8 蛋白活性功能測試 44
3-8-1電泳遷移率改變實驗 (Electrophoretic Mobility Shift Assay, EMSA) 44
3-8-2 DNA gyrase cleavage assay with pBluescript SK+ (pBSK+)
45
3-8-3 DNA gyrase cleavage assay with 40-bp dsDNA 45
四、 討論 46
4-1 pET21b-His6-GyrB395-804-L18-GyrA1-875 表達質體 46
4-2 GyrBA DBCC融合蛋白表現與純化 47
4-3蛋白晶體培養與X-ray繞射數據分析 48
4-3-1 GyrBA DBCC融合蛋白 48
4-3-2 GyrBA DBCC-DNA-levofloxacin複合體 48
4-4 蛋白活性功能測試 49
4-5結論49
圖 51
表 81
參考文獻 85
附錄 92
 
圖目錄
圖1-1 DNA拓樸結構問題 (DNA topolpgic problems) 51
圖1-2 DNA拓樸異構酶之活性 52
圖1-3 DNA拓樸異構酶之活性中心 53
圖1-4 Type IIA拓樸異構酶之胺基酸序列 54
圖1-5 Type IIA拓樸異構酶之作用機制 55
圖1-6 原核生物之Type IIA拓樸異構酶 56
圖1-7 DNA gyrase之抑制劑 57
圖1-8 DNA gyrase催化機制示意圖 58
圖2-1 pET21b-His6-GyrB395-804-L18-GyrA1-875表現載體之設計 59
圖2-2 建構pET21b-His6-GyrB395-804-L18-GyrA1-875表現載體實驗流程 60
圖2-3 GyrBA DBCC融合蛋白之受質,40-bp dsDNA設計 61
圖3-1 GyrBA DBCC融合蛋白部分二級結構分析 62
圖3-2 GyrBA DBCC融合蛋白小量表現測試 63
圖3-3 西方墨點法 64
圖3-4 GyrBA DBCC融合蛋白經鎳離子親和性管柱層析結果 65
圖3-5 GyrBA DBCC融合蛋白經HiPrep Heparin FF 16/10 管柱層析結果66
圖3-6 GyrBA DBCC融合蛋白經分子篩管柱層析結果. 67
圖3-7 加入Protease Inhibitor之GyrBA DBCC 融合蛋白經鎳離子親和性管柱層析結果 68
圖3-8 加入Protease Inhibitor之GyrBA DBCC 融合蛋白經HiPrep Heparin FF 16/10 管柱層析結果 69
圖3-9 加入Protease Inhibitor之GyrBA DBCC 融合蛋白經分子篩層析結果 70
圖3-10 利用DLS測得GyrBA DBCC融合蛋白之均質性與粒徑大小 71
圖3-11 GyrBA DBCC融合蛋白-DNA-levofloxacin複合體晶體培養 (一) 72
圖3-12 GyrBA DBCC融合蛋白-DNA-levofloxacin複合體晶體培養 (二) 73
圖 3-13 晶體繞射圖譜 74
圖3-14 電泳遷移率改變實驗 (Electrophoretic Mobility Shift Assay, EMSA) (一) 75
圖3-15 電泳遷移率改變實驗 (Electrophoretic Mobility Shift Assay, EMSA) (二) 76
圖3-16 DNA gyrase cleavage assay with pBluescript SK+ (pBSK+) 77
圖3-17 DNA gyrase cleavage assay with 40-bp dsDNA 78
圖4-1 hTop2βcore-DNA cleavage complex 79
圖4-2 Top IV-moxifloxacin-DNA cleavage complex 80
表目錄
表2-1 本實驗使用的菌種 81
表2-2 本實驗使用的質體 82
表2-3 藥品配置 83
表2-4 本實驗室使用之養晶試劑套件組 (crystallization kits) 84
dc.language.isozh-TW
dc.subjectDNA拓樸異構&#37238zh_TW
dc.subjectDNA旋轉&#37238zh_TW
dc.subjectfluoroquinoloneszh_TW
dc.subjectC-terminal domain (CTD)zh_TW
dc.subject蛋白質結晶學zh_TW
dc.subjectDNA topoisomerasesen
dc.subjectDNA gyraseen
dc.subjectfluoroquinlonesen
dc.subjectC-terminal domain (CTD)en
dc.subjectcrystallizationen
dc.title大腸桿菌旋轉酶與DNA交互作用之結構解析zh_TW
dc.titleStructural Analysis of DNA-Binding by Escherichia coli
Gyrase
en
dc.typeThesis
dc.date.schoolyear101-2
dc.description.degree碩士
dc.contributor.oralexamcommittee徐駿森,冀宏源
dc.subject.keywordDNA拓樸異構&#37238,DNA旋轉&#37238,fluoroquinolones,C-terminal domain (CTD),蛋白質結晶學,zh_TW
dc.subject.keywordDNA topoisomerases,DNA gyrase,fluoroquinlones,C-terminal domain (CTD),crystallization,en
dc.relation.page94
dc.rights.note有償授權
dc.date.accepted2013-08-19
dc.contributor.author-college醫學院zh_TW
dc.contributor.author-dept生物化學暨分子生物學研究所zh_TW
顯示於系所單位:生物化學暨分子生物學科研究所

文件中的檔案:
檔案 大小格式 
ntu-102-1.pdf
  未授權公開取用
3.47 MBAdobe PDF
顯示文件簡單紀錄


系統中的文件,除了特別指名其著作權條款之外,均受到著作權保護,並且保留所有的權利。

社群連結
聯絡資訊
10617臺北市大安區羅斯福路四段1號
No.1 Sec.4, Roosevelt Rd., Taipei, Taiwan, R.O.C. 106
Tel: (02)33662353
Email: ntuetds@ntu.edu.tw
意見箱
相關連結
館藏目錄
國內圖書館整合查詢 MetaCat
臺大學術典藏 NTU Scholars
臺大圖書館數位典藏館
本站聲明
© NTU Library All Rights Reserved