請用此 Handle URI 來引用此文件:
http://tdr.lib.ntu.edu.tw/jspui/handle/123456789/60313完整後設資料紀錄
| DC 欄位 | 值 | 語言 |
|---|---|---|
| dc.contributor.advisor | 詹迺立 | |
| dc.contributor.author | Chyuan-Chuan Wu | en |
| dc.contributor.author | 吳權娟 | zh_TW |
| dc.date.accessioned | 2021-06-16T10:15:21Z | - |
| dc.date.available | 2013-09-24 | |
| dc.date.copyright | 2013-09-24 | |
| dc.date.issued | 2013 | |
| dc.date.submitted | 2013-08-19 | |
| dc.identifier.citation | 1. Liu, L.F. and Wang, J.C. (1987) Supercoiling of the DNA template during transcription. Proc Natl Acad Sci U S A, 84, 7024-7027.
2. Vos, S.M., Tretter, E.M., Schmidt, B.H. and Berger, J.M. (2011) All tangled up: how cells direct, manage and exploit topoisomerase function. Nat Rev Mol Cell Biol, 12, 827-841. 3. Wang, J.C. (2002) Cellular roles of DNA topoisomerases: a molecular perspective. Nat Rev Mol Cell Biol, 3, 430-440. 4. Forterre, P. and Gadelle, D. (2009) Phylogenomics of DNA topoisomerases: their origin and putative roles in the emergence of modern organisms. Nucleic Acids Res, 37, 679-692. 5. Gadelle, D., Filee, J., Buhler, C. and Forterre, P. (2003) Phylogenomics of type II DNA topoisomerases. Bioessays, 25, 232-242. 6. Schoeffler, A.J. and Berger, J.M. (2008) DNA topoisomerases: harnessing and constraining energy to govern chromosome topology. Q Rev Biophys, 41, 41-101. 7. Dynan, W.S., Jendrisak, J.J., Hager, D.A. and Burgess, R.R. (1981) Purification and characterization of wheat germ DNA topoisomerase I (nicking-closing enzyme). J Biol Chem, 256, 5860-5865. 8. Koster, D.A., Croquette, V., Dekker, C., Shuman, S. and Dekker, N.H. (2005) Friction and torque govern the relaxation of DNA supercoils by eukaryotic topoisomerase IB. Nature, 434, 671-674. 9. Wu, L. and Hickson, I.D. (2003) The Bloom's syndrome helicase suppresses crossing over during homologous recombination. Nature, 426, 870-874. 10. Plank, J.L., Wu, J. and Hsieh, T.S. (2006) Topoisomerase IIIalpha and Bloom's helicase can resolve a mobile double Holliday junction substrate through convergent branch migration. Proc Natl Acad Sci U S A, 103, 11118-11123. 11. Suski, C. and Marians, K.J. (2008) Resolution of converging replication forks by RecQ and topoisomerase III. Mol Cell, 30, 779-789. 12. Brown, P.O. and Cozzarelli, N.R. (1979) A sign inversion mechanism for enzymatic supercoiling of DNA. Science, 206, 1081-1083. 13. Mizuuchi, K., Fisher, L.M., O'Dea, M.H. and Gellert, M. (1980) DNA gyrase action involves the introduction of transient double-strand breaks into DNA. Proc Natl Acad Sci U S A, 77, 1847-1851. 14. Liu, L.F., Rowe, T.C., Yang, L., Tewey, K.M. and Chen, G.L. (1983) Cleavage of DNA by mammalian DNA topoisomerase II. J Biol Chem, 258, 15365-15370. 15. Sander, M. and Hsieh, T. (1983) Double strand DNA cleavage by type II DNA topoisomerase from Drosophila melanogaster. J Biol Chem, 258, 8421-8428. 16. Lindsley, J.E. and Wang, J.C. (1991) Proteolysis patterns of epitopically labeled yeast DNA topoisomerase II suggest an allosteric transition in the enzyme induced by ATP binding. Proc Natl Acad Sci U S A, 88, 10485-10489. 17. Gellert, M., Mizuuchi, K., O'Dea, M.H. and Nash, H.A. (1976) DNA gyrase: an enzyme that introduces superhelical turns into DNA. Proc Natl Acad Sci U S A, 73, 3872-3876. 18. Bergerat, A., Gadelle, D. and Forterre, P. (1994) Purification of a DNA topoisomerase II from the hyperthermophilic archaeon Sulfolobus shibatae. A thermostable enzyme with both bacterial and eucaryal features. J Biol Chem, 269, 27663-27669. 19. Buhler, C., Lebbink, J.H., Bocs, C., Ladenstein, R. and Forterre, P. (2001) DNA topoisomerase VI generates ATP-dependent double-strand breaks with two-nucleotide overhangs. J Biol Chem, 276, 37215-37222. 20. Corbett, K.D. and Berger, J.M. (2003) Structure of the topoisomerase VI-B subunit: implications for type II topoisomerase mechanism and evolution. EMBO J, 22, 151-163. 21. Nichols, M.D., DeAngelis, K., Keck, J.L. and Berger, J.M. (1999) Structure and function of an archaeal topoisomerase VI subunit with homology to the meiotic recombination factor Spo11. EMBO J, 18, 6177-6188. 22. Grue, P., Grasser, A., Sehested, M., Jensen, P.B., Uhse, A., Straub, T., Ness, W. and Boege, F. (1998) Essential mitotic functions of DNA topoisomerase IIalpha are not adopted by topoisomerase IIbeta in human H69 cells. J Biol Chem, 273, 33660-33666. 23. Carpenter, A.J. and Porter, A.C. (2004) Construction, characterization, and complementation of a conditional-lethal DNA topoisomerase IIalpha mutant human cell line. Mol Biol Cell, 15, 5700-5711. 24. Pommier, Y., Leo, E., Zhang, H. and Marchand, C. (2010) DNA topoisomerases and their poisoning by anticancer and antibacterial drugs. Chem Biol, 17, 421-433. 25. Wigley, D.B., Davies, G.J., Dodson, E.J., Maxwell, A. and Dodson, G. (1991) Crystal structure of an N-terminal fragment of the DNA gyrase B protein. Nature, 351, 624-629. 26. Berger, J.M., Gamblin, S.J., Harrison, S.C. and Wang, J.C. (1996) Structure and mechanism of DNA topoisomerase II. Nature, 379, 225-232. 27. Morais Cabral, J.H., Jackson, A.P., Smith, C.V., Shikotra, N., Maxwell, A. and Liddington, R.C. (1997) Crystal structure of the breakage-reunion domain of DNA gyrase. Nature, 388, 903-906. 28. Classen, S., Olland, S. and Berger, J.M. (2003) Structure of the topoisomerase II ATPase region and its mechanism of inhibition by the chemotherapeutic agent ICRF-187. Proc Natl Acad Sci U S A, 100, 10629-10634. 29. Dong, K.C. and Berger, J.M. (2007) Structural basis for gate-DNA recognition and bending by type IIA topoisomerases. Nature, 450, 1201-1205. 30. Schmidt, B.H., Osheroff, N. and Berger, J.M. (2012) Structure of a topoisomerase II-DNA-nucleotide complex reveals a new control mechanism for ATPase activity. Nat Struct Mol Biol, 19, 1147-1154. 31. Wei, H., Ruthenburg, A.J., Bechis, S.K. and Verdine, G.L. (2005) Nucleotide-dependent domain movement in the ATPase domain of a human type IIA DNA topoisomerase. J Biol Chem, 280, 37041-37047. 32. Aravind, L., Leipe, D.D. and Koonin, E.V. (1998) Toprim--a conserved catalytic domain in type IA and II topoisomerases, DnaG-type primases, OLD family nucleases and RecR proteins. Nucleic Acids Res, 26, 4205-4213. 33. Wang, J.C. and Kirkegaard, K. (1981) DNA topoisomerases. Gene Amplif Anal, 2, 455-473. 34. Roca, J., Berger, J.M., Harrison, S.C. and Wang, J.C. (1996) DNA transport by a type II topoisomerase: direct evidence for a two-gate mechanism. Proc Natl Acad Sci U S A, 93, 4057-4062. 35. Roca, J. and Wang, J.C. (1992) The capture of a DNA double helix by an ATP-dependent protein clamp: a key step in DNA transport by type II DNA topoisomerases. Cell, 71, 833-840. 36. Baird, C.L., Harkins, T.T., Morris, S.K. and Lindsley, J.E. (1999) Topoisomerase II drives DNA transport by hydrolyzing one ATP. Proc Natl Acad Sci U S A, 96, 13685-13690. 37. Williams, N.L. and Maxwell, A. (1999) Probing the two-gate mechanism of DNA gyrase using cysteine cross-linking. Biochemistry, 38, 13502-13511. 38. Sissi, C. and Palumbo, M. (2009) Effects of magnesium and related divalent metal ions in topoisomerase structure and function. Nucleic Acids Res, 37, 702-711. 39. Roca, J. (2004) The path of the DNA along the dimer interface of topoisomerase II. J Biol Chem, 279, 25783-25788. 40. Bates, A.D., Berger, J.M. and Maxwell, A. (2011) The ancestral role of ATP hydrolysis in type II topoisomerases: prevention of DNA double-strand breaks. Nucleic Acids Res, 39, 6327-6339. 41. Baird, C.L., Gordon, M.S., Andrenyak, D.M., Marecek, J.F. and Lindsley, J.E. (2001) The ATPase reaction cycle of yeast DNA topoisomerase II. Slow rates of ATP resynthesis and P(i) release. J Biol Chem, 276, 27893-27898. 42. Harkins, T.T., Lewis, T.J. and Lindsley, J.E. (1998) Pre-steady-state analysis of ATP hydrolysis by Saccharomyces cerevisiae DNA topoisomerase II. 2. Kinetic mechanism for the sequential hydrolysis of two ATP. Biochemistry, 37, 7299-7312. 43. Lindsley, J.E. and Wang, J.C. (1993) On the coupling between ATP usage and DNA transport by yeast DNA topoisomerase II. J Biol Chem, 268, 8096-8104. 44. Mizuuchi, K., O'Dea, M.H. and Gellert, M. (1978) DNA gyrase: subunit structure and ATPase activity of the purified enzyme. Proc Natl Acad Sci U S A, 75, 5960-5963. 45. Harkins, T.T. and Lindsley, J.E. (1998) Pre-steady-state analysis of ATP hydrolysis by Saccharomyces cerevisiae DNA topoisomerase II. 1. A DNA-dependent burst in ATP hydrolysis. Biochemistry, 37, 7292-7298. 46. Chang, C.C., Wang, Y.R., Chen, S.F., Wu, C.C. and Chan, N.L. (2013) New insights into DNA-binding by type IIA topoisomerases. Curr Opin Struct Biol, 23, 125-133. 47. Laponogov, I., Sohi, M.K., Veselkov, D.A., Pan, X.S., Sawhney, R., Thompson, A.W., McAuley, K.E., Fisher, L.M. and Sanderson, M.R. (2009) Structural insight into the quinolone-DNA cleavage complex of type IIA topoisomerases. Nat Struct Mol Biol, 16, 667-669. 48. Laponogov, I., Pan, X.S., Veselkov, D.A., McAuley, K.E., Fisher, L.M. and Sanderson, M.R. (2010) Structural basis of gate-DNA breakage and resealing by type II topoisomerases. PLoS One, 5, e11338. 49. Wohlkonig, A., Chan, P.F., Fosberry, A.P., Homes, P., Huang, J., Kranz, M., Leydon, V.R., Miles, T.J., Pearson, N.D., Perera, R.L. et al. (2010) Structural basis of quinolone inhibition of type IIA topoisomerases and target-mediated resistance. Nat Struct Mol Biol, 17, 1152-1153. 50. Wu, C.C., Li, T.K., Farh, L., Lin, L.Y., Lin, T.S., Yu, Y.J., Yen, T.J., Chiang, C.W. and Chan, N.L. (2011) Structural basis of type II topoisomerase inhibition by the anticancer drug etoposide. Science, 333, 459-462. 51. Lee, S., Jung, S.R., Heo, K., Byl, J.A., Deweese, J.E., Osheroff, N. and Hohng, S. (2012) DNA cleavage and opening reactions of human topoisomerase IIalpha are regulated via Mg2+-mediated dynamic bending of gate-DNA. Proc Natl Acad Sci U S A, 109, 2925-2930. 52. Lee, I., Dong, K.C. and Berger, J.M. (2013) The role of DNA bending in type IIA topoisomerase function. Nucleic Acids Res. 53. Mueller-Planitz, F. and Herschlag, D. (2006) Interdomain communication in DNA topoisomerase II. DNA binding and enzyme activation. J Biol Chem, 281, 23395-23404. 54. Corbett, K.D. and Berger, J.M. (2004) Structure, molecular mechanisms, and evolutionary relationships in DNA topoisomerases. Annu Rev Biophys Biomol Struct, 33, 95-118. 55. Peng, H. and Marians, K.J. (1993) Decatenation activity of topoisomerase IV during oriC and pBR322 DNA replication in vitro. Proc Natl Acad Sci U S A, 90, 8571-8575. 56. Adams, D.E., Shekhtman, E.M., Zechiedrich, E.L., Schmid, M.B. and Cozzarelli, N.R. (1992) The role of topoisomerase IV in partitioning bacterial replicons and the structure of catenated intermediates in DNA replication. Cell, 71, 277-288. 57. Zechiedrich, E.L., Khodursky, A.B. and Cozzarelli, N.R. (1997) Topoisomerase IV, not gyrase, decatenates products of site-specific recombination in Escherichia coli. Genes Dev, 11, 2580-2592. 58. Zechiedrich, E.L. and Cozzarelli, N.R. (1995) Roles of topoisomerase IV and DNA gyrase in DNA unlinking during replication in Escherichia coli. Genes Dev, 9, 2859-2869. 59. Zechiedrich, E.L., Khodursky, A.B., Bachellier, S., Schneider, R., Chen, D., Lilley, D.M. and Cozzarelli, N.R. (2000) Roles of topoisomerases in maintaining steady-state DNA supercoiling in Escherichia coli. J Biol Chem, 275, 8103-8113. 60. Holmes, V.F. and Cozzarelli, N.R. (2000) Closing the ring: links between SMC proteins and chromosome partitioning, condensation, and supercoiling. Proc Natl Acad Sci U S A, 97, 1322-1324. 61. Levine, C., Hiasa, H. and Marians, K.J. (1998) DNA gyrase and topoisomerase IV: biochemical activities, physiological roles during chromosome replication, and drug sensitivities. Biochim Biophys Acta, 1400, 29-43. 62. Corbett, K.D., Shultzaberger, R.K. and Berger, J.M. (2004) The C-terminal domain of DNA gyrase A adopts a DNA-bending beta-pinwheel fold. Proc Natl Acad Sci U S A, 101, 7293-7298. 63. Kampranis, S.C. and Maxwell, A. (1996) Conversion of DNA gyrase into a conventional type II topoisomerase. Proc Natl Acad Sci U S A, 93, 14416-14421. 64. Hsieh, T.J., Farh, L., Huang, W.M. and Chan, N.L. (2004) Structure of the topoisomerase IV C-terminal domain: a broken beta-propeller implies a role as geometry facilitator in catalysis. J Biol Chem, 279, 55587-55593. 65. Corbett, K.D., Schoeffler, A.J., Thomsen, N.D. and Berger, J.M. (2005) The structural basis for substrate specificity in DNA topoisomerase IV. J Mol Biol, 351, 545-561. 66. Wyckoff, E., Natalie, D., Nolan, J.M., Lee, M. and Hsieh, T. (1989) Structure of the Drosophila DNA topoisomerase II gene. Nucleotide sequence and homology among topoisomerases II. J Mol Biol, 205, 1-13. 67. Shiozaki, K. and Yanagida, M. (1991) A functional 125-kDa core polypeptide of fission yeast DNA topoisomerase II. Mol Cell Biol, 11, 6093-6102. 68. Crenshaw, D.G. and Hsieh, T. (1993) Function of the hydrophilic carboxyl terminus of type II DNA topoisomerase from Drosophila melanogaster. II. In vivo studies. J Biol Chem, 268, 21335-21343. 69. Caron, P.R., Watt, P. and Wang, J.C. (1994) The C-terminal domain of Saccharomyces cerevisiae DNA topoisomerase II. Mol Cell Biol, 14, 3197-3207. 70. Jenkins, J.R., Ayton, P., Jones, T., Davies, S.L., Simmons, D.L., Harris, A.L., Sheer, D. and Hickson, I.D. (1992) Isolation of cDNA clones encoding the beta isozyme of human DNA topoisomerase II and localisation of the gene to chromosome 3p24. Nucleic Acids Res, 20, 5587-5592. 71. Tsai-Pflugfelder, M., Liu, L.F., Liu, A.A., Tewey, K.M., Whang-Peng, J., Knutsen, T., Huebner, K., Croce, C.M. and Wang, J.C. (1988) Cloning and sequencing of cDNA encoding human DNA topoisomerase II and localization of the gene to chromosome region 17q21-22. Proc Natl Acad Sci U S A, 85, 7177-7181. 72. Linka, R.M., Porter, A.C., Volkov, A., Mielke, C., Boege, F. and Christensen, M.O. (2007) C-terminal regions of topoisomerase IIalpha and IIbeta determine isoform-specific functioning of the enzymes in vivo. Nucleic Acids Res, 35, 3810-3822. 73. Drake, F.H., Hofmann, G.A., Bartus, H.F., Mattern, M.R., Crooke, S.T. and Mirabelli, C.K. (1989) Biochemical and pharmacological properties of p170 and p180 forms of topoisomerase II. Biochemistry, 28, 8154-8160. 74. Leontiou, C., Lightowlers, R., Lakey, J.H. and Austin, C.A. (2003) Kinetic analysis of human topoisomerase IIalpha and beta DNA binding by surface plasmon resonance. FEBS Lett, 554, 206-210. 75. Christensen, M.O., Larsen, M.K., Barthelmes, H.U., Hock, R., Andersen, C.L., Kjeldsen, E., Knudsen, B.R., Westergaard, O., Boege, F. and Mielke, C. (2002) Dynamics of human DNA topoisomerases IIalpha and IIbeta in living cells. J Cell Biol, 157, 31-44. 76. Isaacs, R.J., Davies, S.L., Sandri, M.I., Redwood, C., Wells, N.J. and Hickson, I.D. (1998) Physiological regulation of eukaryotic topoisomerase II. Biochim Biophys Acta, 1400, 121-137. 77. Isaacs, R.J., Harris, A.L. and Hickson, I.D. (1996) Regulation of the human topoisomerase IIalpha gene promoter in confluence-arrested cells. J Biol Chem, 271, 16741-16747. 78. Austin, C.A. and Marsh, K.L. (1998) Eukaryotic DNA topoisomerase II beta. Bioessays, 20, 215-226. 79. Akimitsu, N., Adachi, N., Hirai, H., Hossain, M.S., Hamamoto, H., Kobayashi, M., Aratani, Y., Koyama, H. and Sekimizu, K. (2003) Enforced cytokinesis without complete nuclear division in embryonic cells depleting the activity of DNA topoisomerase IIalpha. Genes Cells, 8, 393-402. 80. McClendon, A.K., Rodriguez, A.C. and Osheroff, N. (2005) Human topoisomerase IIalpha rapidly relaxes positively supercoiled DNA: implications for enzyme action ahead of replication forks. J Biol Chem, 280, 39337-39345. 81. Niimi, A., Suka, N., Harata, M., Kikuchi, A. and Mizuno, S. (2001) Co-localization of chicken DNA topoisomerase IIalpha, but not beta, with sites of DNA replication and possible involvement of a C-terminal region of alpha through its binding to PCNA. Chromosoma, 110, 102-114. 82. Damelin, M. and Bestor, T.H. (2007) The decatenation checkpoint. Br J Cancer, 96, 201-205. 83. Deming, P.B., Cistulli, C.A., Zhao, H., Graves, P.R., Piwnica-Worms, H., Paules, R.S., Downes, C.S. and Kaufmann, W.K. (2001) The human decatenation checkpoint. Proc Natl Acad Sci U S A, 98, 12044-12049. 84. Nitiss, J.L. (2009) DNA topoisomerase II and its growing repertoire of biological functions. Nat Rev Cancer, 9, 327-337. 85. Downes, C.S., Clarke, D.J., Mullinger, A.M., Gimenez-Abian, J.F., Creighton, A.M. and Johnson, R.T. (1994) A topoisomerase II-dependent G2 cycle checkpoint in mammalian cells. Nature, 372, 467-470. 86. Bower, J.J., Karaca, G.F., Zhou, Y., Simpson, D.A., Cordeiro-Stone, M. and Kaufmann, W.K. (2010) Topoisomerase IIalpha maintains genomic stability through decatenation G(2) checkpoint signaling. Oncogene, 29, 4787-4799. 87. Luo, K., Yuan, J., Chen, J. and Lou, Z. (2009) Topoisomerase IIalpha controls the decatenation checkpoint. Nat Cell Biol, 11, 204-210. 88. Meczes, E.L., Marsh, K.L., Fisher, L.M., Rogers, M.P. and Austin, C.A. (1997) Complementation of temperature-sensitive topoisomerase II mutations in Saccharomyces cerevisiae by a human TOP2 beta construct allows the study of topoisomerase II beta inhibitors in yeast. Cancer Chemother Pharmacol, 39, 367-375. 89. Jensen, S., Redwood, C.S., Jenkins, J.R., Andersen, A.H. and Hickson, I.D. (1996) Human DNA topoisomerases II alpha and II beta can functionally substitute for yeast TOP2 in chromosome segregation and recombination. Mol Gen Genet, 252, 79-86. 90. Yang, X., Li, W., Prescott, E.D., Burden, S.J. and Wang, J.C. (2000) DNA topoisomerase IIbeta and neural development. Science, 287, 131-134. 91. Lyu, Y.L. and Wang, J.C. (2003) Aberrant lamination in the cerebral cortex of mouse embryos lacking DNA topoisomerase IIbeta. Proc Natl Acad Sci U S A, 100, 7123-7128. 92. Lyu, Y.L., Lin, C.P., Azarova, A.M., Cai, L., Wang, J.C. and Liu, L.F. (2006) Role of topoisomerase IIbeta in the expression of developmentally regulated genes. Mol Cell Biol, 26, 7929-7941. 93. Ju, B.G., Lunyak, V.V., Perissi, V., Garcia-Bassets, I., Rose, D.W., Glass, C.K. and Rosenfeld, M.G. (2006) A topoisomerase IIbeta-mediated dsDNA break required for regulated transcription. Science, 312, 1798-1802. 94. Tiwari, V.K., Burger, L., Nikoletopoulou, V., Deogracias, R., Thakurela, S., Wirbelauer, C., Kaut, J., Terranova, R., Hoerner, L., Mielke, C. et al. (2012) Target genes of Topoisomerase IIbeta regulate neuronal survival and are defined by their chromatin state. Proc Natl Acad Sci U S A, 109, E934-943. 95. Turley, H., Comley, M., Houlbrook, S., Nozaki, N., Kikuchi, A., Hickson, I.D., Gatter, K. and Harris, A.L. (1997) The distribution and expression of the two isoforms of DNA topoisomerase II in normal and neoplastic human tissues. Br J Cancer, 75, 1340-1346. 96. LeRoy, G., Loyola, A., Lane, W.S. and Reinberg, D. (2000) Purification and characterization of a human factor that assembles and remodels chromatin. J Biol Chem, 275, 14787-14790. 97. Tsai, S.C., Valkov, N., Yang, W.M., Gump, J., Sullivan, D. and Seto, E. (2000) Histone deacetylase interacts directly with DNA topoisomerase II. Nat Genet, 26, 349-353. 98. Hartman Chen, S., Chan, N.L. and Hsieh, T.S. (2013) New Mechanistic and Functional Insights into DNA Topoisomerases. Annu Rev Biochem. 99. Takahashi, Y., Yong-Gonzalez, V., Kikuchi, Y. and Strunnikov, A. (2006) SIZ1/SIZ2 control of chromosome transmission fidelity is mediated by the sumoylation of topoisomerase II. Genetics, 172, 783-794. 100. Bachant, J., Alcasabas, A., Blat, Y., Kleckner, N. and Elledge, S.J. (2002) The SUMO-1 isopeptidase Smt4 is linked to centromeric cohesion through SUMO-1 modification of DNA topoisomerase II. Mol Cell, 9, 1169-1182. 101. Mao, Y., Desai, S.D. and Liu, L.F. (2000) SUMO-1 conjugation to human DNA topoisomerase II isozymes. J Biol Chem, 275, 26066-26073. 102. Azuma, Y., Arnaoutov, A. and Dasso, M. (2003) SUMO-2/3 regulates topoisomerase II in mitosis. J Cell Biol, 163, 477-487. 103. Azuma, Y., Arnaoutov, A., Anan, T. and Dasso, M. (2005) PIASy mediates SUMO-2 conjugation of Topoisomerase-II on mitotic chromosomes. EMBO J, 24, 2172-2182. 104. Dawlaty, M.M., Malureanu, L., Jeganathan, K.B., Kao, E., Sustmann, C., Tahk, S., Shuai, K., Grosschedl, R. and van Deursen, J.M. (2008) Resolution of sister centromeres requires RanBP2-mediated SUMOylation of topoisomerase IIalpha. Cell, 133, 103-115. 105. Ryu, H., Furuta, M., Kirkpatrick, D., Gygi, S.P. and Azuma, Y. (2010) PIASy-dependent SUMOylation regulates DNA topoisomerase IIalpha activity. J Cell Biol, 191, 783-794. 106. Diaz-Martinez, L.A., Gimenez-Abian, J.F., Azuma, Y., Guacci, V., Gimenez-Martin, G., Lanier, L.M. and Clarke, D.J. (2006) PIASgamma is required for faithful chromosome segregation in human cells. PLoS One, 1, e53. 107. Ackerman, P., Glover, C.V. and Osheroff, N. (1988) Phosphorylation of DNA topoisomerase II in vivo and in total homogenates of Drosophila Kc cells. The role of casein kinase II. J Biol Chem, 263, 12653-12660. 108. Cardenas, M.E., Dang, Q., Glover, C.V. and Gasser, S.M. (1992) Casein kinase II phosphorylates the eukaryote-specific C-terminal domain of topoisomerase II in vivo. EMBO J, 11, 1785-1796. 109. Meyer, K.N., Kjeldsen, E., Straub, T., Knudsen, B.R., Hickson, I.D., Kikuchi, A., Kreipe, H. and Boege, F. (1997) Cell cycle-coupled relocation of types I and II topoisomerases and modulation of catalytic enzyme activities. J Cell Biol, 136, 775-788. 110. Morrison, C., Henzing, A.J., Jensen, O.N., Osheroff, N., Dodson, H., Kandels-Lewis, S.E., Adams, R.R. and Earnshaw, W.C. (2002) Proteomic analysis of human metaphase chromosomes reveals topoisomerase II alpha as an Aurora B substrate. Nucleic Acids Res, 30, 5318-5327. 111. Li, H., Wang, Y. and Liu, X. (2008) Plk1-dependent phosphorylation regulates functions of DNA topoisomerase IIalpha in cell cycle progression. J Biol Chem, 283, 6209-6221. 112. Lou, Z., Minter-Dykhouse, K. and Chen, J. (2005) BRCA1 participates in DNA decatenation. Nat Struct Mol Biol, 12, 589-593. 113. Liu, L.F. (1989) DNA topoisomerase poisons as antitumor drugs. Annu Rev Biochem, 58, 351-375. 114. Nitiss, J.L. (2009) Targeting DNA topoisomerase II in cancer chemotherapy. Nat Rev Cancer, 9, 338-350. 115. McClendon, A.K. and Osheroff, N. (2007) DNA topoisomerase II, genotoxicity, and cancer. Mutat Res, 623, 83-97. 116. Deweese, J.E. and Osheroff, N. (2009) The DNA cleavage reaction of topoisomerase II: wolf in sheep's clothing. Nucleic Acids Res, 37, 738-748. 117. Roca, J., Ishida, R., Berger, J.M., Andoh, T. and Wang, J.C. (1994) Antitumor bisdioxopiperazines inhibit yeast DNA topoisomerase II by trapping the enzyme in the form of a closed protein clamp. Proc Natl Acad Sci U S A, 91, 1781-1785. 118. Edwards, M.J., Flatman, R.H., Mitchenall, L.A., Stevenson, C.E., Le, T.B., Clarke, T.A., McKay, A.R., Fiedler, H.P., Buttner, M.J., Lawson, D.M. et al. (2009) A crystal structure of the bifunctional antibiotic simocyclinone D8, bound to DNA gyrase. Science, 326, 1415-1418. 119. Bax, B.D., Chan, P.F., Eggleston, D.S., Fosberry, A., Gentry, D.R., Gorrec, F., Giordano, I., Hann, M.M., Hennessy, A., Hibbs, M. et al. (2010) Type IIA topoisomerase inhibition by a new class of antibacterial agents. Nature, 466, 935-940. 120. Hegde, S.S., Vetting, M.W., Roderick, S.L., Mitchenall, L.A., Maxwell, A., Takiff, H.E. and Blanchard, J.S. (2005) A fluoroquinolone resistance protein from Mycobacterium tuberculosis that mimics DNA. Science, 308, 1480-1483. 121. De Jonge, N., Garcia-Pino, A., Buts, L., Haesaerts, S., Charlier, D., Zangger, K., Wyns, L., De Greve, H. and Loris, R. (2009) Rejuvenation of CcdB-poisoned gyrase by an intrinsically disordered protein domain. Mol Cell, 35, 154-163. 122. Collin, F., Karkare, S. and Maxwell, A. (2011) Exploiting bacterial DNA gyrase as a drug target: current state and perspectives. Appl Microbiol Biotechnol, 92, 479-497. 123. Drlica, K., Hiasa, H., Kerns, R., Malik, M., Mustaev, A. and Zhao, X. (2009) Quinolones: action and resistance updated. Curr Top Med Chem, 9, 981-998. 124. Keating, G.M. and Scott, L.J. (2004) Moxifloxacin: a review of its use in the management of bacterial infections. Drugs, 64, 2347-2377. 125. Baldwin, E.L. and Osheroff, N. (2005) Etoposide, topoisomerase II and cancer. Curr Med Chem Anticancer Agents, 5, 363-372. 126. Hande, K.R. (1998) Etoposide: four decades of development of a topoisomerase II inhibitor. Eur J Cancer, 34, 1514-1521. 127. Demeunynck, M., Charmantray, F. and Martelli, A. (2001) Interest of acridine derivatives in the anticancer chemotherapy. Curr Pharm Des, 7, 1703-1724. 128. Denny, W.A. (2002) Acridine derivatives as chemotherapeutic agents. Curr Med Chem, 9, 1655-1665. 129. Ketron, A.C., Denny, W.A., Graves, D.E. and Osheroff, N. (2012) Amsacrine as a topoisomerase II poison: importance of drug-DNA interactions. Biochemistry, 51, 1730-1739. 130. Kell, J. (2006) Treatment of relapsed acute myeloid leukaemia. Rev Recent Clin Trials, 1, 103-111. 131. Long, B.H., Musial, S.T. and Brattain, M.G. (1985) Single- and double-strand DNA breakage and repair in human lung adenocarcinoma cells exposed to etoposide and teniposide. Cancer Res, 45, 3106-3112. 132. Zwelling, L.A., Michaels, S., Erickson, L.C., Ungerleider, R.S., Nichols, M. and Kohn, K.W. (1981) Protein-associated deoxyribonucleic acid strand breaks in L1210 cells treated with the deoxyribonucleic acid intercalating agents 4'-(9-acridinylamino) methanesulfon-m-anisidide and adriamycin. Biochemistry, 20, 6553-6563. 133. Robinson, M.J. and Osheroff, N. (1990) Stabilization of the topoisomerase II-DNA cleavage complex by antineoplastic drugs: inhibition of enzyme-mediated DNA religation by 4'-(9-acridinylamino)methanesulfon-m-anisidide. Biochemistry, 29, 2511-2515. 134. Staker, B.L., Feese, M.D., Cushman, M., Pommier, Y., Zembower, D., Stewart, L. and Burgin, A.B. (2005) Structures of three classes of anticancer agents bound to the human topoisomerase I-DNA covalent complex. J Med Chem, 48, 2336-2345. 135. Felix, C.A. (2001) Leukemias related to treatment with DNA topoisomerase II inhibitors. Med Pediatr Oncol, 36, 525-535. 136. Pedersen-Bjergaard, J., Andersen, M.T. and Andersen, M.K. (2007) Genetic pathways in the pathogenesis of therapy-related myelodysplasia and acute myeloid leukemia. Hematology Am Soc Hematol Educ Program, 392-397. 137. Mistry, A.R., Felix, C.A., Whitmarsh, R.J., Mason, A., Reiter, A., Cassinat, B., Parry, A., Walz, C., Wiemels, J.L., Segal, M.R. et al. (2005) DNA topoisomerase II in therapy-related acute promyelocytic leukemia. N Engl J Med, 352, 1529-1538. 138. Lovett, B.D., Strumberg, D., Blair, I.A., Pang, S., Burden, D.A., Megonigal, M.D., Rappaport, E.F., Rebbeck, T.R., Osheroff, N., Pommier, Y.G. et al. (2001) Etoposide metabolites enhance DNA topoisomerase II cleavage near leukemia-associated MLL translocation breakpoints. Biochemistry, 40, 1159-1170. 139. Broeker, P.L., Super, H.G., Thirman, M.J., Pomykala, H., Yonebayashi, Y., Tanabe, S., Zeleznik-Le, N. and Rowley, J.D. (1996) Distribution of 11q23 breakpoints within the MLL breakpoint cluster region in de novo acute leukemia and in treatment-related acute myeloid leukemia: correlation with scaffold attachment regions and topoisomerase II consensus binding sites. Blood, 87, 1912-1922. 140. Strissel, P.L., Strick, R., Rowley, J.D. and Zeleznik-Le, N.J. (1998) An in vivo topoisomerase II cleavage site and a DNase I hypersensitive site colocalize near exon 9 in the MLL breakpoint cluster region. Blood, 92, 3793-3803. 141. Aplan, P.D., Chervinsky, D.S., Stanulla, M. and Burhans, W.C. (1996) Site-specific DNA cleavage within the MLL breakpoint cluster region induced by topoisomerase II inhibitors. Blood, 87, 2649-2658. 142. Negrini, M., Felix, C.A., Martin, C., Lange, B.J., Nakamura, T., Canaani, E. and Croce, C.M. (1993) Potential topoisomerase II DNA-binding sites at the breakpoints of a t(9;11) chromosome translocation in acute myeloid leukemia. Cancer Res, 53, 4489-4492. 143. Azarova, A.M., Lyu, Y.L., Lin, C.P., Tsai, Y.C., Lau, J.Y., Wang, J.C. and Liu, L.F. (2007) Roles of DNA topoisomerase II isozymes in chemotherapy and secondary malignancies. Proc Natl Acad Sci U S A, 104, 11014-11019. 144. Felix, C.A. (1998) Secondary leukemias induced by topoisomerase-targeted drugs. Biochim Biophys Acta, 1400, 233-255. 145. Constantinou, A., Mehta, R., Runyan, C., Rao, K., Vaughan, A. and Moon, R. (1995) Flavonoids as DNA topoisomerase antagonists and poisons: structure-activity relationships. J Nat Prod, 58, 217-225. 146. Strick, R., Strissel, P.L., Borgers, S., Smith, S.L. and Rowley, J.D. (2000) Dietary bioflavonoids induce cleavage in the MLL gene and may contribute to infant leukemia. Proc Natl Acad Sci U S A, 97, 4790-4795. 147. Bandele, O.J. and Osheroff, N. (2008) (-)-Epigallocatechin gallate, a major constituent of green tea, poisons human type II topoisomerases. Chem Res Toxicol, 21, 936-943. 148. Haffner, M.C., Aryee, M.J., Toubaji, A., Esopi, D.M., Albadine, R., Gurel, B., Isaacs, W.B., Bova, G.S., Liu, W., Xu, J. et al. (2010) Androgen-induced TOP2B-mediated double-strand breaks and prostate cancer gene rearrangements. Nat Genet, 42, 668-675. 149. Mani, R.S. and Chinnaiyan, A.M. (2010) Triggers for genomic rearrangements: insights into genomic, cellular and environmental influences. Nat Rev Genet, 11, 819-829. 150. Williamson, L.M. and Lees-Miller, S.P. (2011) Estrogen receptor alpha-mediated transcription induces cell cycle-dependent DNA double-strand breaks. Carcinogenesis, 32, 279-285. 151. Austin, C.A., Marsh, K.L., Wasserman, R.A., Willmore, E., Sayer, P.J., Wang, J.C. and Fisher, L.M. (1995) Expression, domain structure, and enzymatic properties of an active recombinant human DNA topoisomerase II beta. J Biol Chem, 270, 15739-15746. 152. Otwinowski, Z. and Minor, W. (1997) Processing of X-ray diffraction data collected in oscillation mode. Macromolecular Crystallography, Pt A, 276, 307-326. 153. Schmidt, B.H., Burgin, A.B., Deweese, J.E., Osheroff, N. and Berger, J.M. (2010) A novel and unified two-metal mechanism for DNA cleavage by type II and IA topoisomerases. Nature, 465, 641-644. 154. Adams, P.D., Afonine, P.V., Bunkoczi, G., Chen, V.B., Davis, I.W., Echols, N., Headd, J.J., Hung, L.W., Kapral, G.J., Grosse-Kunstleve, R.W. et al. (2010) PHENIX: a comprehensive Python-based system for macromolecular structure solution. Acta Crystallogr D Biol Crystallogr, 66, 213-221. 155. Emsley, P., Lohkamp, B., Scott, W.G. and Cowtan, K. (2010) Features and development of Coot. Acta Crystallogr D Biol Crystallogr, 66, 486-501. 156. Schrodinger, LLC. (2010). 157. Zechiedrich, E.L., Christiansen, K., Andersen, A.H., Westergaard, O. and Osheroff, N. (1989) Double-stranded DNA cleavage/religation reaction of eukaryotic topoisomerase II: evidence for a nicked DNA intermediate. Biochemistry, 28, 6229-6236. 158. Deweese, J.E., Burgin, A.B. and Osheroff, N. (2008) Using 3'-bridging phosphorothiolates to isolate the forward DNA cleavage reaction of human topoisomerase IIalpha. Biochemistry, 47, 4129-4140. 159. Spitzner, J.R. and Muller, M.T. (1988) A consensus sequence for cleavage by vertebrate DNA topoisomerase II. Nucleic Acids Res, 16, 5533-5556. 160. Capranico, G. and Binaschi, M. (1998) DNA sequence selectivity of topoisomerases and topoisomerase poisons. Biochim Biophys Acta, 1400, 185-194. 161. Strumberg, D., Nitiss, J.L., Dong, J., Kohn, K.W. and Pommier, Y. (1999) Molecular analysis of yeast and human type II topoisomerases. Enzyme-DNA and drug interactions. J Biol Chem, 274, 28246-28255. 162. Ross, W., Rowe, T., Glisson, B., Yalowich, J. and Liu, L. (1984) Role of topoisomerase II in mediating epipodophyllotoxin-induced DNA cleavage. Cancer Res, 44, 5857-5860. 163. Wilstermann, A.M., Bender, R.P., Godfrey, M., Choi, S., Anklin, C., Berkowitz, D.B., Osheroff, N. and Graves, D.E. (2007) Topoisomerase II - drug interaction domains: identification of substituents on etoposide that interact with the enzyme. Biochemistry, 46, 8217 | |
| dc.identifier.uri | http://tdr.lib.ntu.edu.tw/jspui/handle/123456789/60313 | - |
| dc.description.abstract | 第二型拓樸異構酶 (type II topoisomerases; Top2s) 能夠在DNA上造成暫時的雙股螺旋斷裂,藉此改變DNA的拓樸結構。因此,此酵素可以解決細胞在各個週期所面臨的DNA拓樸結構問題,尤其在細胞分裂時,Top2s是負責分開交纏的子代基因體的關鍵酵素。許多臨床治療上使用的抗癌藥物,如etoposide (VP-16)、doxorubicin、amsacrine (m-AMSA) 及mitoxantrone 等Top2標的藥物 (Top2-targeting agents),能夠穩定此酵素在其催化過程中,和DNA短暫形成之切割複合體 (Top2 cleavage complex; Top2-cc),因而導致癌細胞染色體DNA的斷裂並促使細胞死亡。人類細胞中的兩種Top2亞型酵素:Top2α及2β,均為這些藥物的目標,並由於快速生長的癌細胞高度依賴此類酵素,Top2標的藥物 (Top2-targeting drugs) 已廣泛的被運用在多種癌症的化療當中,並行之有年。然而,這類藥物具有心臟毒性,及會引起白血病,特別是急性骨髓性白血病 (acute myeloid leukemia; AML) 等副作用,使得用藥上仍有諸多疑慮。而新一代藥物的設計與開發,卻長期受限於目前仍缺乏藥物與酵素交互作用的分子細節。
在本研究中,利用X-射線蛋白質晶體學,我們成功解析了人類Top2β-亞型酵素與DNA及抗癌藥物etoposide所形成之切割複合體的晶體結構,此結果清楚地揭示藥物、酵素、DNA三者交互作用的分子結構基礎。其中可見etoposide藥物分子嵌入了由酵素造成的DNA斷裂處,因此能阻止酵素將DNA接回,並穩定整個Top2-DNA切割複合體。此結構也顯示etoposide的嵌入造成了酵素活性中心胺基酸在空間位置上的分離,顯示在此藥物的作用下,Top2-DNA切割複合體是被穩定在一個非活化態的蛋白構型。同時,鑒於已知的Top2標的藥物彼此間化學結構式差異相當大,為了快速檢視其他的藥物與Top2-DNA切割複合體交互作用的模式,我們接下來利用浸潤 (soaking) 將蛋白晶體中的etoposide置換成其他藥物,並藉此成功得到了與doxorubicin、m-AMSA及mitoxantrone結合的人類Top2β-DNA切割複合體。結構解析的結果顯示,m-AMSA及mitoxantrone和etoposide擁有相似的Top2抑制機制,並享有共同的藥物結合區,但對應不同藥物,此結合區中的氨基酸殘基會以不同的構型與這三種藥物各自形成專一並緊密的交互作用。並且,這些交互作用均可合理解釋已知的結構藥物活性之關係 (structural-activity relationship) 及產生藥物抗性的原理,顯示利用浸潤的方式我們可成功得到具生理意義之藥物、Top2及DNA三者形成的切割複合體。另一方面,doxorubicin結合的結構顯示了一個與其他藥物全然不同的結合方式。此結果雖然無法解釋已知的藥物特性,但明確暗示了doxorubicin應具有其獨特的Top2抑制機制。 總和而言,藉由解析不同抗癌藥物與人類Top2切割複合體之高解析度晶體結構,本研究為Top2標的藥物的設計與開發提供了許多重要資訊。尤其,目前已知Top2標的藥物有機會引起白血病的副作用,是由於藥物作用到Top2β-亞型所致。本研究藉由比對Top2α及2β在藥物結合區之胺基酸的異同,也提供了設計亞型專一性藥物的關鍵訊息,有望能大幅降低使用此類藥物時所帶來的副作用。 | zh_TW |
| dc.description.abstract | Type II topoisomerases (Top2s) are essential enzymes responsible for the timely resolution of DNA topological problems by temporally cleaving both strands of a DNA duplex to allow the passage of another. Agents that perturb the Top2-mediated DNA cleavage/rejoining process consist of a group of successful clinically active anticancer drugs, including etoposide, doxorubicin, amsacrine (m-AMSA) and mitoxantrone. Bothe isoforms of human Top2, 2α and 2β, can be targeted by these agents, in which the enzymes are trapped on DNA in the form of covalent enzyme-DNA adduct, termed Top2 cleavage complex (Top2-cc). The drug-induced accumulation of Top2-cc on DNA leads to fragmentation of genomic DNA and cell death. Despite their potent anticancer activities, a wider application of Top2-targeting drugs is hampered by deleterious side effects and the emergence of drug-resistant cells. Among them, the therapy-related leukemia is a thorny side effect particularly raised by Top2-based chemotherapy, and is considered induced by Top2β-targeting of drugs, which introduces double-strand break on regulatory region of genes and leads to genome rearrangement. This calls for an isoform-specific Top2-targeting strategy that may suppress such life-threatening side effect of this sort of drugs. To facilitate development of next generation Top2-targeting agents, it is essential to understand the structural basis of drug action in detail. Therefore, in the present study, the crystal structure of an etoposide-bound human Top2β cleavage complex was determined, which reveals a DNA cleavage site-specific drug insertion and a concomitant decoupling of active site residues, thus explaining how the drug blocks the rejoining of broken DNA ends. In addition, we established a post-crystallization drug replacement procedure to simplify the structural analysis of other Top2-targeting drugs, by which the structures of m-AMSA-, doxorubicin- and mitoxantrone-stabilized hTop2β cleavage complexes were successfully determined. While m-AMSA and mitoxantrone also targeted to DNA cleavage sites as expected, however, doxorubicin bound at an unusual location aside from the typical drug-binding pocket. For those structures derived from drug-replacing procedure, the structures bound by m-AMSA and mitoxantorne nicely explain reported drug-resistant mutation and structural-activity relationships of the two drugs. In contrast, the binding mode of doxorubicin is not consistent with the known properties, but nevertheless implies doxorubicin may adopt a unique inhibiting mechanism different from other Top2-targeting agents. By recognizing the conformational landscapes of the drug-binding pockets and those drug-interacting residues that are different between human Top2α and 2β, we propose the guidelines for design of isoform-specific Top2-targeting agents. | en |
| dc.description.provenance | Made available in DSpace on 2021-06-16T10:15:21Z (GMT). No. of bitstreams: 1 ntu-102-F97442016-1.pdf: 6662009 bytes, checksum: a1e30a03ea8a459eaa06d5861d71e8c2 (MD5) Previous issue date: 2013 | en |
| dc.description.tableofcontents | 口試委員會審定書 ………………………………………………………….. I
謝誌 ………………………………………………………….. III 中文摘要 ………………………………………………………….. IV Abstract ………………………………………………………….. VI Abbreviations ………………………………………………………….. IX Contents ………………………………………………………….. X List of Figures ………………………………………………………….. XII List of Tables ………………………………………………………….. XIV 1. Introduction 1 1.1. DNA Topoisomerases: A Group of Ubiquitous Enzymes that Solve DNA Topology Problems for Life 2 1.2. Intricate Nanomachines for Manipulating DNA Topology: Structure and Function of Type IIA Topoisomerases 8 1.3. Biological Functions of Type II Topoisomerases 19 1.4. Targeting Type II Topoisomerases 31 2. Methods and Materials 41 2.1. Construction of Human Top2βcore 42 2.2. Protein Purification 42 2.3. DNA Substrate for Crystallography 44 2.4. Crystallization 44 2.5. Post-Crystallization Drug Replacement 45 2.6. Data Collection and Structure Determination 45 3. Results 49 3.1. Structure of the Etoposide-Stabilized Human Top2βcore Cleavage Complex 50 3.2. Establishing a Platform for Rapid Structural Characterization of Drug-Stabilized Top2 Cleavage Complexes 60 3.3. Human Top2βcore Cleavage Complex Stabilized by m-AMSA and Mitoxantrone 62 3.4. The Conformational Landscape of Drug-Binding Pocket 73 3.5. Guidelines for Designing New Top2-Targeting Agents. 75 3.6. Implications of the Doxorubicin-Bound and Drug-Free Human Top2βcore Cleavage Complexes 77 4. Conclusion and Discussion 82 5. Figures 90 6. Tables 132 7. References 142 8. Appendix 159 | |
| dc.language.iso | en | |
| dc.subject | X射線蛋白質晶體學 | zh_TW |
| dc.subject | 抗癌藥物 | zh_TW |
| dc.subject | 第二型拓樸異構?蛋白質結構 | zh_TW |
| dc.subject | anticancer drugs | en |
| dc.subject | crystal structure | en |
| dc.subject | type II DNA topoisomerase | en |
| dc.subject | type II topoisomerase-targeting agents | en |
| dc.subject | mitoxantrone | en |
| dc.subject | amsacrine (m-AMSA) | en |
| dc.subject | etoposide | en |
| dc.title | 人類第二型拓樸異構酶β亞型之結構分析及其與抗癌藥物之交互作用 | zh_TW |
| dc.title | Structural Studies of Human Topoisomerase IIβ and its Interactions with Anticancer Drugs | en |
| dc.type | Thesis | |
| dc.date.schoolyear | 101-2 | |
| dc.description.degree | 博士 | |
| dc.contributor.oralexamcommittee | 李財坤,林敬哲,袁小琀,侯明宏,何孟樵 | |
| dc.subject.keyword | 第二型拓樸異構?蛋白質結構,X射線蛋白質晶體學,抗癌藥物, | zh_TW |
| dc.subject.keyword | type II DNA topoisomerase,crystal structure,type II topoisomerase-targeting agents,anticancer drugs,etoposide, amsacrine (m-AMSA),mitoxantrone, | en |
| dc.relation.page | 160 | |
| dc.rights.note | 有償授權 | |
| dc.date.accepted | 2013-08-19 | |
| dc.contributor.author-college | 醫學院 | zh_TW |
| dc.contributor.author-dept | 生物化學暨分子生物學研究所 | zh_TW |
| 顯示於系所單位: | 生物化學暨分子生物學科研究所 | |
文件中的檔案:
| 檔案 | 大小 | 格式 | |
|---|---|---|---|
| ntu-102-1.pdf 未授權公開取用 | 6.51 MB | Adobe PDF |
系統中的文件,除了特別指名其著作權條款之外,均受到著作權保護,並且保留所有的權利。
