請用此 Handle URI 來引用此文件:
http://tdr.lib.ntu.edu.tw/jspui/handle/123456789/60285完整後設資料紀錄
| DC 欄位 | 值 | 語言 |
|---|---|---|
| dc.contributor.advisor | 陳奕君(I-Chun Cheng) | |
| dc.contributor.author | Hsin-Hua Hou | en |
| dc.contributor.author | 侯昕華 | zh_TW |
| dc.date.accessioned | 2021-06-16T10:14:49Z | - |
| dc.date.available | 2017-08-20 | |
| dc.date.copyright | 2013-08-27 | |
| dc.date.issued | 2013 | |
| dc.date.submitted | 2013-08-19 | |
| dc.identifier.citation | [1] Z. M. Jarzebski, “Preparation and physical properties of transparent conducting oxide films,” Physica Status Solidi (a), vol. 71, no. 1, pp. 13–41, 1982.
[2] K. L. Chopra, S. Major, and D. K. Pandya, “Transparent conductors—a status review,” Thin Solid Films, vol. 102, no. 1, pp. 1–46, 1983. [3] S.-S. Park and J. D. Mackenzie, “Sol-gel-derived tin oxide thin films,” Thin Solid Films, vol. 258, no. 1–2, pp. 268–273, 1995. [4] C. Terrier, J. P. Chatelon, and J. a. Roger, “Electrical and optical properties of Sb:SnO2 thin films obtained by the sol-gel method,” Thin Solid Films, vol. 295, no. 1–2, pp. 95–100, 1997. [5] M. Batzill and U. Diebold, “The surface and materials science of tin oxide,” Progress in Surface Science, vol. 79, no. 2–4, pp. 47–154, 2005. [6] T. J. Coutts, D. L. Young, X. Li, W. P. Mulligan, and X. Wu, “Search for improved transparent conducting oxides: A fundamental investigation of CdO, Cd2SnO4, and Zn2SnO4,” Journal of Vacuum Science & Technology A: Vacuum, Surfaces, and Films, vol. 18, no. 6, p. 2646, 2000. [7] A. W. Metz, M. A. Lane, C. R. Kannewurf, K. R. Poeppelmeier, and T. J. Marks, “MOCVD Growth of Transparent Conducting Cd2SnO4 Thin Films,” Chemical Vapor Deposition, vol. 10, no. 6, pp. 297–300, 2004. [8] R. Mamazza, D. L. Morel, and C. S. Ferekides, “Transparent conducting oxide thin films of Cd2SnO4 prepared by RF magnetron co-sputtering of the constituent binary oxides,” Thin Solid Films, vol. 484, no. 1–2, pp. 26–33, 2005. [9] H. K. Muller, “Electrical and Optical Properties of Sputtered In2O3 films. I. Electrical Properties and Intrinsic Absorption,” Physica Status Solidi (b), vol. 27, no. 2, pp. 723–731, 1968. [10] C. E. Wickersham and J. E. Greene, “The effect of substrate bias on the electrical and optical properties of In2O3 films grown by RF sputtering,” Physica Status Solidi (a), vol. 47, no. 1, pp. 329–337, 1978. [11] P. F. Carcia, R. S. McLean, and M. H. Reilly, “Oxide engineering of ZnO thin-film transistors for flexible electronics,” Journal of the Society for Information Display, vol. 13, no. 7, p. 547, 2005. [12] X. Yu, J. Ma, F. Ji, Y. Wang, X. Zhang, and H. Ma, “Influence of annealing on the properties of ZnO:Ga films prepared by radio frequency magnetron sputtering,” Thin Solid Films, vol. 483, no. 1–2, pp. 296–300, 2005. [13] U. Ozgur, Y. I. Alivov, C. Liu, A. Teke, M. a. Reshchikov, S. Dogan, V. Avrutin, S.-J. Cho, and H. Morkoc, “A comprehensive review of ZnO materials and devices,” Journal of Applied Physics, vol. 98, no. 4, p. 041301, 2005. [14] J.-H. Lee and B.-O. Park, “Transparent conducting ZnO:Al, In and Sn thin films deposited by the sol-gel method,” Thin Solid Films, vol. 426, no. 1–2, pp. 94–99, 2003. [15] P. Nunes, E. Fortunato, P. Tonello, F. Braz Fernandes, P. Vilarinho, and R. Martins, “Effect of different dopant elements on the properties of ZnO thin films,” Vacuum, vol. 64, no. 3–4, pp. 281–285, 2002. [16] S. Fujihara, C. Sasaki, and T. Kimura, “Effects of Li and Mg doping on microstructure and properties of sol-gel ZnO thin films,” Journal of the European Ceramic Society, vol. 21, no. 10–11, pp. 2109–2112, 2001. [17] Y. Kwon, Y. Li, Y. W. Heo, M. Jones, P. H. Holloway, D. P. Norton, Z. V. Park, and S. Li, “Enhancement-mode thin-film field-effect transistor using phosphorus-doped (Zn,Mg)O channel,” Applied Physics Letters, vol. 84, no. 14, p. 2685, 2004. [18] K. Iwata, P. Fons, S. Niki, a Yamada, K. Matsubara, K. Nakahara, T. Tanabe, and H. Takasu, “ZnO growth on Si by radical source MBE,” Journal of Crystal Growth, vol. 214–215, pp. 50–54, 2000. [19] A. El-Shaer, A. C. Mofor, A. Bakin, M. Kreye, and A. Waag, “High-quality ZnO layers grown by MBE on sapphire,” Superlattices and Microstructures, vol. 38, no. 4–6, pp. 265–271, 2005. [20] X. W. Sun and H. S. Kwok, “Optical properties of epitaxially grown zinc oxide films on sapphire by pulsed laser deposition,” Journal of Applied Physics, vol. 86, no. 1, p. 408, 1999. [21] J. H. Choi, H. Tabata, and T. Kawai, “Initial preferred growth in zinc oxide thin films on Si and amorphous substrates by a pulsed laser deposition,” Journal of Crystal Growth, vol. 226, no. 4, pp. 493–500, 2001. [22] S. T. Tan, B. J. Chen, X. W. Sun, X. Hu, X. H. Zhang, and S. J. Chua, “Properties of polycrystalline ZnO thin films by metal organic chemical vapor deposition,” Journal of Crystal Growth, vol. 281, no. 2–4, pp. 571–576, 2005. [23] J. Auld, D. J. Houlton, A. C. Jones, S. a. Rushworth, M. A. Malik, P. O’Brien, and G. W. Critchlow, “Growth of ZnO by MOCVD using alkylzinc alkoxides as single-source precursors,” Journal of Materials Chemistry, vol. 4, no. 8, p. 1249, 1994. [24] A. W. Ott and R. P. H. Chang, “Atomic layer-controlled growth of transparent conducting ZnO on plastic substrates,” Materials Chemistry and Physics, vol. 58, no. 2, pp. 132–138, 1999. [25] E. Guziewicz, I. A. Kowalik, M. Godlewski, K. Kopalko, V. Osinniy, A. Wojcik, S. Yatsunenko, E. Lusakowska, W. Paszkowicz, and M. Guziewicz, “Extremely low temperature growth of ZnO by atomic layer deposition,” Journal of Applied Physics, vol. 103, no. 3, p. 033515, 2008. [26] V. Gupta and A. Mansingh, “Influence of postdeposition annealing on the structural and optical properties of sputtered zinc oxide film,” Journal of Applied Physics, vol. 80, no. 2, p. 1063, 1996. [27] K. Ellmer, “Magnetron sputtering of transparent conductive zinc oxide: relation between the sputtering parameters and the electronic properties,” Journal of Physics D: Applied Physics, vol. 33, no. 4, pp. R17–R32, 2000. [28] M. Ohyama, H. Kouzuka, and T. Yoko, “Sol-gel preparation of ZnO films with extremely preferred orientation along (002) plane from zinc acetate solution,” Thin Solid Films, vol. 306, no. 1, pp. 78–85, 1997. [29] J.-H. Lee, K.-H. Ko, and B.-O. Park, “Electrical and optical properties of ZnO transparent conducting films by the sol-gel method,” Journal of Crystal Growth, vol. 247, no. 1–2, pp. 119–125, 2003. [30] G. J. Exarhos and S. K. Sharma, “Influence of processing variables on the structure and properties of ZnO films,” Thin Solid Films, vol. 270, no. 1–2, pp. 27–32, 1995. [31] L. Vayssieres, “Growth of arrayed nanorods and nanowires of ZnO from aqueous solutions,” Advanced Materials, vol. 15, no. 5, pp. 464–466, 2003. [32] Z. L. Wang, “ZnO nanowire and nanobelt platform for nanotechnology,” Materials Science and Engineering: R: Reports, vol. 64, no. 3–4, pp. 33–71, 2009. [33] J. Bao, M. A. Zimmler, F. Capasso, X. Wang, and Z. F. Ren, “Broadband ZnO single-nanowire light-emitting diode.,” Nano Letters, vol. 6, no. 8, pp. 1719–22, 2006. [34] H. Kim, C. M. Gilmore, J. S. Horwitz, A. Pique, H. Murata, G. P. Kushto, R. Schlaf, Z. H. Kafafi, and D. B. Chrisey, “Transparent conducting aluminum-doped zinc oxide thin films for organic light-emitting devices,” Applied Physics Letters, vol. 76, no. 3, p. 259, 2000. [35] M. I. Nokkosmaki, E. T. Kuoppala, E. A. Leppamaki, and A. O. I. Krause, “Catalytic conversion of biomass pyrolysis vapours with zinc oxide,” Journal of Analytical and Applied Pyrolysis, vol. 55, no. 1, pp. 119–131, 2000. [36] Y. Q. Fu, J. K. Luo, X. Y. Du, A. J. Flewitt, Y. Li, G. H. Markx, A. J. Walton, and W. I. Milne, “Recent developments on ZnO films for acoustic wave based bio-sensing and microfluidic applications: a review,” Sensors and Actuators B: Chemical, vol. 143, no. 2, pp. 606–619, 2010. [37] S. J. Pearton, D. P. Norton, K. Ip, Y. W. Heo, and T. Steiner, “Recent advances in processing of ZnO,” Journal of Vacuum Science & Technology B: Microelectronics and Nanometer Structures, vol. 22, no. 3, p. 932, 2004. [38] K. Ellmer, “Resistivity of polycrystalline zinc oxide films: current status and physical limit,” Journal of Physics D: Applied Physics, vol. 34, no. 21, pp. 3097–3108, 2001. [39] O. Heil, “Improvements in or relating to electrical amplifiers and other control arrangements and devices,” U.S. Patent BP439,4571935. [40] P. Weimer, “The TFT a new thin-film transistor,” Proceedings of the IRE, vol. 50, no. 6, pp. 1462–1469, 1962. [41] P. G. le Comber, W. E. Spear, and A. Ghaith, “Amorphous-silicon field-effect device and possible application,” Electronics Letters, vol. 15, no. 6, p. 179, 1979. [42] A. J. Snell, W. E. Spear, P. G. Comber, and K. Mackenzie, “Application of amorphous silicon field effect transistors in integrated circuits,” Applied Physics A Solids and Surfaces, vol. 26, no. 2, pp. 83–86, 1981. [43] S. Wagner, H. Gleskova, I.-C. Cheng, and M. Wu, “Silicon for thin-film transistors,” Thin Solid Films, vol. 430, no. 1–2, pp. 15–19, 2003. [44] I.-C. Cheng and S. Wagner, “Hole and electron field-effect mobilities in nanocrystalline silicon deposited at 150°C,” Applied Physics Letters, vol. 80, no. 3, p. 440, 2002. [45] C.-H. Lee, A. Sazonov, and A. Nathan, “High-mobility nanocrystalline silicon thin-film transistors fabricated by plasma-enhanced chemical vapor deposition,” Applied Physics Letters, vol. 86, no. 22, p. 222106, 2005. [46] K. Nomura, H. Ohta, A. Takagi, T. Kamiya, M. Hirano, and H. Hosono, “Room-temperature fabrication of transparent flexible thin-film transistors using amorphous oxide semiconductors.,” Nature, vol. 432, no. 7016, pp. 488–92, 2004. [47] R. E. Presley, C. L. Munsee, C.-H. Park, D. Hong, J. F. Wager, and D. A. Keszler, “Tin oxide transparent thin-film transistors,” Journal of Physics D: Applied Physics, vol. 37, no. 20, pp. 2810–2813, 2004. [48] E. N. Dattoli, Q. Wan, W. Guo, Y. Chen, X. Pan, and W. Lu, “Fully transparent thin-film transistor devices based on SnO2 nanowires.,” Nano Letters, vol. 7, no. 8, pp. 2463–9, 2007. [49] E. Fortunato, V. Figueiredo, P. Barquinha, E. Elamurugu, R. Barros, G. Goncalves, S.-H. K. Park, C.-S. Hwang, and R. Martins, “Thin-film transistors based on p-type Cu2O thin films produced at room temperature,” Applied Physics Letters, vol. 96, no. 19, p. 192102, 2010. [50] X. Zou, G. Fang, L. Yuan, M. Li, W. Guan, and X. Zhao, “Top-gate low-threshold voltage p-Cu2O thin-film transistor grown on SiO2/Si substrate using a high-κ HfON gate dielectric,” IEEE Electron Device Letters, vol. 31, no. 8, pp. 827–829, 2010. [51] S. Masuda, K. Kitamura, Y. Okumura, S. Miyatake, H. Tabata, and T. Kawai, “Transparent thin film transistors using ZnO as an active channel layer and their electrical properties,” Journal of Applied Physics, vol. 93, no. 3, p. 1624, 2003. [52] P. F. Carcia, R. S. McLean, M. H. Reilly, and G. Nunes, “Transparent ZnO thin-film transistor fabricated by rf magnetron sputtering,” Applied Physics Letters, vol. 82, no. 7, p. 1117, 2003. [53] R. L. Hoffman, B. J. Norris, and J. F. Wager, “ZnO-based transparent thin-film transistors,” Applied Physics Letters, vol. 82, no. 5, p. 733, 2003. [54] B. J. Norris, J. Anderson, J. F. Wager, and D. A. Keszler, “Spin-coated zinc oxide transparent transistors,” Journal of Physics D: Applied Physics, vol. 36, no. 20, pp. L105–L107, 2003. [55] K. Jang, H. Park, S. Jung, N. Van Duy, Y. Kim, J. Cho, H. Choi, T. Kwon, W. Lee, D. Gong, S. Park, J. Yi, D. Kim, and H. Kim, “Optical and electrical properties of 2wt.% Al2O3-doped ZnO films and characteristics of Al-doped ZnO thin-film transistors with ultra-thin gate insulators,” Thin Solid Films, vol. 518, no. 10, pp. 2808–2811, 2010. [56] J. Nishii, A. Ohtomo, K. Ohtani, H. Ohno, and M. Kawasaki, “High-Mobility Field-Effect Transistors Based on Single-Crystalline ZnO Channels,” Japanese Journal of Applied Physics, vol. 44, no. No. 38, pp. L1193–L1195, 2005. [57] J. Zhu, H. Chen, G. Saraf, Z. Duan, Y. Lu, and S. T. Hsu, “ZnO TFT devices built on glass substrates,” Journal of Electronic Materials, vol. 37, no. 9, pp. 1237–1240, 2008. [58] S. Kwon, S. Bang, S. Lee, S. Jeon, W. Jeong, H. Kim, S. C. Gong, H. J. Chang, H. Park, and H. Jeon, “Characteristics of the ZnO thin film transistor by atomic layer deposition at various temperatures,” Semiconductor Science and Technology, vol. 24, no. 3, p. 035015, 2009. [59] C.-Y. Tsay and K.-S. Fan, “Optimization of Zr-doped ZnO thin films prepared by sol-gel method,” Materials Transactions, vol. 49, no. 8, pp. 1900–1904, 2008. [60] S. J. Lim, J.-M. Kim, D. Kim, S. Kwon, J.-S. Park, and H. Kim, “Atomic layer deposition ZnO:N thin film transistor: the effects of N concentration on the device properties,” Journal of The Electrochemical Society, vol. 157, no. 2, p. H214, 2010. [61] W.-S. Kim, Y.-K. Moon, K.-T. Kim, S.-Y. Shin, B. Du Ahn, J.-H. Lee, and J.-W. Park, “Improvement in the negative bias temperature stability of ZnO based thin film transistors by Hf and Sn doping,” Thin Solid Films, vol. 519, no. 20, pp. 6849–6852, 2011. [62] W. H. Jeong, G. H. Kim, H. S. Shin, B. Du Ahn, H. J. Kim, M.-K. Ryu, K.-B. Park, J.-B. Seon, and S. Y. Lee, “Investigating addition effect of hafnium in InZnO thin film transistors using a solution process,” Applied Physics Letters, vol. 96, no. 9, p. 093503, 2010. [63] O. I. Saadat, J. W. Chung, E. L. Piner, and T. Palacios, “Gate-first AlGaN/GaN HEMT technology for high-frequency applications,” IEEE Electron Device Letters, vol. 30, no. 12, pp. 1254–1256, 2009. [64] K. Inoue, N. Ui, and S. Sano, “High power and high efficiency GaN-HEMT for microwave communication applications,” in 2011 IEEE MTT-S International Microwave Workshop Series on Innovative Wireless Power Transmission: Technologies, Systems, and Applications, 2011, pp. 267–270. [65] M. C. Comparini, M. Feudale, and A. Suriani, “Applications of HEMT devices in space communication systems and equipment: a European perspective,” Solid-State Electronics, vol. 43, no. 8, pp. 1577–1589, 1999. [66] D. Delagebeaudeuf and N. T. Linh, “Metal-(n) AlGaAs-GaAs two-dimensional electron gas FET,” IEEE Transactions on Electron Devices, vol. 29, no. 6, pp. 955–960, 1982. [67] T. Edahiro, N. Fujimura, and T. Ito, “Formation of two-dimensional electron gas and the magnetotransport behavior of ZnMnO/ZnO heterostructure,” Journal of Applied Physics, vol. 93, no. 10, p. 7673, 2003. [68] M. Yano, K. Hashimoto, K. Fujimoto, K. Koike, S. Sasa, M. Inoue, Y. Uetsuji, T. Ohnishi, and K. Inaba, “Polarization-induced two-dimensional electron gas at Zn1−xMgxO/ZnO heterointerface,” Journal of Crystal Growth, vol. 301–302, pp. 353–357, 2007. [69] S. Sasa, M. Ozaki, K. Koike, M. Yano, and M. Inoue, “High-performance ZnO/ZnMgO field-effect transistors using a hetero-metal-insulator-semiconductor structure,” Applied Physics Letters, vol. 89, no. 5, p. 053502, 2006. [70] S. Sasa, T. Hayafuji, M. Kawasaki, K. Koike, M. Yano, and M. Inoue, “Improved stability of high-performance ZnO/ZnMgO hetero-MISFETs,” IEEE Electron Device Letters, vol. 28, no. 7, pp. 543–545, 2007. [71] H. Tampo, H. Shibata, K. Matsubara, A. Yamada, P. Fons, S. Niki, M. Yamagata, and H. Kanie, “Two-dimensional electron gas in Zn polar ZnMgO/ZnO heterostructures grown by radical source molecular beam epitaxy,” Applied Physics Letters, vol. 89, no. 13, p. 132113, 2006. [72] H. Tampo, H. Shibata, K. Maejima, a. Yamada, K. Matsubara, P. Fons, S. Kashiwaya, S. Niki, Y. Chiba, T. Wakamatsu, and H. Kanie, “Polarization-induced two-dimensional electron gases in ZnMgO/ZnO heterostructures,” Applied Physics Letters, vol. 93, no. 20, p. 202104, 2008. [73] M. A. Khan, A. Bhattarai, J. N. Kuznia, and D. T. Olson, “High electron mobility transistor based on a GaN-AlxGa1-xN heterojunction,” Applied Physics Letters, vol. 63, no. 9, pp. 1214–1215, 1993. [74] K. Koike, I. Nakashima, K. Hashimoto, S. Sasa, M. Inoue, and M. Yano, “Characteristics of a Zn0.7Mg0.3O/ZnO heterostructure field-effect transistor grown on sapphire substrate by molecular-beam epitaxy,” Applied Physics Letters, vol. 87, no. 11, p. 112106, 2005. [75] H. Chin, I.-C. Cheng, C.-K. Li, Y.-R. Wu, J. Z. Chen, W.-S. Lu, and W.-L. Lee, “Electrical properties of modulation-doped rf-sputtered polycrystalline MgZnO/ZnO heterostructures,” Journal of Physics D: Applied Physics, vol. 44, no. 45, p. 455101, 2011. [76] H.-A. Chin, I.-C. Cheng, C.-I. Huang, Y.-R. Wu, W.-S. Lu, W.-L. Lee, J. Z. Chen, K.-C. Chiu, and T.-S. Lin, “Two dimensional electron gases in polycrystalline MgZnO/ZnO heterostructures grown by rf-sputtering process,” Journal of Applied Physics, vol. 108, no. 5, p. 054503, 2010. [77] Y. Tokura and H. Y. Hwang, “Condensed-matter physics: Complex oxides on fire.,” Nature materials, vol. 7, no. 9, pp. 694–5, 2008. [78] M. Kimura, T. Yasuhara, K. Harada, D. Abe, S. Inoue, and T. Shimoda, “The study of oxide-interface and grain-boundary traps in poly-Si TFT characteristics and its application to fabrication process diagnosis,” Journal of the Society for Information Display, vol. 13, no. 12, p. 1027, 2005. [79] C. Angelis, C. Dimitriadis, F. Farmakis, J. Brini, G. Kamarinos, M. Miyasaka, and I. Stoemenos, “Transconductance of large grain excimer laser-annealed polycrystalline silicon thin film transistors,” Solid-State Electronics, vol. 44, no. 6, pp. 1081–1087, 2000. [80] J. Levinson, “Conductivity behavior in polycrystalline semiconductor thin film transistors,” Journal of Applied Physics, vol. 53, no. 2, p. 1193, 1982. [81] J. Steinhauser, S. Fay, N. Oliveira, E. Vallat-Sauvain, and C. Ballif, “Transition between grain boundary and intragrain scattering transport mechanisms in boron-doped zinc oxide thin films,” Applied Physics Letters, vol. 90, no. 14, p. 142107, 2007. [82] 王柏雄, “以射頻磁控濺鍍法製作氧化鎂鋅/氧化鋅異質接面場效電晶體,” 國立臺灣大學碩士論文, 2012. [83] M. J. Powell, “The physics of amorphous-silicon thin-film transistors,” IEEE Transactions on Electron Devices, vol. 36, no. 12, pp. 2753–2763, 1989. [84] A. Suresh, “Amorphous indium gallium zinc oxide thin-film transistors, non-volatile memory and circuits for transparent electronicstle,” North Carolina State University Ph.D. thesis, 2009. [85] C. R. Kagan and P. Andry, Thin-Film Transistors. Marcel Dekker, Inc., 2003, pp. 37–39. [86] L. Zhang, J. Li, X. W. Zhang, X. Y. Jiang, and Z. L. Zhang, “High performance ZnO-thin-film transistor with Ta2O5 dielectrics fabricated at room temperature,” Applied Physics Letters, vol. 95, no. 7, p. 072112, 2009. [87] G. Merckel and A. Rolland, “A compact CAD model for amorphous silicon thin film transistors simulation—I. d.c. analysis,” Solid-State Electronics, vol. 39, no. 8, pp. 1231–1239, 1996. [88] A. S. Sedra and K. C. Smith, Microelectronics Circuits, 5th ed. Oxford University Press, 2004, pp. 974–982. [89] S. M. Kang and Y. Leblebici, CMOS Digital Integrated Circuits: Analysis and Design. McGraw Hill, 2002, pp. 142–148. [90] H.-N. Lee, J. Kyung, M.-C. Sung, D. Y. Kim, S. K. Kang, S.-J. Kim, C. N. Kim, H.-G. Kim, and S.-T. Kim, “Oxide TFT with multilayer gate insulator for backplane of AMOLED device,” Journal of the Society for Information Display, vol. 16, no. 2, p. 265, 2008. [91] H. Luo, P. Wellenius, L. Lunardi, and J. F. Muth, “Transparent IGZO-based logic gates,” IEEE Electron Device Letters, vol. 33, no. 5, pp. 673–675, 2012. [92] “UBM Sputter.” [Online]. Available: http://www.lihyuan.com.tw/product/ubm-sputter-ubm-sputter.html. [93] “物理氣相沉積 - 熱蒸鍍(薄膜沉積)技術.” [Online]. Available: http://www.etafilm.com.tw/PVD_Thermal_Evaporation_Deposition_ch.html. [94] “Bragg’s Law.” [Online]. Available: http://hyperphysics.phy-astr.gsu.edu/hbase/quantum/bragg.html. [95] A. Beiser, “X-ray diffraction,” in Concepts of Modern Physics, 2003, pp. 72–75. [96] A. Goux, T. Pauporte, J. Chivot, and D. Lincot, “Temperature effects on ZnO electrodeposition,” Electrochimica Acta, vol. 50, no. 11, pp. 2239–2248, 2005. [97] P. Scherrer, Gottinger Nachrichten Gesell., 2nd ed. 1918, p. 98. [98] E. Hall, “On a new action of the magnet on electric currents,” American Journal of Mathematics, vol. 2, no. 3, pp. 287–292, 1879. [99] “Hall Effect Paper.” [Online]. Available: http://ianfraser.me/hall-effect-paper/. [100] “The van der Pauw Technique.” [Online]. Available: http://tau.nanophys.kth.se/cmp/hall/node5.html. [101] L. J. van der Pauw, “A method of measuring specific resistivity and Hall effect of discs of arbitrary shape,” Philips Research Reports, vol. 13, pp. 1–9, 1958. [102] I. Horn, M. Guillong, and D. Gunther, “Wavelength dependant ablation rates for metals and silicate glasses using homogenized laser beam profiles - implications for LA-ICP-MS,” Applied surface science, vol. 182, 2001. [103] M. Kim, J. H. Jeong, H. J. Lee, T. K. Ahn, H. S. Shin, J.-S. Park, J. K. Jeong, Y.-G. Mo, and H. D. Kim, “High mobility bottom gate InGaZnO thin film transistors with SiOx etch stopper,” Applied Physics Letters, vol. 90, no. 21, p. 212114, 2007. [104] E. M. C. Fortunato, P. M. C. Barquinha, a. C. M. B. G. Pimentel, A. M. F. Goncalves, a. J. S. Marques, L. M. N. Pereira, and R. F. P. Martins, “Fully transparent ZnO thin-film transistor produced at room temperature,” Advanced Materials, vol. 17, no. 5, pp. 590–594, 2005. [105] M. K. Puchert, “Postdeposition annealing of radio frequency magnetron sputtered ZnO films,” Journal of Vacuum Science & Technology A: Vacuum, Surfaces, and Films, vol. 14, no. 4, p. 2220, 1996. [106] Z. Q. Chen, S. Yamamoto, M. Maekawa, a. Kawasuso, X. L. Yuan, and T. Sekiguchi, “Postgrowth annealing of defects in ZnO studied by positron annihilation, x-ray diffraction, Rutherford backscattering, cathodoluminescence, and Hall measurements,” Journal of Applied Physics, vol. 94, no. 8, p. 4807, 2003. [107] Corning Incorporated, “CorningR EAGLE2000TM AMLCD Glass Substrates Material Information,” Corning, N.Y., 2005. [108] Z. Fang, Y. Wang, D. Xu, Y. Tan, and X. Liu, “Blue luminescent center in ZnO films deposited on silicon substrates,” Optical Materials, vol. 26, no. 3, pp. 239–242, 2004. [109] C. J. Chiu, S. P. Chang, and S. J. Chang, “High-performance a-IGZO thin-film transistor using Ta2O5 gate dielectric,” IEEE Electron Device Letters, vol. 31, no. 11, pp. 1245–1247, 2010. [110] S. Y. Lee, S. Chang, and J.-S. Lee, “Role of high-k gate insulators for oxide thin film transistors,” Thin Solid Films, vol. 518, no. 11, pp. 3030–3032, 2010. [111] J. K. Jeong, “The status and perspectives of metal oxide thin-film transistors for active matrix flexible displays,” Semiconductor Science and Technology, vol. 26, no. 3, p. 034008, 2011. [112] Z. Wu, M. G. Hahm, Y. J. Jung, and L. Menon, “Epitaxially grown GaN nanowire networks,” Journal of Materials Chemistry, vol. 19, no. 4, p. 463, 2009. [113] L. Yan, C. M. Lopez, R. P. Shrestha, E. a. Irene, a. a. Suvorova, and M. Saunders, “Magnesium oxide as a candidate high-κ gate dielectric,” Applied Physics Letters, vol. 88, no. 14, p. 142901, 2006. [114] W.-Y. Chen, J.-S. Jeng, and J.-S. Chen, “Improvement of mobility in ZnO thin film transistor with an oxygen enriched MgO gate dielectric,” ECS Solid State Letters, vol. 1, no. 5, pp. N17–N19, 2012. [115] 蔡宜軒, “下閘極氧化鋅鎂薄膜電晶體之電穩定性研究,” 國立臺灣大學碩士論文, 2011. [116] 楊仕勤, “氧化鎂薄膜作為電極保護膜之研究,” 國立中央大學碩士論文, 2008. [117] F. Fietzke, K. Goedicke, and W. Hempel, “The deposition of hard crystalline Al2O3 layers by means of bipolar pulsed magnetron sputtering,” Surface and Coatings Technology, vol. 86–87, pp. 657–663, 1996. [118] A. Lajn, T. Diez, F. Schein, H. Frenzel, H. von Wenckstern, and M. Grundmann, “Light and temperature stability of fully transparent ZnO-based inverter circuits,” IEEE Electron Device Letters, vol. 32, no. 4, pp. 515–517, 2011. [119] K. Lee, J. H. Kim, S. Im, C. S. Kim, and H. K. Baik, “Low-voltage-driven top-gate ZnO thin-film transistors with polymer/high-k oxide double-layer dielectric,” Applied Physics Letters, vol. 89, no. 13, p. 133507, 2006. [120] S. H. Cha, M. S. Oh, K. H. Lee, S. Im, B. H. Lee, and M. M. Sung, “Electrically stable low voltage ZnO transistors with organic/inorganic nanohybrid dielectrics,” Applied Physics Letters, vol. 92, no. 2, p. 023506, 2008. [121] M. S. Oh, D. K. Hwang, K. Lee, W. J. Choi, J. H. Kim, S. Im, and S. Lee, “Pentacene and ZnO hybrid channels for complementary thin-film transistor inverters operating at 2 V,” Journal of Applied Physics, vol. 102, no. 7, p. 076104, 2007. [122] S. C. Lim, S. H. Kim, J. B. Koo, J. H. Lee, C. H. Ku, Y. S. Yang, and T. Zyung, “Hysteresis of pentacene thin-film transistors and inverters with cross-linked poly(4-vinylphenol) gate dielectrics,” Applied Physics Letters, vol. 90, no. 17, p. 173512, 2007. | |
| dc.identifier.uri | http://tdr.lib.ntu.edu.tw/jspui/handle/123456789/60285 | - |
| dc.description.abstract | 本論文探討多晶系氧化鎂鋅/氧化鋅異質接面結構特性,並應用於薄膜電晶體及邏輯閘之製作。
實驗使用射頻磁控濺鍍法在室溫下於玻璃基板製作氧化鎂鋅/氧化鋅異質結構。首先,研究不同退火溫度對氧化鋅結晶程度及氧化鎂鋅/氧化鋅異質接面特性之影響。接著將異質結構製作成薄膜電晶體,此部份採用氧化鋁為閘極介電層,確認極化效應能有助於薄膜電晶體特性的提升,其中採用600°C氧化鋅退火溫度之元件有最佳表現,其電流開關比、臨界電壓、次臨界擺幅與場效載子遷移率分別為2.3×105、-2.90 V、0.714 V/decade以及70.2 cm2/V-s。此外,在薄膜電晶體之閘極介電材料研究上,發現氧化鎂的使用能改善介電層與通道層之介面,進而大幅提升薄膜電晶體之場效載子遷移率至132 cm2/V-s。 最後將異質結構薄膜電晶體製作成邏輯反相器電路,著重分析閘極介電層材料對反相器電壓轉換特性之影響,其結果發現相較於使用氧化鋁,使用氧化鎂為閘極介電層之邏輯反相器具有較佳的訊號增益,由6.26上升至12.3,以及相對較小的磁滯現象偏移量,由14.6 V下降至4.79 V。 | zh_TW |
| dc.description.abstract | This thesis reports the experimental results regarding the electronic devices and logic gates based on RF-sputtered MgZnO/ZnO polycrystalline heterostructures. The carriers can be induced by polarization effect at the MgZnO/ZnO interface, forming two dimensional electron gases (2DEGs). This can be confirmed through the enhancement of electrical conductivity after the deposition of MgZnO capping layer.
The polycrystalline MgZnO/ZnO heterostructures were RF-sputtered on glass substrates at room temperature. We first investigated the influence of ZnO annealing temperature on the properties of the heterostructures. The formation of 2DEGs was observed in the heterostructures with ZnO annealed at a temperature of 400°C or high. The MgZnO/ZnO heterostructure was then used as the active layer in top-gate thin-film transistors (TFTs) and logic inverters. The best performance was obtained in the TFT with ZnO annealed at 600°C with Al2O3 as the gate dielectric, which has an on/off current ratio of 2.3×105, a threshold voltage of -2.90 V, a subthreshold swing of 0.714 V/decade and a saturation field-effect mobility of 70.2 cm2/V-s. The performance of thin-film transistors is also greatly affected by the dielectrics and the interface properties between the dielectric and channel layers. By replacing Al2O3 with MgO, the better interface between dielectric and channel layer increases the field-effect mobility of heterostructure TFT, which shows an improved mobility of 132 cm2/V-s. Moreover, the logic inverters with MgO gate dielectric exhibit better voltage transfer characteristics (a gain of 12.3) with smaller hysteresis compared to those with Al2O3 gate dielectric (a voltage shift of 4.79 V). | en |
| dc.description.provenance | Made available in DSpace on 2021-06-16T10:14:49Z (GMT). No. of bitstreams: 1 ntu-102-R00941029-1.pdf: 3137660 bytes, checksum: a8639fd919efb4cc7ab8c183cf9c981d (MD5) Previous issue date: 2013 | en |
| dc.description.tableofcontents | 誌謝 I
摘要 II Abstract III 目錄 V 圖目錄 VIII 表目錄 XIII 第壹章 緒論 1 1.1 氧化鋅之歷史與特性 1 1.2 薄膜電晶體簡介 4 1.2.1 氧化鋅薄膜電晶體 5 1.2.2 異質接面與高電子遷移率電晶體 7 1.3 研究動機 10 1.4 論文架構 11 第貳章 基本原理 13 2.1 異質接面結構與機制 13 2.1.1 極化效應與二維電子氣 13 2.1.2 散射與晶界散射 14 2.1.3 屏蔽效應 15 2.2 薄膜電晶體 17 2.2.1 薄膜電晶體結構 17 2.2.2 薄膜電晶體工作原理 18 2.2.3 薄膜電晶體特徵參數 19 2.3 邏輯反相器 23 2.3.1 反相器工作原理 23 2.3.2 電壓轉換特性 24 2.3.3 雜訊邊界 26 第參章 實驗方法與步驟 27 3.1 薄膜沉積方法 27 3.1.1 射頻磁控濺鍍 27 3.1.2 電子束蒸鍍 28 3.2 量測分析 30 3.2.1 X射線繞射儀 30 3.2.2 霍爾效應與范德堡方法 31 3.2.3 表面輪廓儀 33 3.2.4 電性量測 34 3.3 試片製程 35 3.3.1 X射線繞射試片 35 3.3.2 微影製程 37 3.3.3 范德堡方法量測試片 39 3.3.4 薄膜電晶體及邏輯電路製程 42 第肆章 實驗結果與討論 45 4.1 薄膜分析 45 4.1.1 熱退火溫度與結晶性分析 45 4.1.2 熱退火溫度與范德堡方法量測 48 4.2 異質接面薄膜電晶體 53 4.2.1 氧化鋅退火溫度對電晶體之影響 53 4.2.2 閘極介電層材料對電晶體之影響 64 4.3 異質接面邏輯反相器 70 4.3.1 介電材料與反相器電壓轉換特性 70 4.3.2 邏輯反相器磁滯現象 76 第伍章 結論與未來展望 81 5.1 結論 81 5.2 未來展望 83 參考文獻 85 | |
| dc.language.iso | zh-TW | |
| dc.subject | 薄膜電晶體 | zh_TW |
| dc.subject | 反相器 | zh_TW |
| dc.subject | 射頻磁控濺鍍法 | zh_TW |
| dc.subject | 氧化鋅 | zh_TW |
| dc.subject | 極化效應 | zh_TW |
| dc.subject | thin-film transistors | en |
| dc.subject | ZnO | en |
| dc.subject | radio-frequency magnetron sputtering | en |
| dc.subject | polarization effect | en |
| dc.subject | inverters | en |
| dc.title | 以射頻磁控濺鍍法製作之氧化鎂鋅/氧化鋅薄膜電晶體特性研究及其於邏輯閘之應用 | zh_TW |
| dc.title | MgZnO/ZnO Thin-Film Transistors and Logic Gates Fabricated by RF Magnetron Sputtering | en |
| dc.type | Thesis | |
| dc.date.schoolyear | 101-2 | |
| dc.description.degree | 碩士 | |
| dc.contributor.oralexamcommittee | 陳建彰(Jian-Zhang Chen),吳育任(Yuh-Renn Wu) | |
| dc.subject.keyword | 射頻磁控濺鍍法,氧化鋅,極化效應,薄膜電晶體,反相器, | zh_TW |
| dc.subject.keyword | radio-frequency magnetron sputtering,ZnO,polarization effect,thin-film transistors,inverters, | en |
| dc.relation.page | 97 | |
| dc.rights.note | 有償授權 | |
| dc.date.accepted | 2013-08-19 | |
| dc.contributor.author-college | 電機資訊學院 | zh_TW |
| dc.contributor.author-dept | 光電工程學研究所 | zh_TW |
| 顯示於系所單位: | 光電工程學研究所 | |
文件中的檔案:
| 檔案 | 大小 | 格式 | |
|---|---|---|---|
| ntu-102-1.pdf 未授權公開取用 | 3.06 MB | Adobe PDF |
系統中的文件,除了特別指名其著作權條款之外,均受到著作權保護,並且保留所有的權利。
