請用此 Handle URI 來引用此文件:
http://tdr.lib.ntu.edu.tw/jspui/handle/123456789/60284完整後設資料紀錄
| DC 欄位 | 值 | 語言 |
|---|---|---|
| dc.contributor.advisor | 周呈霙(Cheng-Ying Chou) | |
| dc.contributor.author | Chun-Hao Kao | en |
| dc.contributor.author | 高均豪 | zh_TW |
| dc.date.accessioned | 2021-06-16T10:14:48Z | - |
| dc.date.available | 2018-08-26 | |
| dc.date.copyright | 2013-08-26 | |
| dc.date.issued | 2013 | |
| dc.date.submitted | 2013-08-19 | |
| dc.identifier.citation | Agostinelli, S., et al. 2003. GEANT4-a simulation toolkit. Nuclear Instruments & Methods in Physics Research Section A: Accelerators Spectrometers Detectors and Associated Equipment. 506: 250-303.
Andreo, P. 1991. Monte Carlo techniques in medical radiation physics. Phys. Med. Biol. 36: 861-920. Bai, B., et al. 2005. Evaluation of MAP image reconstruction with positron range modeling for 3D PET. In “IEEE Nuclear Science Symposium Conference Record, 2005 IEEE”, 2686-2689. Beneditti, S. D., et al. 1950. On the angular distribution of two-photon annihilation radiation. Phys. Rev. 77: 205–212. Bottigli, U., et al. 1985. Monte-Carlo Simulation and Experimental Tests on Bgo, Csf and Nai(Tl) Crystals for Positron Emission Tomography. Journal of Nuclear Medicine and Allied Sciences. 29: 221-227. Branco, S., S. Jan and P. Almeida. 2007. Monte Carlo simulations in small animal PET imaging. Nuclear Instruments and Methods in Physics Research Section A: Accelerators, Spectrometers, Detectors and Associated Equipment. 580: 1127-1130. Cherry, S. R. and A. F. Chatziioannou. 2004. Small Animal PET Systems. In “Emission tomography: The fundaments of PET and SPECT”, ed. M. N. Wernick and J. N. Aarsvold, 213-225: Elsevier Science & Technology. D. R. Gilland, et al. 1992. An evaluation of maximum likelihood-expectation maximization reconstruction for SPECT by ROC analysis. J. Nucl. Med. 33: 451-457. Derenzo, S.E. 1981. Monte-Carlo Calculations of the Detection Efficiency of Arrays of Nai(Tl), Bgo, Csf, Ge, and Plastic Detectors for 511-Kev Photons. Nuclear Science, IEEE Transactions on. 28: 131-136. Dong, Y. 2009. High-sensitivity dual-head panel small-animal positron emission tomography. PhD dissertation. Chicago, Illinois: Graduate College of the Illinois Institute of Technology, Biomedical Engineering. Forster, R.A. and T.N.K. Godfrey. 1985. Mcnp - a General Monte-Carlo Code for Neutron and Photon Transport. Lecture Notes in Physics. 240: 33-55. Henrik, B. 2010. Monte Carlo simulations of a clinical PET system using the GATE software. Master dissertation. Sweden: Lund University, Department of Medical Radiation Physics. Hoffman, E. J., Huang, S., Plummer, D., and Phelps, M. E. 1982. Quantitation in positron emission computed tomography: 6 effect of nonuniform resolution. J. Comput. Assist. Tomogr. 6(5), 987–999. Hoffman, E. J., and Phelps, M. E. 1976. An analysis of some of the physical aspects of positron axial tomography. Comput. Biol. Med. 6: 345–360. J. Yao and H. H. Barrett. 1992. Predicting human performance by a channelized Hotelling model. SPIE Math. Meth. Med. Imag. 1768:161-168. Jan, S., et al. 2004. GATE: a simulation toolkit for PET and SPECT. Phys. Med. Biol. 49: 4543-61. Jeffrey A. Fessler. 2006. Iterative Methods for Image Reconstruction. ISBI Tutorial. Jordan, T.M. 1993. Its - the Integrated Tiger Series of Electron Photon Transport Codes Version-3.0 Cepxs Oneld Version-2.0 - a Discrete Ordinates Code Package for General One-Dimensional Coupled Electron-Photon Transport, and Recent Mcnp Developments - Comment. Nuclear Science, IEEE Transactions on. 40: 71-72. Kao, C.-M., J. S. Souris, S. Cho, B. C. Penney and C.-T. Chen. 2005. Initial performance evaluation of a modular, large-area detector PET scanner for small animal imaging. In “Nuclear Science Symposium Conference Record, 2005 IEEE”, 2081-2084. Kao, C.-M., Q. Xie, Y. Dong, L. Wan and C.-T Chen. 2009. A High-Sensitivity Small-Animal PET Scanner: Development and Initial Performance Measurements. Nuclear Science, IEEE Transactions on. 56: 2678-2688. Kao Y.-J., Y. Dong, C.-M Kao, C.-T Chen, W. Wang and C.-Y Chou. 2011. Image reconstruction of dual-head PET scanner by using numerically computed system response matrix. In “International Forum on Medical Imaging in Asia”, O9-4. Okinawa, Japan. Lecomte, R. 2004. Technology challenges in small animal pet imaging. Nuclear Instruments and Methods in Physics Research Section A: Accelerators, Spectrometers, Detectors and Associated Equipment. 527: 157–165. Lewellen, T. 1998. The SIMSET program. In “Monte Carlo Calculation in Nuclear Medicine: Applications in Diagnostic Imaging”, ed. M. Ljungberg, 77-92. Bristol: Institute of Physics Publishing. Lewellen, T. and J. Karp, 2004. PET Systems. In “Emission Tomography: the fundamentals of PET and SPECT”, ed. M. N.Wernick and J. N. Aarsvold, 179-192: Elsevier Science & Technology. Ljungberg, M. and S.E. Strand. 1989. A Monte Carlo program for the simulation of scintillation camera characteristics. Comput Methods Programs Biomed. 29: 257-272. Ljungberg, M. and S.E. Strand. 1990. Scatter and attenuation correction in SPECT using density maps and Monte Carlo simulated scatter functions. J. Nucl. Med. 31: 1560-1567. Ljungberg, M. 1998. Monte Carlo Calculations in Nuclear Medicine: Applications in Diagnostic Imaging. Bristol: IOP Publishing. Nellemann, P., H. Hines, W. Braymer, G. Muehllehner and M. Geagan. 1995. Performance characteristics of a dual head SPECT scanner with PET capability. In “Nuclear Science Symposium and Medical Imaging Conference Record, IEEE”, 1751-1755 vol. 1753. Nelson, W.R., Hirayama, H. and Rogers, D. W. O. 1985. The EGS4 code system. Stanford Linear Accelerator Center. P. Green. 1990. Bayesian reconstructions from emission tomography data using a modified EM algorithm. IEEE Trans. Med. Imag. 9: 84-93 Prekeges, J. 2009. Principles of Positron Emission Tomography (PET). In “Nuclear medicine instrumentation”, ed. J. Prekeges, 187-261: Jones & Bartlett Publishers. Phelps, M. E., E. J. Hoffman, S.-C. Huang and M.M. Ter-Pogossian. 1975. Effect of positron range on spatial resolution. The Journal of Nuclear Medicine. 16: 649-652. Poludniowski, G., et al. 2009. An efficient Monte Carlo-based algorithm for scatter correction in keV cone-beam CT. Phys Med Biol. 54: 3847-3864. Qi J. 2004. Analysis of lesion detectability in Bayesian emission reconstruction with nonstationary object variability. IEEE Trans. Med. Imaging. 23: 321-329. Qi J. and Leahy R. M. 2000. Resolution and noise properties of MAP reconstruction for fully 3D PET. IEEE Trans. Med. Imaging. 19: 493-506. Reilhac, A., et al. 2004. PET-SORTEO: A Monte Carlo-based simulator with high count rate capabilities. Nuclear Science, IEEE Transactions on. 51: 46-52. Siddon, R. L. 1985. Fast calculation of the exact radiological path for a three-dimensional CT array. Med. Phys. 12: 252-255. Susana, E O. B. S. 2010. Small Animal PET Imaging Using GATE Monte Carlo Simulations: implementation of physiological and metabolic information. PhD dissertation. Lisbon, Portugal: University of Lisbon, Department of Biology Tai, Y.-C., R. Laforest and A. Ruangma. 2003. Design study of a detector insert for high resolution clinical PET imaging. In “Proc. IEEE Nuclear Science Symp. Conf. Rec”, 1714-1717. Tai, Y.-C. and R. Laforest. 2005. Instrumentation aspects of animal PET. Annual review of biomedical engineering. 7: 255–285. Thompson, C.J., J. Morenocantu, and Y. Picard. 1992. Petsim - Monte-Carlo Simulation of All Sensitivity and Resolution Parameters of Cylindrical Positron Imaging-Systems. Physics in Medicine and Biology. 37: 731-749. Zaidi, H. 2005. Quantitative Analysis in Nuclear Medicine Imaging. New York: Springer. | |
| dc.identifier.uri | http://tdr.lib.ntu.edu.tw/jspui/handle/123456789/60284 | - |
| dc.description.abstract | 正子攝影是一種廣泛應用於臨床診斷的核子醫學影像系統。近年來有開發出小動物正子攝影影像系統用以針對藥物研究之動物實驗。此類系統雖然具有高解析度,可是由於待測小動物的體積相對人體較小,所以接收到的訊號大小相較之下也較低,為此開發出雙平板式正子斷層掃描系統。此類系統採用兩片大尺寸的感測平板,此種平板式感測器矩陣具有感測區域大,元件密度高的優點,所以在保有高解析度的同時,也能具有高靈敏度的特性。
在此篇論文中,我們提出了一種新型的應用非對稱探測器陣列的雙平板式系統。在這個系統中,兩個平行的感測器使用不同大小的陣列。較小的感測器具有較高解析度的晶體,而較大的感測器則是使用較低解析度的晶體。通過這樣的系統,待測物的細部與整體結構都可以被偵測到。利用這個系統,可以得知細部的資訊,而且不需要兩邊探測平板都使用較高解析度的感測器,因而可以降低成本。這樣的系統可以適用許多臨床方面的應用,例如前列腺癌的偵測。 為了探索系統架構對於實際偵測的潛力,我們採用一種理論方法,此種方法能快速計算評估系統對於偵測病變的能力。得到的理論結果可以幫助我們優化提出的系統配置。 | zh_TW |
| dc.description.abstract | Positron emission tomography is a nuclear medicine imaging systems that is widely used in clinical diagnosis. In recent years, small animal PET system has been developed for drug development of animal experiments. Although such a system has a high-resolution characteristic, the signal to be detected is also lower due to the smaller animal size compared to the human body. To obtain a high sensitivity, a suitable PET system that adopts dual-head flat panel detectors has been proposed. Such a system has the advantages of high component density and a large detection area. Therefore, this kind of system possesses characteristics of both high resolution and high sensitivity.
In this work, we developed a novel dual-head flat panel positron emission tomography (PET) system with asymmetric detector arrays. In this system, two detector arrays of different sizes are aligned in parallel. The smaller and larger detector arrays are comprised of crystals of finer and larger sizes, respectively. When an object is imaged by such a system, the detailed features and the general structure of the object can be captured. The design of this system can provide images with detailed description in some certain regions of interest without having to utilize two expensive high-resolution detectors, thereby lowering the cost. Such a system can be applied in many clinical uses such as the screening of prostate cancer. To explore the full potential of system configuration for lesion detection, we employ a theoretical approach that allows fast computation of evaluating the detectability of a lesion. The theoretical results can help us to find the optimization of our proposed system configuration. | en |
| dc.description.provenance | Made available in DSpace on 2021-06-16T10:14:48Z (GMT). No. of bitstreams: 1 ntu-102-R00631032-1.pdf: 921733 bytes, checksum: 2ade1191d1b1fbb8c8a336f039b129c8 (MD5) Previous issue date: 2013 | en |
| dc.description.tableofcontents | TABLE OF CONTENTS
誌謝 i 摘要 ii ABSTRACT iii TABLE OF CONTENTS iv LIST OF FIGURES vii LIST OF TABLES ix CHAPTER 1 1 1.1 Background 1 1.2 Purpose 4 1.3 Frameworks 6 CHAPTER 2 7 2.1 Positron Emission Tomography 7 2.1.1 Principles of Positron Emission Tomography 7 2.1.2 Small Animal PET System 9 2.2 Monte Carlo Simulation 11 2.3 Ray-tracing Algorithm 13 2.4 Detection Performance Analysis 15 2.4.1 Numerical Observers 17 2.4.2 Channelized Hotelling Observer 18 CHAPETR 3 20 3.1 Simulation Flowchart 20 3.2 Instruments 21 3.2.1 System Configuration 21 3.2.2 Monte Carlo Simulation by using GATE 22 3.3 Research Methods 23 3.3.1 The various voxel sizes in spatial layers 23 3.3.2 Symmetry Property 24 3.3.2 Ray-tracing Simulation of System Matrix 26 3.3.3 Bayesian Image Reconstruction 29 3.4 Detection performance analysis 30 3.4.1 Lesion Detectability in MAP Reconstruction 31 3.4.2 Fast Computation 32 CHAPTER 4 35 4.1 Reconstructed Results of the Numerical Micro-Derenzo Phantom 35 4.2 System Performance Evaluation 37 CHAPTER 5 40 5.1 Research Summary 40 5.2 Future Work 40 BIBLIOGRAPHY 42 LIST OF FIGURES Figure 2.1. Positron annihilation (Lewellen and Karp, 2004). 8 Figure 2.2. Acquisition of coincidence widow (Lewellen and Karp, 2004). 9 Figure 2.3. A data acquisition process of small animal PET system (Susana, 2010). 9 Figure 2.4. The 2-D illustration of Siddon’s method. 14 Figure 3.1. The PET simulation flowchart. 20 Figure 3.2. The configuration of asymmetric flat-panel detector system. 22 Figure 3.3. The diameter settings of Derenzo phantom. 22 Figure 3.4. The voxels dimensions in each level of layers. 24 Figure 3.5. The illustration of shift rule in each voxel image layer. 25 Figure 3.6. The schematic illustration of ray-tracing method. 27 Figure 4.1. The result of Derenzo phantom at high-resolution layer is reconstructed using the EM method. (a) 1 iteration. (b) 10 iterations. 36 Figure 4.2. The result of Derenzo phantom at medium-resolution layer is reconstructed using the EM method. (a) 1 iteration. (b) 10 iterations. 36 Figure 4.3. The result of Derenzo phantom at low-resolution layer is reconstructed using the EM method. (a) 1 iteration. (b) 10 iterations. 37 Figure 4.5. SNRs computed by theoretical predictions with different spacing. 39 Figure 4.6. AUCs computed by SNRs in different spacing of detectors. 39 Figure 5.1. The configuration of mixed asymmetric flat-panel detector system. 41 LIST OF TABLES Table 2.1. Four conditions composed by the hypotheses and decisions 16 | |
| dc.language.iso | en | |
| dc.subject | 感興趣區域 | zh_TW |
| dc.subject | 正子斷層攝影 | zh_TW |
| dc.subject | 非對稱探測器陣列 | zh_TW |
| dc.subject | PET | en |
| dc.subject | asymmetric detector arrays | en |
| dc.subject | region-of-interest(ROI) | en |
| dc.title | 應用非對稱感測器陣列於雙平板式正子攝影之影像重建 | zh_TW |
| dc.title | Image Reconstruction for the Dual-Head Flat-Panel PET System with Asymmetric Detector Arrays | en |
| dc.type | Thesis | |
| dc.date.schoolyear | 101-2 | |
| dc.description.degree | 碩士 | |
| dc.contributor.oralexamcommittee | 許靖涵(Ching-Han Hsu) | |
| dc.subject.keyword | 正子斷層攝影,非對稱探測器陣列,感興趣區域, | zh_TW |
| dc.subject.keyword | PET,asymmetric detector arrays,region-of-interest(ROI), | en |
| dc.relation.page | 46 | |
| dc.rights.note | 有償授權 | |
| dc.date.accepted | 2013-08-19 | |
| dc.contributor.author-college | 生物資源暨農學院 | zh_TW |
| dc.contributor.author-dept | 生物產業機電工程學研究所 | zh_TW |
| 顯示於系所單位: | 生物機電工程學系 | |
文件中的檔案:
| 檔案 | 大小 | 格式 | |
|---|---|---|---|
| ntu-102-1.pdf 未授權公開取用 | 900.13 kB | Adobe PDF |
系統中的文件,除了特別指名其著作權條款之外,均受到著作權保護,並且保留所有的權利。
