請用此 Handle URI 來引用此文件:
http://tdr.lib.ntu.edu.tw/jspui/handle/123456789/60259完整後設資料紀錄
| DC 欄位 | 值 | 語言 |
|---|---|---|
| dc.contributor.advisor | 陳珍信(Chen-Hsin Chen),廖振鐸(Chen-Tuo Liao) | |
| dc.contributor.author | Yuh-Chyuan Tsay | en |
| dc.contributor.author | 蔡育銓 | zh_TW |
| dc.date.accessioned | 2021-06-16T10:14:24Z | - |
| dc.date.available | 2018-08-26 | |
| dc.date.copyright | 2013-08-26 | |
| dc.date.issued | 2013 | |
| dc.date.submitted | 2013-08-19 | |
| dc.identifier.citation | Boag, J. W. (1949). Maximum likelihood estimates of the proportion of patients cured by cancer
therapy. Journal of the Royal Statistical Society, Series B 11, 15–53. Breslow, N. (1970). A generalized Kruskal-Wallis test for comparing K samples subject to unequal patterns of censorship. Biometrika 57, 579-594. Chen, C. H., Tsay, Y. C.,Wu, Y. C. and Horng, C. F. (2013). Logistic-AFT location-scale mixture regression models with nonsusceptibility for left-truncated and general interval-censored data. Statistics in Medicine, Early View, DOI: 10.1002/sim.5845. Cox, D. R. (1972). Regression models and life tables (with discussion) Joumal of the Royal Statistical Society, Series B 34, 187-220. Cox, D.R. and Oakes, D. (1984). Analysis of Survival Data. Chapman and Hall, New York. Dempster, A. P., Laird, N. M. and Rubin, D. B. (1977). Maximum likelihood from incomplete data via the EM algorithm. Journal of the Royal Statistical Society, Series B 39, 1–38. Efron, B. (1967). The two sample problem with censored data. Proceedings of the Fifth Berkeley Symposium on Mathematical Statistics and Probability 4, 831–853. Efron, B. (1981). Censored data and the bootstrap. Journal of the American Statistical Association 76, 312–319. Efron, B. and Tibshirani, R. (1986). Bootstrap methods for standard errors, confidence intervals, and other measures of statistical accuracy. Statistical Science 1, 54–77. Farewell, V. T. (1982). The use of mixture models for the analysis of survival data with long-term survivors. Biometrics 38, 1041–1046. Farewell, V. T. (1986). Mixture models in survival analysis: are they worth the risk? Canadian Journal of Statistics 14, 257–262. Farewell, V. T. and Prentice, R. L. (1977). A study of distributional shape in life testing. Technometrics 19 69–75. Frydman, H. (1994). A note on nonparametric estimation of the distribution function from interval-censored and truncated observations. Journal of the Royal Statistical Society, Series B 56, 71–74. Gehan, E. A. (1965). A generalized Wilcoxon test for comparing arbitrarily singly-censored samples. Biometrika 52, 203-223. Gray, R. J. and Tsiatis, A. A. (1989). A linear rank test for use when the main interest is in differences in cure rates. Biometrics 45, 899-904. Groeneboom, P. and Wellner, J. A. (1992). Information bounds and nonparametric maximum likelihood estimation, Basel, Birhauser Verlag. Hudgens, M. G. (2005). On nonparametric maximum likelihood estimation with interval censoring and left truncation. Journal of the Royal Statistical Society, Series B 67, 573–587. Johnson, N. L., Kotz, S. and Balakrishnan, N. (1997). Discrete MultivariateDistributions,Wiley, New York. Kalbfleisch, J. D. and Prentice, R. L. (2002). The Statistical Analysis of Failure Time Data (2nd edn). Wiley, New York. Kaplan, E. L. and Meier P. (1958). Nonparametric estimation from incomplete observations. Journal of the American Statistical Association 53, 457–481. Kuk A. Y. C. and Chen, C. H. (1992). A mixture model combining logistic regression with proportional hazards regression. Biometrika 79, 531–541. Laska, E. M. and Meisner, M. J. (1992). Nonparametric estimation and testing in a cure model. Biometrics 48, 1223–1234. Lee, J. W. (1995). Two-sample rank tests for acceleration in cure models. Statistics in Medicine 19, 2111-2118. Louis, T. A. (1982). Finding the observed information matrix using the EM algorithm. Journal of the Royal Statistical Society. Series B 44, 226–233. Li, C.S. and Taylor, J. M. G. (2002). A semi-parametric accelerated failure time cure model. Statistics in Medicine 21, 3235–3247. Lu, W. and Ying, Z. (2004). On semiparametric transformation cure model. Biometrika 91, 331–343. Maller, R. A. and Zhou, S. (1992). Estimating the proportion of immunes in a censored sample. Biometrika 79, 731–739. Maller, R. A. and Zhou, X. (1996). Survival Analysis with Long-Term Survivors. Wiley, New York. Mantel, N. (1966). Evaluation of survival data and two new rank order statistics arising in its consideration. Cancer Chemotherapy Reports 50, 163-170. Mehrotra, K. G., Michalek, J. E. and Mihalko, D. (1982). A relationship between two forms of linear rank procedures for censored data. Biometrika 69, 674-676. Miller, R. G. (1981). Survival Analysis. Wiley, New York. Oakes, D. (1999). Direct calculation of the information matrix via the EM algorithm. Journal of the Royal Statistical Society, Series B 61, 479–482. Peng, Y. and Dear, K. B. G. (2000). A nonparametric mixture model for cure rate estimation. Biometrics 56, 237–243. Peng, Y., Dear, K. B. and Denham, J. W. (1998). A generalized F mixture model for cure rate estimation. Statistics in Medicine 17, 813–830. Peto, R. and Peto, J. (1972). Asymptotically efficient rank invariant test procedures (with discussion). Joumal of the Royal Statistical Society, Series A 135, 185-207. Prentice, R. L. (1978). Linear rank tests with right censored data. Biometrika 65, 167-179. Prentice, R. L. and Marek, P. (1979). A qualitative discrepancy between censored data rank tests. Biometrics 35, 861-867. Sy, J. P. and Taylor, J. M. G. (2000). Estimation in a Cox proportional hazards cure model. Biometrics 56, 227–236. Tsai, W. Y., Jewell, N. P. and Wang, M. C. (1987). A note on the product-limit estimator under right censoring and left truncation. Biometrika 74, 883–886. Tsodikov A.D., Ibrahim J.G. and Yakovlev A.Y. (2003). Estimating cure rates from survival data: An alternative to two-component mixture models. Journal of American Statistical Assocition 98, 1063-1078. Turnbull, B. W. (1976). The empirical distribution function with arbitrarily grouped, censored and truncated data. Journal of the Royal Statistical Society, Series B 38, 290–295. Yamaguchi, K. (1992). Accelerated failure-time regression models with a regression model of surviving fraction: An application to the analysis of “permanent employment” in Japan. Journal of the American Statical Association 87, 284–292. Ying, Z. (1990). Linear rank statistics for truncated data. Biometrika 77, 909-914. | |
| dc.identifier.uri | http://tdr.lib.ntu.edu.tw/jspui/handle/123456789/60259 | - |
| dc.description.abstract | 存活分析通常關注的是事件發生時間(time-to-event) 的資料, 例如死亡時間、疾病復發時間
或發病年齡。一般而言, 事件發生時間的資料通常沒有辦法被完整觀察到。各種不同的研究設計 與資料抽樣方案有可能會導致設限資料(censored data) 或截斷資料(truncated data) 產生。在 一個長期追蹤研究(longitudinal follow-up study) 中, 我們時常會收集到區間設限資料(interval censored data)。並且, 在一個健康世代的長期追蹤研究中, 我們也時常遇到左截切區間設限資料 (left truncated and interval censored data)。 在傳統的存活分析中, 一個基本的假設是: 針對有興趣的疾病, 所有研究對象最後都會發病 並且治療以後都會在復發(Cox and Oakes, 1984; Kalbfleisch and Prentice, 2002)。然而, 實際 上有於各種不同的遺傳基因和環境因素, 可能會讓某些研究對象對於我們所感興趣的疾病並不會 發病。另外, 由於現今醫學診斷技術及策略的進步, 很多之前無法被適當治療的病人, 現今都能夠 被適當的診斷及治癒。因此, 統計方法在事件史分析(event history analysis) 的應用上, 已經考 慮加入無涉險比率(event-free fraction), 例如非易受感染性(nonsusceptibility) 機率或治癒機率 (Miller, 1981)。 近來,考慮使用混合存活分布(mixture survival distribution)的有母數(parametric)及半母數 迴歸模型(semiparametric regression model), 已被大量應用在右設限資料(right censored data) 的研究上(Farewell, 1982, 1986; Kuk and Chen, 1992; Yamaguchi, 1992; Peng et al., 1998; Peng and Dear, 2000; Sy and Taylor, 2000; Li and Taylor, 2002; Lu and Ying, 2004)。針對左截切區間 設限資料, 在考慮加入無涉險率因子的情況下, Chen et al. (2013) 提出一個包含非易受感受性因 子的邏輯斯-加速失敗混和迴歸模型(logistic-AFT location-scale mixture regression model)來處 理這類型的資料。 然而, 就我們所知, 針對左截切區間設限資料, 文獻上並未有無母數估計方法同時考慮無涉險 率和事件發生時間分布的研究。另外,也很少有文獻針對含有無涉險率之右設限資料,提出雙樣本 的無母數等級檢定統計量(two-sample rank test statistics)。因此, 我們在同時考慮無涉險率因子 和事件發生時間分布的情況下, 針對此兩類資料分別提出估計及檢定的方法: (1) 第2章, 針對左 截切區間設限資料, 提出單樣本無母數估計(one-sample nonparametric estimation), (2) 第3章, 針對右設限資料, 提出雙樣本無母數等級檢定(two-sample rank test)。 此外, 在生醫研究上, 我們通常會利用迴歸模型來估算共變數(covariate) 的效用。所以, 為了 方便使用Chen et al. (2013) 這篇文獻的方法來做資料分析, 我們在第4章, 以此文獻提出的方法 為基礎, 開發了一個網頁式友善介面的統計軟體系統, 並稱稱做『EHA-RiskFree』。 | zh_TW |
| dc.description.abstract | Survival analysis is concerned with time-to-event data, such as time to death, time to relapse
of a disease, and age at onset of a disorder. Typically, a set of time-to-event data can not be completely observed. Arising from various schemes of study design and data sampling, it may produce censored and/or truncated data. In a longitudinal follow-up study, general interval censored data are often collected. Moreover, in a longitudinal follow-up study of a healthy cohort, left truncated and interval censored (LTIC) data are frequently encountered. In traditional survival analysis, an underlying assumption is that all the study subjects are susceptible to contracting or relapsing into the disease of interest (Cox and Oakes, 1984; Kalbfleisch and Prentice, 2002). However, owing to various genetic and environmental etiologies, some study subjects may not be susceptible to the disease of interest. Moreover, due to recent progress in medical diagnostic technology strategy, many patients who could not previously be adequately treated can now be appropriately diagnosed and cured. Hence, statisticalmethods in event history analysis have considered incorporating event-free fractions such as probabilities of nonsusceptibility or cure (Miller, 1981). Recently, parametric and semiparametric regression models with the mixture survival distribution have been extensively studied for right censored data (Farewell, 1982, 1986; Kuk and Chen, 1992; Yamaguchi, 1992; Peng et al., 1998; Peng and Dear, 2000; Sy and Taylor, 2000; Li and Taylor, 2002; Lu and Ying, 2004). For LTIC data in considering event-free fraction, Chen et al. (2013) recently proposed logistic-AFT location-scale mixture regression models with nonsusceptibility for left-truncated and general interval-censored data. To the best of our knowledge, however, no nonparametric estimation has been discussed in the literature which considers both the event-free fraction and event time distribution simultaneously for LTIC data, and very few two-sample rank test statistics has been proposed for right censored data with event-free fraction. Therefore, incorporating the event-free fraction(s) with the event time distribution(s) simultaneously, we develop (i) a one-sample nonparametric estimation for LTIC data in Chapter 2 and (ii) two-sample rank tests for right censored data in Chapter 3, respectively. Besides, effects of covariates are also important for biomedical studies, and usually assessed by regression models. Therefore, to facilitate the analysis procedures, we have developed the statistical software system “EHA-RiskFree” in Chapter 4 on the methodological foundation of Chen et al. (2013) with a web-based user-friendly interface. | en |
| dc.description.provenance | Made available in DSpace on 2021-06-16T10:14:24Z (GMT). No. of bitstreams: 1 ntu-102-D93621201-1.pdf: 2452446 bytes, checksum: 055c61d42f4a4da3e4c908a3ba1d89cc (MD5) Previous issue date: 2013 | en |
| dc.description.tableofcontents | 謝辭i
摘要ii Abstract iv 1 Prologue 1 1.1 Introduction . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 1 1.2 Motivation of the Study . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 2 1.3 Organization of the Dissertation . . . . . . . . . . . . . . . . . . . . . . . . . . 4 2 NPMLEs of an Event-Free Fraction and an Event Time Distribution for Left Truncated and Interval Censored Data 5 2.1 Background . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 5 2.2 NPMLEs of p and S1(t) via the EM Algorithm . . . . . . . . . . . . . . . . . . 6 2.3 A Generalization of the Efron (1967) Self-Consistency Equation in Considering an Event-Free Fraction . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 13 2.4 Relationship Between the NPMLEs and the Turnbull-Frydman Estimator . . . . 14 2.5 Estimation of Variances of pˆ, Sˆ1(t), and Sˆ(t) . . . . . . . . . . . . . . . . . . . . 15 2.5.1 Bootstrap Variances and Confidence Intervals for LTIC Data . . . . . . . 16 2.5.2 Analytical Asymptotic Variances and Confidence Intervals for LTRC Data 17 2.6 Simulation Studies . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 17 2.7 An Example . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 24 2.8 Remarks . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 26 3 Two-Sample Linear Rank Tests for Right Censored Data with Event-Free Fractions 29 3.1 Background . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 29 3.2 Linear Rank Statistics for Right Censored Data with Event-Free Fractions . . . . 31 3.2.1 Mixture Models . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 31 3.2.2 The Marginal Likelihood . . . . . . . . . . . . . . . . . . . . . . . . . . 32 3.2.3 Score Statistics . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 32 3.2.4 Asymptotic Variances of Score Statistics . . . . . . . . . . . . . . . . . 33 3.2.5 Three Cases Test Statistics . . . . . . . . . . . . . . . . . . . . . . . . . 35 3.3 A Wilcoxon-Prentice Test for Right Censred Data with Event-Free Fractions . . . 35 3.4 Remarks . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 36 4 A Web-based Statistical Software System “EHA-RiskFree” and Its Applications 37 4.1 Background . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 37 4.2 Framework of the EHA-RiskFree . . . . . . . . . . . . . . . . . . . . . . . . . . 39 4.2.1 System Architecture . . . . . . . . . . . . . . . . . . . . . . . . . . . . 39 4.2.2 Programming Languages . . . . . . . . . . . . . . . . . . . . . . . . . . 39 4.3 Functions of the EHA-RiskFree . . . . . . . . . . . . . . . . . . . . . . . . . . 40 4.3.1 Data Input . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 40 4.3.2 Format for the Incomplete Data . . . . . . . . . . . . . . . . . . . . . . 41 4.3.3 Survival Plot . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 42 4.3.4 Mixture Regression Models . . . . . . . . . . . . . . . . . . . . . . . . 42 4.4 An illustration with Hypertriglyceridemia Data Analysis . . . . . . . . . . . . . 43 4.5 Remarks . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 47 5 Summaries and Future Research Work 49 Appendices 51 A The Rationale of Using (C1) and (C2) for Estimation of the LTIC Data with a Non- Zero Event-Free Fraction 51 B Derivations of Equations (2.7) and (2.8) 53 C The Derivation of Equation (2.9) 55 D The Observed Information Matrix of ( ˆ p,ˆh1,ˆh2, · · · ,ˆhm−1) 57 E Asymptotic Variances of pˆ, Sˆ1(t) and Sˆ(t) for LTRC Data 59 F Derivation of Equations (3.6), (3.7), (3.12), (3.13) and (3.14) 63 G Computation of Scores and the Observed Information Matrix in Section 3.3 73 H Computational Formulas for the GeneralizedWilcoxon-Prentice Test 95 I User Guide to EHA-RiskFree 99 Bibliography 115 | |
| dc.language.iso | en | |
| dc.subject | 廣義Wilcoxon 檢定 | zh_TW |
| dc.subject | 網頁式友善介面 | zh_TW |
| dc.subject | 非易受感受性 | zh_TW |
| dc.subject | 等級檢定 | zh_TW |
| dc.subject | 區間受限 | zh_TW |
| dc.subject | EM 演算法 | zh_TW |
| dc.subject | 治癒率 | zh_TW |
| dc.subject | 左截切 | zh_TW |
| dc.subject | 自我一致估計值 | zh_TW |
| dc.subject | Self-consistency estimator | en |
| dc.subject | EM algorithm | en |
| dc.subject | Interval censoring | en |
| dc.subject | Left truncation | en |
| dc.subject | Nonsusceptibility | en |
| dc.subject | Rank test | en |
| dc.subject | Cure fraction | en |
| dc.subject | Generalized Wilcoxson tests | en |
| dc.subject | Web-based user-friendly interface | en |
| dc.title | 含無事件機率之事件發生時間不完整資料的統計推論 | zh_TW |
| dc.title | Statistical Inferences on Incomplete Time-to-Event Data with Event-Free Fractions | en |
| dc.type | Thesis | |
| dc.date.schoolyear | 101-2 | |
| dc.description.degree | 博士 | |
| dc.contributor.oralexamcommittee | 劉仁沛(Jen-Pei Liu),程毅豪(Yi-Hau Chen),嵇允嬋(Yun-Chan Chi) | |
| dc.subject.keyword | 治癒率,EM 演算法,區間受限,左截切,非易受感受性,等級檢定,自我一致估計值,廣義Wilcoxon 檢定,網頁式友善介面, | zh_TW |
| dc.subject.keyword | Cure fraction,EM algorithm,Interval censoring,Left truncation,Nonsusceptibility,Rank test,Self-consistency estimator,Generalized Wilcoxson tests,Web-based user-friendly interface, | en |
| dc.relation.page | 117 | |
| dc.rights.note | 有償授權 | |
| dc.date.accepted | 2013-08-19 | |
| dc.contributor.author-college | 生物資源暨農學院 | zh_TW |
| dc.contributor.author-dept | 農藝學研究所生物統計組 | zh_TW |
| 顯示於系所單位: | 農藝學系 | |
文件中的檔案:
| 檔案 | 大小 | 格式 | |
|---|---|---|---|
| ntu-102-1.pdf 未授權公開取用 | 2.39 MB | Adobe PDF |
系統中的文件,除了特別指名其著作權條款之外,均受到著作權保護,並且保留所有的權利。
