請用此 Handle URI 來引用此文件:
http://tdr.lib.ntu.edu.tw/jspui/handle/123456789/60232完整後設資料紀錄
| DC 欄位 | 值 | 語言 |
|---|---|---|
| dc.contributor.advisor | 何志浩(Jr Hau He) | |
| dc.contributor.author | Shih-Guo Yang | en |
| dc.contributor.author | 楊世國 | zh_TW |
| dc.date.accessioned | 2021-06-16T10:13:59Z | - |
| dc.date.available | 2016-08-28 | |
| dc.date.copyright | 2013-08-28 | |
| dc.date.issued | 2013 | |
| dc.date.submitted | 2013-08-19 | |
| dc.identifier.citation | 1. O.V. Sulima, P.E. Sims, J.A. COX, M.G. Mauk, R.L. Mueller, R.C. Reedy Jr., A.M. Khammadov, P.D. Paulson and G.A. Landis, 3rd World Conjerence on Pholovoltaic Energy Conversion, May 11-18, 2003, Osaka, Japan
2. RAYMOND F. JURGENS, MEMBER, IEEE TRANSACTIONS ON INDUSTRIAL ELECTRONICS, VOL. IE-29, NO. 2, MAY 1982 3. J. Wu, W. Walukiewicz, K. M. Yu, W. Shan, J. W. Ager et al., J. Appl. Phys., Vol. 94, No. 10, 15 November 2003 4. Priyanka Singh, N.M. Ravindra, Solar Energy Materials & Solar Cells 101 (2012) 36–45 5. K. Emery, J. Burdick, Y. Caiyem, D. Dunlavy, H. Field, B. Kroposki, T. Moriarty, L. Ottoson, S. Rummel, T. Strand, and M.W. Wanlass, 25th PVSC, May 13-17, 1996, Washington, D.C. 6. Schleife, F. Fuchs, C. Rodl, J. Furthmuller, and F. Bechstedt, Appl. Phys. Lett., vol. 94, no. 1, pp. 012 104-1–012 104-3, Jan. 2009. 7. K. Y. Lai, G. J. Lin, C.-Y. Chen, Y.-L. Lai, and J. H. He, IEEE ELECTRON DEVICE LETTERS, VOL. 32, NO. 2, FEBRUARY2011 8. Carl J. Neufeld, Samantha C. Cruz, Robert M. Farrell, Michael Iza, Stacia Keller, Shuji Nakamura, Steven P. DenBaars, James S. Speck and Umesh K. Mishra, Appl. Phys. Lett.99, 071104 (2011) 9. Green, M. A., Englewood Cliffs, NJ, Prentice-Hall, Inc., 1982. 288 p. 10. ELISA N. HURWITZ, MUHAMMAD ASGHAR, ANDREW MELTON, BAHADIR KUCUKGOK, LIQIN SU, MATEUSZ OROCZ, MUHAMMAD JAMIL, NA LU and IAN T. FERGUSON, Journal of ELECTRONIC MATERIALS, Vol. 40, No. 5, 2011 11. C. H. Wang, J. R. Chen, C. H. Chiu, H. C. Kuo, Senior Member, IEEE, Y.-L. Li, T. C. Lu, Senior Member, IEEE and S. C. Wang, Life Member, IEEE, IEEE PHOTONICS TECHNOLOGY LETTERS, VOL. 22, NO. 4, FEBRUARY 15, 2010 12. R. Dahal, B. Pantha, J. Li, J. Y. Lin, and H. X. Jiang,Appl. Phys. Lett.94, 063505(2009) 13. K. Y. Lai, G. J. Lin, Y.-L. Lai, Y. F. Chen, and J. H. He, Appl. Phys. Lett.96, 081103 (2010) 14. Kobsak SRIPRAPHA, Seung Yeop MYONG, Akira YAMADA, and Makoto KONAGAI, Japanese Journal of Applied Physics Vol. 47, No. 3, 2008, pp. 1496–1500 15. E. Carlson, G. Lin and G. Ganguly, IEEE, 2000 16. Priyanka Singhn, N.M. Ravindra, Solar Energy Materials & Solar Cells 101 (2012) 36–45 17. Xiaomei Cai, Shengwei Zeng, Xin Li, Jiangyong Zhang, Shuo Lin, Ankai Lin, Baoping Zhang, 978-1-4244-8165-1/11/$26.00 c2011 IEEE 18. McLean, T. P., Prog. In Semiconductors 5 (Heywood & Co.Ltd., London, 1960) 53. 19. Sturge, M. D., Phys. Rev., 127 (1962) 768. 20. Turner, W. J., Reese, W. E. and Pettit, G. D., Phys. Rev., 136 (1964) A 1467. 21. Kozo Osamura, Shigehisa Naka, and Yotaro Murakami, Journal of Applied Physics, Vol. 46, No.8, August 1975 22. W. Go‥ tz, N. M. Johnson, J. Walker, D. P. Bour, and R. A. Street, Appl. Phys. Lett.68, 667 (1996). 23. J. S. Kwak, O.-H. Nam, and Y. Park,J. Appl. Phys.95, 5917 (2004). 24. J. P. Liu, J.-H. Ryou, R. D. Dupuis, J. Han, G. D. Shen, and H. B. Wang, Appl. Phys. Lett. 93, 021102 (2008). 25. Sang-Heon Han, Dong-Yul Lee, Sang-Jun Lee, Chu-Young Cho, Min-Ki Kwon, S. P. Lee, D. Y. Noh, Dong-Joon Kim, Yong Chun Kim, and Seong-Ju Park, Appl. Phys. Lett. 94, 231123 2009 26. Massimo Gurioli, Juan Martinez-Pastor, Marcello Colocci, Christiane Deparis, Bruno Chastaingt, and Jean Massies, Phys. Rev. B 46, 6922–6927 (1992) 27. N. KLEIN, Technion, Israel Institute of Technology, Haifa, Israel 28. Sadao Adachi, J. Appl. Phys.102, 063502, 2007 29. Kenji Nomura, Hiromichi Ohta, Akihiro Takagi, Toshio Kamiya, Masahiro Hirano & Hideo Hosono, NATURE | VOL 432 | 25 NOVEMBER 2004 30. BySunho Jeong, Young-Geun Ha, Jooho Moon, Antonio Facchetti, and Tobin J. Marks, Adv. Mater.2010, 22,1346–1350 31. Chang-Jung Kim, Sangwook Kim, Je-Hun Lee, Jin-Seong Park, Sunil Kim, Jaechul Park, Eunha Lee, Jaechul Lee, Youngsoo Park, Joo Han Kim, Sung Tae Shin, and U-In Chung, Appl. Phys. Lett.95, 252103 (2009) 32. Jae Kyeong Jeong,Jong Han Jeong, Hui Won Yang, Jin-Seong Park, Yeon-Gon Mo, and Hye Dong Kim, Appl. Phys. Lett.91, 113505 (2007) 33. Woong Hee Jeong, Gun Hee Kim, Hyun Soo Shin, Byung Du Ahn, Hyun Jae Kim, Myung-Kwan Ryu, Kyung-Bae Park, Jong-Baek Seon, and Sang Yoon Lee, Appl. Phys. Lett.96, 093503 (2010) 34. Y. Ohmura, Y. Zohta and M. Kanazawa, phys. stat. sol. (a) 15, 93 (1973) 35. Y. Ohmura, Y. Zohta and M. Kanazawa, Solid State Communications, Vol. 11, pp. 263-266, 1972. 36. 8 J. CHENG and A.J. ARDELL, Nuclear Instruments and Methods in Physics Research B44 (1990) 336-343 37. 9 F D Auret, S A Goodman, M Hayes, M J Legodi, H A van Laarhoven and D C Look, J. Phys.: Condens. Matter13(2001) 8989–8999 38. J.W. He, C.D. Bai, K.W. Xu, N.S. Hu, Surf. Coat. Technol. 74 (1995) 387. 39. J.S. Park, J.K. Jeong, Y.G. Mo, H.D. Kim, C.J. Kim, Appl. Phys. Lett. 93 (2008) 033513. 40. N. Itagaki, T. Iwasaki, H. Kumomi, T. Den, K. Nomura, T. Kamiya, H. Hosono, phys, Stat. sol. 205 (2008) 1915. 41. M. R. Senapati, Advanced Engineering, Chemistry, 2006, p. 188. 42. Y. D. Wang, K. Y. Zang, S. J. Chua, S. Tripathy, P. Chen, and C. G. Fonstad, Appl. Phys. Lett. 87, 251915 (2005). 43. H. J. Chang, Y. P. Hsieh, T. T. Chen, Y. F. Chen, and C. T. Liang, Opt. Express 15, 9357 (2007). 44. C. Y. Wang, L. Y. Chen, C. P. Chen, Y. W. Cheng, M. Y. Ke, M. Y. Hsieh, H. M. Wu, L. H. Peng, and J. J. Huang, Opt. Express 16(14), 10549–10556 (2008). 45. C. H. Chang, P. C. Yu, M. H. Hsu, P. C. Tseng, W. L. Chang, W. C. Sun, W. C. Hsu, S. H. Hsu, and Y. C. Chang, Nanotechnology 22, 095201 (2011). 46. H. C. Chang, K. Y. Lai, Y. A. Dai, H. H. Wang, C. A. Lin, and J. H. He, Energy Environ. Sci 4, 2863 (2011). | |
| dc.identifier.uri | http://tdr.lib.ntu.edu.tw/jspui/handle/123456789/60232 | - |
| dc.description.abstract | 在現代科學任務當中,時常會遭遇到不論是高溫、低溫、高壓等艱困環境,此時若是執行任務的儀器發生故障,將會造成巨大的損失。因此,在這篇論文中,在太陽能電池的部分我將介紹氮化鎵/氮化銦鎵多層量子井太陽能電池在高溫與低溫下的元件表現;以及在金屬氧化物薄膜電晶體部分,我會先最佳化我們製程出的鉿銦鋅氧化薄膜電晶體,再來會將最佳化的薄膜電晶體拿至高能質子轟擊,檢視其抗性。
第一部分是我們將氮化鎵/氮化銦鎵多層量子井太陽能電池升溫至絕對溫度300 K到700 K,我們發現不同於其他種類的太陽能電池溫度上升之後效率下降,氮化鎵/氮化銦鎵多層量子井太陽能電池當溫度上升之後效率持續增加至650 K,因此我們從材料方面以及結構方面來探究其原因。以材料方面來說,因為氮化鎵、氮化銦鎵皆屬寬能係材料,寬能係材料的太陽能電池在升溫的時候,開路電壓下降的較慢,效率也就下降的較慢,此外有研究指出,P型氮化鎵在高溫時,導電度會降低,與金屬的接觸電阻也會降低,由我們對於填滿因子及串聯電阻的研究就能驗證此事。再來是結構方面,量子井結構對於太陽能電池在高溫下會有特別的作用,銦波動對高溫效率也有顯著的影響。最後是回復力方面,熱崩潰發生在材料中就會造成材料毀損,氮化鎵的熱導性很好,熱導性好的材料其的熱崩潰所需要的場就會越大,也就是越難熱崩潰,因此我們研究也發現氮化鎵的太陽能電池在700 K之後也能保持正常的操作效率。 第二部分我首先先製程最佳化的Hafnium indium zinc oxide thin film transistor,經由不同的鍍膜條件與不同的元件幾何長度嘗試出最好元件表現的薄膜電晶體。再來,我將這個最佳化的薄膜電晶體拿去做質子轟擊,發現在dose量為 1013 cm-2時,元件表現變差,原因應該為介面與通道缺陷增加;在dose量為 1015 cm-2卻產生的動態退火現象,元件特性稍微回到一開始的表現。最後我們分析當我們將不同Hf 濃度做質子轟擊時,高濃度的Hf可以幫做薄膜對抗質子轟擊,增加薄膜電晶體的穩定度。 | zh_TW |
| dc.description.abstract | InGaN/GaN MQW solar cells have much better performance than other kinds of solar cells due to larger Jsc increasing rate, smaller Voc decay rate and the enhancement of FF with temperature. The reason can be investigated through material and structure viewpoints. Wide bandgap makes temperature induced recombination rate smaller and then Voc degradation rate is reduced. FF of the device enhances dramatically due to the improvement in material conductivity and reduction of contact resistance with increasing temperature. MQW structure and suffered from indium fluctuation indeed have larger enhancement of Jsc in high temperature. Considering the recovery, GaN-based MQW solar cells don’t suffer from thermal breakdown from 300 K to 700 K and demonstrate the excellent stability in harsh environments such as extreme temperatures.
The rise of space program has stimulated the demand in developing technology for outer space use. Radiation damage and gigantic variation in temperature are major issues while applying electronic devices in space mission. Proton bombardment on electronics causes the degradation of the material conductivity due to the formation of additional electron traps. In addition, when increasing temperature, oxygen atoms are thermally excited which leave their original sites and then causes vacancies. In this study, we investigate the method to engineer the electrical properties of InZnO-based transistors (IZO TFTs) and explore the way to stabilize them as operated in harsh environment. Generally, an effective approach to stabilize the IZO TFT is to implant metal cations such as Gallium (Ga3+), Magnesium (Mg2+), Hafnium (Hf4+), Tin (Sn4+) and Zirconium (Zr4+). We show that by modifying the Hf ratio the electrical properties of InZnO-based thin film transistors, i.e. HIZO TFT (Fig. 1), can be tuned. Moreover, subthreshold swing (SS) degradation and a negative threshold voltage (Vth) shift due to proton bombardment and high temperature are observed in the transfer curves; however, the TFTs with appropriate addition of Hf shows better stability and performance. It shows that theaddition of Hf ions can suppress the formation of oxygen vacancy and stabilize the film's atomic structure as well as electrical properties. As a result, reducing oxygen vacancy generation not only restrains SS degradation but also significantly improves the bias stress stability in HIZO TFTs operated in harsh environment. | en |
| dc.description.provenance | Made available in DSpace on 2021-06-16T10:13:59Z (GMT). No. of bitstreams: 1 ntu-102-R00941099-1.pdf: 913700 bytes, checksum: 6729d5e962e23eb69eb2a1b6af744223 (MD5) Previous issue date: 2013 | en |
| dc.description.tableofcontents | 口試委員會審定書 I
致謝 II 摘要 II Abstract IV Contents VI List of Figures VIII Chapter 1 Introduction 1 1.1 High-Temperature Electronics Applications in Space Exploration 1 1.2 Solar Cell Operation on Mars 3 References 4 Chapter 2 Thermal Stability of GaN/InGaN Multiple Quantum Well Solar Cells 6 2.1 Introduction 6 2.2 Experiments 8 2.3 Results and discussion 9 2.4 Summary 15 List of Figures 16 References 20 Chapter 3 Radiation Resistance of Hafnium Indium Zinc Oxide (HIZO) Thin Film Transistors (TFTs) 24 3.1 Introduction 24 3.2 Experiments 25 3.3 Results and discussion 26 3.4 Summary 33 List of Figures 34 References 39 Chapter 4 Conclusion 41 Shih-Guo Yang Curriculum Vitae 43 | |
| dc.language.iso | zh-TW | |
| dc.subject | 鉿銦鋅氧化薄膜電晶體 | zh_TW |
| dc.subject | 艱困環境 | zh_TW |
| dc.subject | 氮化鎵 | zh_TW |
| dc.subject | 多層量子井 | zh_TW |
| dc.subject | 質子轟擊 | zh_TW |
| dc.subject | InGaN/GaN MQW solar cells | en |
| dc.subject | wide bandgap | en |
| dc.subject | thermal breakdown | en |
| dc.subject | proton bombardment | en |
| dc.subject | InZnO-based transistors | en |
| dc.title | 寬能隙元件與艱困環境下電子元件的物理探討 | zh_TW |
| dc.title | Wide-Bandgap Devices and Physics for Harsh Electronics | en |
| dc.type | Thesis | |
| dc.date.schoolyear | 101-2 | |
| dc.description.degree | 碩士 | |
| dc.contributor.oralexamcommittee | 鍾仁傑(Ren-Jei Chung),黃昆平(Kun-Pian Huang),吳肇欣(Chao-Hsin Wu) | |
| dc.subject.keyword | 氮化鎵,艱困環境,多層量子井,鉿銦鋅氧化薄膜電晶體,質子轟擊, | zh_TW |
| dc.subject.keyword | InGaN/GaN MQW solar cells,wide bandgap,thermal breakdown,proton bombardment,InZnO-based transistors, | en |
| dc.relation.page | 43 | |
| dc.rights.note | 有償授權 | |
| dc.date.accepted | 2013-08-19 | |
| dc.contributor.author-college | 電機資訊學院 | zh_TW |
| dc.contributor.author-dept | 光電工程學研究所 | zh_TW |
| 顯示於系所單位: | 光電工程學研究所 | |
文件中的檔案:
| 檔案 | 大小 | 格式 | |
|---|---|---|---|
| ntu-102-1.pdf 未授權公開取用 | 892.29 kB | Adobe PDF |
系統中的文件,除了特別指名其著作權條款之外,均受到著作權保護,並且保留所有的權利。
