請用此 Handle URI 來引用此文件:
http://tdr.lib.ntu.edu.tw/jspui/handle/123456789/60226完整後設資料紀錄
| DC 欄位 | 值 | 語言 |
|---|---|---|
| dc.contributor.advisor | 詹東榮(Tong-Rong Jan) | |
| dc.contributor.author | Chih-hua Shih | en |
| dc.contributor.author | 施芷華 | zh_TW |
| dc.date.accessioned | 2021-06-16T10:13:54Z | - |
| dc.date.available | 2018-08-28 | |
| dc.date.copyright | 2013-08-28 | |
| dc.date.issued | 2013 | |
| dc.date.submitted | 2013-08-19 | |
| dc.identifier.citation | Abbas, A.K., Lichtman, A.H., Pillai, S., 2005. Cellular and molecular immunology, Vol 20005. Saunders Philadelphia.
Abdelhalim, M.A., Jarrar, B.M., 2011. Gold nanoparticles administration induced prominent inflammatory, central vein intima disruption, fatty change and Kupffer cells hyperplasia. Lipids Health Dis 10, 133. Alekseenko, A.V., Waseem, T.V., Fedorovich, S.V., 2008. Ferritin, a protein containing iron nanoparticles, induces reactive oxygen species formation and inhibits glutamate uptake in rat brain synaptosomes. Brain Res 1241, 193-200. Aloisi, F., 2001. Immune function of microglia. Glia 36, 165-179. Aloisi, F., Ria, F., Adorini, L., 2000a. Regulation of T-cell responses by CNS antigen-presenting cells: different roles for microglia and astrocytes. Immunol Today 21, 141-147. Aloisi, F., Ria, F., Penna, G., Adorini, L., 1998. Microglia are more efficient than astrocytes in antigen processing and in Th1 but not Th2 cell activation. J Immunol 160, 4671-4680. Aloisi, F., Serafini, B., Adorini, L., 2000b. Glia-T cell dialogue. J Neuroimmunol 107, 111-117. Au, C., Mutkus, L., Dobson, A., Riffle, J., Lalli, J., Aschner, M., 2007. Effects of nanoparticles on the adhesion and cell viability on astrocytes. Biol Trace Elem Res 120, 248-256. Banati, R.B., Gehrmann, J., Schubert, P., Kreutzberg, G.W., 1993. Cytotoxicity of microglia. Glia 7, 111-118. Blank, F., Gerber, P., Rothen-Rutishauser, B., Sakulkhu, U., Salaklang, J., De Peyer, K., Gehr, P., Nicod, L.P., Hofmann, H., Geiser, T., Petri-Fink, A., Von Garnier, C., 2011. Biomedical nanoparticles modulate specific CD4+ T cell stimulation by inhibition of antigen processing in dendritic cells. Nanotoxicology 5, 606-621. Boverhof, D.R., David, R.M., 2010. Nanomaterial characterization: considerations and needs for hazard assessment and safety evaluation. Anal Bioanal Chem 396, 953-961. Buyukhatipoglu, K., Clyne, A.M., 2011. Superparamagnetic iron oxide nanoparticles change endothelial cell morphology and mechanics via reactive oxygen species formation. J Biomed Mater Res A 96, 186-195. Chen, Y., Guzik, S., Sumner, J.P., Moreland, J., Koretsky, A.P., 2011. Magnetic manipulation of actin orientation, polymerization, and gliding on myosin using superparamagnetic iron oxide particles. Nanotechnology 22, 065101. Cho, W.S., Cho, M., Kim, S.R., Choi, M., Lee, J.Y., Han, B.S., Park, S.N., Yu, M.K., Jon, S., Jeong, J., 2009. Pulmonary toxicity and kinetic study of Cy5.5-conjugated superparamagnetic iron oxide nanoparticles by optical imaging. Toxicol Appl Pharmacol 239, 106-115. Choi, J., Zheng, Q., Katz, H.E., Guilarte, T.R., 2010. Silica-based nanoparticle uptake and cellular response by primary microglia. Environmental health perspectives 118, 589-595. Choi, S.J., Oh, J.M., Choy, J.H., 2009. Toxicological effects of inorganic nanoparticles on human lung cancer A549 cells. J Inorg Biochem 103, 463-471. Chouly, C., Pouliquen, D., Lucet, I., Jeune, J.J., Jallet, P., 1996. Development of superparamagnetic nanoparticles for MRI: effect of particle size, charge and surface nature on biodistribution. J Microencapsul 13, 245-255. Chourpa, I., Douziech-Eyrolles, L., Ngaboni-Okassa, L., Fouquenet, J.F., Cohen-Jonathan, S., Souce, M., Marchais, H., Dubois, P., 2005. Molecular composition of iron oxide nanoparticles, precursors for magnetic drug targeting, as characterized by confocal Raman microspectroscopy. Analyst 130, 1395-1403. Chunfu, Z., Jinquan, C., Duanzhi, Y., Yongxian, W., Yanlin, F., Jiaju, T., 2004. Preparation and radiolabeling of human serum albumin (HSA)-coated magnetite nanoparticles for magnetically targeted therapy. Appl Radiat Isot 61, 1255-1259. Chung, M.C., 2012. The effect of iron oxide nanoparticles on the functionality of murine microglia stimulated with lipopolysaccharide. Master thesis. National Taiwan University, Crosera, M., Bovenzi, M., Maina, G., Adami, G., Zanette, C., Florio, C., Filon Larese, F., 2009. Nanoparticle dermal absorption and toxicity: a review of the literature. Int Arch Occup Environ Health 82, 1043-1055. Diwan, M., Elamanchili, P., Lane, H., Gainer, A., Samuel, J., 2003. Biodegradable nanoparticle mediated antigen delivery to human cord blood derived dendritic cells for induction of primary T cell responses. J Drug Target 11, 495-507. Donaldson, K., Brown, D., Clouter, A., Duffin, R., MacNee, W., Renwick, L., Tran, L., Stone, V., 2002. The pulmonary toxicology of ultrafine particles. J Aerosol Med 15, 213-220. Draheim, H.J., Prinz, M., Weber, J.R., Weiser, T., Kettenmann, H., Hanisch, U.K., 1999. Induction of potassium channels in mouse brain microglia: cells acquire responsiveness to pneumococcal cell wall components during late development. Neuroscience 89, 1379-1390. Engberink, R.D., van der Pol, S.M., Walczak, P., van der Toorn, A., Viergever, M.A., Dijkstra, C.D., Bulte, J.W., de Vries, H.E., Blezer, E.L., 2010. Magnetic resonance imaging of monocytes labeled with ultrasmall superparamagnetic particles of iron oxide using magnetoelectroporation in an animal model of multiple sclerosis. Mol Imaging 9, 268-277. Forgac, M., 1989. Structure and function of vacuolar class of ATP-driven proton pumps. Physiol Rev 69, 765-796. Frei, K., Siepl, C., Groscurth, P., Bodmer, S., Schwerdel, C., Fontana, A., 1987. Antigen presentation and tumor cytotoxicity by interferon-gamma-treated microglial cells. Eur J Immunol 17, 1271-1278. Gao, G., Ze, Y., Zhao, X., Sang, X., Zheng, L., Ze, X., Gui, S., Sheng, L., Sun, Q., Hong, J., Yu, X., Wang, L., Hong, F., Zhang, X., 2013. Titanium dioxide nanoparticle-induced testicular damage, spermatogenesis suppression, and gene expression alterations in male mice. J Hazard Mater 258-259C, 133-143. Garden, G.A., Moller, T., 2006. Microglia biology in health and disease. J Neuroimmune Pharmacol 1, 127-137. Gehrmann, J., Matsumoto, Y., Kreutzberg, G.W., 1995. Microglia: intrinsic immuneffector cell of the brain. Brain Res Brain Res Rev 20, 269-287. Gustafsson, A., Lindstedt, E., Elfsmark, L.S., Bucht, A., 2011. Lung exposure of titanium dioxide nanoparticles induces innate immune activation and long-lasting lymphocyte response in the Dark Agouti rat. J Immunotoxicol 8, 111-121. Hamilton, R.F., Buford, M.C., Wood, M.B., Arnone, B., Morandi, M., Holian, A., 2007. Engineered carbon nanoparticles alter macrophage immune function and initiate airway hyper-responsiveness in the BALB/c mouse model. Nanotoxicology 1, 104-117. Hamm, B., Staks, T., Taupitz, M., Maibauer, R., Speidel, A., Huppertz, A., Frenzel, T., Lawaczeck, R., Wolf, K.J., Lange, L., 1994. Contrast-enhanced MR imaging of liver and spleen: first experience in humans with a new superparamagnetic iron oxide. J Magn Reson Imaging 4, 659-668. Hinton, A., Bond, S., Forgac, M., 2009. V-ATPase functions in normal and disease processes. Pflugers Arch 457, 589-598. Hoet, P.H., Bruske-Hohlfeld, I., Salata, O.V., 2004. Nanoparticles - known and unknown health risks. J Nanobiotechnology 2, 12. Hsiao, J.K., Chu, H.H., Wang, Y.H., Lai, C.W., Chou, P.T., Hsieh, S.T., Wang, J.L., Liu, H.M., 2008. Macrophage physiological function after superparamagnetic iron oxide labeling. NMR Biomed 21, 820-829. Hutter, E., Boridy, S., Labrecque, S., Lalancette-Hebert, M., Kriz, J., Winnik, F.M., Maysinger, D., 2010. Microglial response to gold nanoparticles. ACS Nano 4, 2595-2606. Jain, T.K., Morales, M.A., Sahoo, S.K., Leslie-Pelecky, D.L., Labhasetwar, V., 2005. Iron oxide nanoparticles for sustained delivery of anticancer agents. Mol Pharm 2, 194-205. Johnson-Lyles, D.N., Peifley, K., Lockett, S., Neun, B.W., Hansen, M., Clogston, J., Stern, S.T., McNeil, S.E., 2010. Fullerenol cytotoxicity in kidney cells is associated with cytoskeleton disruption, autophagic vacuole accumulation, and mitochondrial dysfunction. Toxicol Appl Pharmacol 248, 249-258. Josephson, L., Lewis, J., Jacobs, P., Hahn, P.F., Stark, D.D., 1988. The effects of iron oxides on proton relaxivity. Magn Reson Imaging 6, 647-653. Kanchan, V., Panda, A.K., 2007. Interactions of antigen-loaded polylactide particles with macrophages and their correlation with the immune response. Biomaterials 28, 5344-5357. Karlsson, H.L., Cronholm, P., Gustafsson, J., Moller, L., 2008. Copper oxide nanoparticles are highly toxic: a comparison between metal oxide nanoparticles and carbon nanotubes. Chem Res Toxicol 21, 1726-1732. Kim, S.U., de Vellis, J., 2005. Microglia in health and disease. J Neurosci Res 81, 302-313. Klionsky, D.J., Emr, S.D., 2000. Autophagy as a regulated pathway of cellular degradation. Science 290, 1717-1721. Kodali, V., Littke, M.H., Tilton, S.C., Teeguarden, J.G., Shi, L., Frevert, C.W., Wang, W., Pounds, J.G., Thrall, B.D., 2013. Dysregulation of Macrophage Activation Profiles by Engineered Nanoparticles. ACS Nano, DOI: 10.1021/nn402145t. Koike, E., Takano, H., Inoue, K.I., Yanagisawa, R., Sakurai, M., Aoyagi, H., Shinohara, R., Kobayashi, T., 2008. Pulmonary exposure to carbon black nanoparticles increases the number of antigen-presenting cells in murine lung. Int J Immunopathol Pharmacol 21, 35-42. Kreutzberg, G.W., 1996. Microglia: a sensor for pathological events in the CNS. Trends Neurosci 19, 312-318. Kuhlbusch, T.A., Asbach, C., Fissan, H., Gohler, D., Stintz, M., 2011. Nanoparticle exposure at nanotechnology workplaces: a review. Part Fibre Toxicol 8, 22. Kwon, Y.J., Standley, S.M., Goh, S.L., Frechet, J.M., 2005. Enhanced antigen presentation and immunostimulation of dendritic cells using acid-degradable cationic nanoparticles. J Control Release 105, 199-212. Lawson, L.J., Perry, V.H., Gordon, S., 1992. Turnover of resident microglia in the normal adult mouse brain. Neuroscience 48, 405-415. Lecoanet, H.F., Bottero, J.Y., Wiesner, M.R., 2004. Laboratory assessment of the mobility of nanomaterials in porous media. Environ Sci Technol 38, 5164-5169. Li, J.J., Muralikrishnan, S., Ng, C.T., Yung, L.Y., Bay, B.H., 2010. Nanoparticle-induced pulmonary toxicity. Exp Biol Med (Maywood) 235, 1025-1033. Liong, M., Lu, J., Kovochich, M., Xia, T., Ruehm, S.G., Nel, A.E., Tamanoi, F., Zink, J.I., 2008. Multifunctional inorganic nanoparticles for imaging, targeting, and drug delivery. ACS Nano 2, 889-896. Liu, Y., Jiao, F., Qiu, Y., Li, W., Lao, F., Zhou, G., Sun, B., Xing, G., Dong, J., Zhao, Y., Chai, Z., Chen, C., 2009. The effect of Gd@C82(OH)22 nanoparticles on the release of Th1/Th2 cytokines and induction of TNF-alpha mediated cellular immunity. Biomaterials 30, 3934-3945. Long, T.C., Saleh, N., Tilton, R.D., Lowry, G.V., Veronesi, B., 2006. Titanium dioxide (P25) produces reactive oxygen species in immortalized brain microglia (BV2): implications for nanoparticle neurotoxicity. Environ Sci Technol 40, 4346-4352. Long, T.C., Tajuba, J., Sama, P., Saleh, N., Swartz, C., Parker, J., Hester, S., Lowry, G.V., Veronesi, B., 2007. Nanosize titanium dioxide stimulates reactive oxygen species in brain microglia and damages neurons in vitro. Environmental health perspectives 115, 1631-1637. Lundborg, M., Johard, U., Lastbom, L., Gerde, P., Camner, P., 2001. Human alveolar macrophage phagocytic function is impaired by aggregates of ultrafine carbon particles. Environ Res 86, 244-253. Lunov, O., Syrovets, T., Buchele, B., Jiang, X., Rocker, C., Tron, K., Nienhaus, G.U., Walther, P., Mailander, V., Landfester, K., Simmet, T., 2010a. The effect of carboxydextran-coated superparamagnetic iron oxide nanoparticles on c-Jun N-terminal kinase-mediated apoptosis in human macrophages. Biomaterials 31, 5063-5071. Lunov, O., Syrovets, T., Rocker, C., Tron, K., Ulrich Nienhaus, G., Rasche, V., Mailander, V., Landfester, K., Simmet, T., 2010b. Lysosomal degradation of the carboxydextran shell of coated superparamagnetic iron oxide nanoparticles and the fate of professional phagocytes. Biomaterials 31, 9015-9022. Luzio, J.P., Pryor, P.R., Bright, N.A., 2007. Lysosomes: fusion and function. Nat Rev Mol Cell Biol 8, 622-632. Muller, K., Skepper, J.N., Tang, T.Y., Graves, M.J., Patterson, A.J., Corot, C., Lancelot, E., Thompson, P.W., Brown, A.P., Gillard, J.H., 2008. Atorvastatin and uptake of ultrasmall superparamagnetic iron oxide nanoparticles (Ferumoxtran-10) in human monocyte–macrophages: Implications for magnetic resonance imaging. Biomaterials 29, 2656-2662. Ma, J.S., Kim, W.J., Kim, J.J., Kim, T.J., Ye, S.K., Song, M.D., Kang, H., Kim, D.W., Moon, W.K., Lee, K.H., 2010. Gold nanoparticles attenuate LPS-induced NO production through the inhibition of NF-kappaB and IFN-beta/STAT1 pathways in RAW264.7 cells. Nitric Oxide 23, 214-219. Ma, X., Wu, Y., Jin, S., Tian, Y., Zhang, X., Zhao, Y., Yu, L., Liang, X.J., 2011. Gold nanoparticles induce autophagosome accumulation through size-dependent nanoparticle uptake and lysosome impairment. ACS Nano 5, 8629-8639. Maeng, J.H., Lee, D.H., Jung, K.H., Bae, Y.H., Park, I.S., Jeong, S., Jeon, Y.S., Shim, C.K., Kim, W., Kim, J., Lee, J., Lee, Y.M., Kim, J.H., Kim, W.H., Hong, S.S., 2010. Multifunctional doxorubicin loaded superparamagnetic iron oxide nanoparticles for chemotherapy and magnetic resonance imaging in liver cancer. Biomaterials 31, 4995-5006. Maysinger, D., Behrendt, M., Lalancette-Hebert, M., Kriz, J., 2007. Real-time imaging of astrocyte response to quantum dots: in vivo screening model system for biocompatibility of nanoparticles. Nano Lett 7, 2513-2520. Metz, S., Bonaterra, G., Rudelius, M., Settles, M., Rummeny, E.J., Daldrup-Link, H.E., 2004. Capacity of human monocytes to phagocytose approved iron oxide MR contrast agents in vitro. Eur Radiol 14, 1851-1858. Minagar, A., Shapshak, P., Fujimura, R., Ownby, R., Heyes, M., Eisdorfer, C., 2002. The role of macrophage/microglia and astrocytes in the pathogenesis of three neurologic disorders: HIV-associated dementia, Alzheimer disease, and multiple sclerosis. J Neurol Sci 202, 13-23. Mistry, A., Stolnik, S., Illum, L., 2009. Nanoparticles for direct nose-to-brain delivery of drugs. Int J Pharm 379, 146-157. Muller, K., Skepper, J.N., Posfai, M., Trivedi, R., Howarth, S., Corot, C., Lancelot, E., Thompson, P.W., Brown, A.P., Gillard, J.H., 2007. Effect of ultrasmall superparamagnetic iron oxide nanoparticles (Ferumoxtran-10) on human monocyte-macrophages in vitro. Biomaterials 28, 1629-1642. Naqvi, S., Samim, M., Abdin, M., Ahmed, F.J., Maitra, A., Prashant, C., Dinda, A.K., 2010. Concentration-dependent toxicity of iron oxide nanoparticles mediated by increased oxidative stress. Int J Nanomedicine 5, 983-989. Nunes, A., Al-Jamal, K.T., Kostarelos, K., 2012. Therapeutics, imaging and toxicity of nanomaterials in the central nervous system. J Control Release. Oberdorster, G., Stone, V., Donaldson, K., 2007. Toxicology of nanoparticles: A historical perspective. Nanotoxicology 1, 2-25. Oberdorster, E., 2004. Manufactured nanomaterials (fullerenes, C60) induce oxidative stress in the brain of juvenile largemouth bass. Environ Health Perspect 112, 1058-1062. Oberdorster, G., Oberdorster, E., Oberdorster, J., 2005. Nanotoxicology: an emerging discipline evolving from studies of ultrafine particles. Environ Health Perspect 113, 823-839. Oberdorster, G., Sharp, Z., Atudorei, V., Elder, A., Gelein, R., Kreyling, W., Cox, C., 2004. Translocation of inhaled ultrafine particles to the brain. Inhal Toxicol 16, 437-445. Oude Engberink, R.D., Blezer, E.L., Dijkstra, C.D., van der Pol, S., van der Toorn, A., de Vries, H.E., 2010. Dynamics and fate of USPIO in the central nervous system in experimental autoimmune encephalomyelitis. NMR Biomed 23, 1087-1096. Panyala, N.R., Pena-Mendez, E.M., Havel, J., 2008. Silver or silver nanoparticles: a hazardous threat to the environment and human health? J Appl Biomed, 117-129. Park, E.J., Choi, K., Park, K., 2011. Induction of inflammatory responses and gene expression by intratracheal instillation of silver nanoparticles in mice. Arch Pharm Res 34, 299-307. Park, E.J., Kim, H., Kim, Y., Yi, J., Choi, K., Park, K., 2010. Inflammatory responses may be induced by a single intratracheal instillation of iron nanoparticles in mice. Toxicology 275, 65-71. Park, E.J., Yoon, J., Choi, K., Yi, J., Park, K., 2009. Induction of chronic inflammation in mice treated with titanium dioxide nanoparticles by intratracheal instillation. Toxicology 260, 37-46. Pawelczyk, E., Arbab, A.S., Chaudhry, A., Balakumaran, A., Robey, P.G., Frank, J.A., 2008. In vitro model of bromodeoxyuridine or iron oxide nanoparticle uptake by activated macrophages from labeled stem cells: implications for cellular therapy. Stem Cells 26, 1366-1375. Perry, V.H., Gordon, S., 1988. Macrophages and microglia in the nervous system. Trends Neurosci 11, 273-277. Porter, D.W., Hubbs, A.F., Mercer, R.R., Wu, N., Wolfarth, M.G., Sriram, K., Leonard, S., Battelli, L., Schwegler-Berry, D., Friend, S., Andrew, M., Chen, B.T., Tsuruoka, S., Endo, M., Castranova, V., 2010. Mouse pulmonary dose- and time course-responses induced by exposure to multi-walled carbon nanotubes. Toxicology 269, 136-147. Prinz, M., Kann, O., Draheim, H.J., Schumann, R.R., Kettenmann, H., Weber, J.R., Hanisch, U.K., 1999. Microglial activation by components of gram-positive and -negative bacteria: distinct and common routes to the induction of ion channels and cytokines. J Neuropathol Exp Neurol 58, 1078-1089. Qu, G., Zhang, C., Yuan, L., He, J., Wang, Z., Wang, L., Liu, S., Jiang, G., 2012. Quantum dots impair macrophagic morphology and the ability of phagocytosis by inhibiting the Rho-associated kinase signaling. Nanoscale 4, 2239-2244. Radomski, A., Jurasz, P., Alonso-Escolano, D., Drews, M., Morandi, M., Malinski, T., Radomski, M.W., 2005. Nanoparticle-induced platelet aggregation and vascular thrombosis. Br J Pharmacol 146, 882-893. Reimer, P., Balzer, T., 2003a. Ferucarbotran (Resovist): a new clinically approved RES-specific contrast agent for contrast-enhanced MRI of the liver: properties, clinical development, and applications. Eur Radiol 13, 1266-1276. Reimer, P., Balzer, T., 2003b. Ferucarbotran (Resovist): a new clinically approved RES-specific contrast agent for contrast-enhanced MRI of the liver: properties, clinical development, and applications. Eur Radiol 13, 1266-1276. Reimer, P., Rummeny, E.J., Daldrup, H.E., Balzer, T., Tombach, B., Berns, T., Peters, P.E., 1995a. Clinical results with Resovist: a phase 2 clinical trial. Radiology 195, 489-496. Reimer, P., Rummeny, E.J., Daldrup, H.E., Balzer, T., Tombach, B., Berns, T., Peters, P.E., 1995b. Clinical results with Resovist: a phase 2 clinical trial. Radiology 195, 489-496. Saijo, K., Glass, C.K., 2011. Microglial cell origin and phenotypes in health and disease. Nat Rev Immunol 11, 775-787. Sayin, B., Somavarapu, S., Li, X.W., Sesardic, D., Senel, S., Alpar, O.H., 2009. TMC-MCC (N-trimethyl chitosan-mono-N-carboxymethyl chitosan) nanocomplexes for mucosal delivery of vaccines. Eur J Pharm Sci 38, 362-369. Sharma, H.S., Sharma, A., 2007. Nanoparticles aggravate heat stress induced cognitive deficits, blood-brain barrier disruption, edema formation and brain pathology. Prog Brain Res 162, 245-273. Shen, C.C., Liang, H.J., Wang, C.C., Liao, M.H., Jan, T.R., 2011a. A role of cellular glutathione in the differential effects of iron oxide nanoparticles on antigen-specific T cell cytokine expression. International journal of nanomedicine 6, 2791-2798. Shen, C.C., Liang, H.J., Wang, C.C., Liao, M.H., Jan, T.R., 2012. Iron oxide nanoparticles suppressed T helper 1 cell-mediated immunity in a murine model of delayed-type hypersensitivity. Int J Nanomedicine 7, 2729-2737. Shen, C.C., Wang, C.C., Liao, M.H., Jan, T.R., 2011b. A single exposure to iron oxide nanoparticles attenuates antigen-specific antibody production and T-cell reactivity in ovalbumin-sensitized BALB/c mice. International journal of nanomedicine 6, 1229-1235. Shvedova, A.A., Kisin, E., Murray, A.R., Johnson, V.J., Gorelik, O., Arepalli, S., Hubbs, A.F., Mercer, R.R., Keohavong, P., Sussman, N., Jin, J., Yin, J., Stone, S., Chen, B.T., Deye, G., Maynard, A., Castranova, V., Baron, P.A., Kagan, V.E., 2008. Inhalation vs. aspiration of single-walled carbon nanotubes in C57BL/6 mice: inflammation, fibrosis, oxidative stress, and mutagenesis. Am J Physiol Lung Cell Mol Physiol 295, L552-565. Shvedova, A.A., Kisin, E.R., Mercer, R., Murray, A.R., Johnson, V.J., Potapovich, A.I., Tyurina, Y.Y., Gorelik, O., Arepalli, S., Schwegler-Berry, D., Hubbs, A.F., Antonini, J., Evans, D.E., Ku, B.K., Ramsey, D., Maynard, A., Kagan, V.E., Castranova, V., Baron, P., 2005. Unusual inflammatory and fibrogenic pulmonary responses to single-walled carbon nanotubes in mice. Am J Physiol Lung Cell Mol Physiol 289, L698-708. Silva, A.C., Oliveira, T.R., Mamani, J.B., Malheiros, S.M., Malavolta, L., Pavon, L.F., Sibov, T.T., Amaro, E., Jr., Tannus, A., Vidoto, E.L., Martins, M.J., Santos, R.S., Gamarra, L.F., 2011. Application of hyperthermia induced by superparamagnetic iron oxide nanoparticles in glioma treatment. Int J Nanomedicine 6, 591-603. Silva, G.A., 2008. Nanotechnology approaches to crossing the blood-brain barrier and drug delivery to the CNS. BMC Neurosci 9 Suppl 3, S4. Singh, N., Jenkins, G.J., Asadi, R., Doak, S.H., 2010. Potential toxicity of superparamagnetic iron oxide nanoparticles (SPION). Nano Rev 1. Soenen, S.J., Nuytten, N., De Meyer, S.F., De Smedt, S.C., De Cuyper, M., 2010. High intracellular iron oxide nanoparticle concentrations affect cellular cytoskeleton and focal adhesion kinase-mediated signaling. Small 6, 832-842. Sonobe, Y., Yawata, I., Kawanokuchi, J., Takeuchi, H., Mizuno, T., Suzumura, A., 2005. Production of IL-27 and other IL-12 family cytokines by microglia and their subpopulations. Brain Res 1040, 202-207. Spuch, C., Saida, O., Navarro, C., 2012. Advances in the treatment of neurodegenerative disorders employing nanoparticles. Recent Pat Drug Deliv Formul 6, 2-18. Steinritz, D., Mohle, N., Pohl, C., Papritz, M., Stenger, B., Schmidt, A., Kirkpatrick, C.J., Thiermann, H., Vogel, R., Hoffmann, S., Aufderheide, M., 2013. Use of the Cultex(R) Radial Flow System as an in vitro exposure method to assess acute pulmonary toxicity of fine dusts and nanoparticles with special focus on the intra- and inter-laboratory reproducibility. Chem Biol Interact. Tang, M., Xing, T., Zeng, J., Wang, H., Li, C., Yin, S., Yan, D., Deng, H., Liu, J., Wang, M., Chen, J., Ruan, D.Y., 2008. Unmodified CdSe quantum dots induce elevation of cytoplasmic calcium levels and impairment of functional properties of sodium channels in rat primary cultured hippocampal neurons. Environ Health Perspect 116, 915-922. Unanue, E.R., 1984. Antigen-presenting function of the macrophage. Annu Rev Immunol 2, 395-428. Vallhov, H., Qin, J., Johansson, S.M., Ahlborg, N., Muhammed, M.A., Scheynius, A., Gabrielsson, S., 2006. The importance of an endotoxin-free environment during the production of nanoparticles used in medical applications. Nano Lett 6, 1682-1686. Villiers, C., Freitas, H., Couderc, R., Villiers, M.B., Marche, P., 2010. Analysis of the toxicity of gold nano particles on the immune system: effect on dendritic cell functions. J Nanopart Res 12, 55-60. Vogl, T.J., Hammerstingl, R., Pegios, W., Hamm, B., Eibl-Eibesfeldt, A., Woessmer, B., Lissner, J., Felix, R., 1994. [The value of the liver-specific superparamagnetic contrast medium AMI-25 for the detection and differential diagnosis of primary liver tumors versus metastases]. Rofo 160, 319-328. von Garnier, C., Wikstrom, M.E., Zosky, G., Turner, D.J., Sly, P.D., Smith, M., Thomas, J.A., Judd, S.R., Strickland, D.H., Holt, P.G., Stumbles, P.A., 2007. Allergic airways disease develops after an increase in allergen capture and processing in the airway mucosa. J Immunol 179, 5748-5759. Wang, B., Feng, W.Y., Wang, M., Shi, J.W., Zhang, F., Ouyang, H., Zhao, Y.L., Chai, Z.F., Huang, Y.Y., Xie, Y.N., Wang, H.F., Wang, J., 2007. Transport of intranasally instilled fine Fe2O3 particles into the brain: micro-distribution, chemical states, and histopathological observation. Biol Trace Elem Res 118, 233-243. Wang, B., Feng, W.Y., Zhu, M.T., Wang, M., Gu, Y., Ouyang, H., Wang, H., Li, M., Zhao, Y., Chai, Z.F., Wang, H., 2009. Neurotoxicity of low-dose repeatedly intranasal instillation of nano- and submicron-sized ferric oxide particles in mice. J. Nanopart. Res. 11, 41–53. Wang, J., Liu, Y., Jiao, F., Lao, F., Li, W., Gu, Y., Li, Y., Ge, C., Zhou, G., Li, B., Zhao, Y., Chai, Z., Chen, C., 2008. Time-dependent translocation and potential impairment on central nervous system by intranasally instilled TiO(2) nanoparticles. Toxicology 254, 82-90. Wang, S., Kurepa, J., Smalle, J.A., 2011a. Ultra-small TiO(2) nanoparticles disrupt microtubular networks in Arabidopsis thaliana. Plant Cell Environ 34, 811-820. Wang, Y., Wang, B., Zhu, M.T., Li, M., Wang, H.J., Wang, M., Ouyang, H., Chai, Z.F., Feng, W.Y., Zhao, Y.L., 2011b. Microglial activation, recruitment and phagocytosis as linked phenomena in ferric oxide nanoparticle exposure. Toxicology letters 205, 26-37. Warheit, D.B., Hoke, R.A., Finlay, C., Donner, E.M., Reed, K.L., Sayes, C.M., 2007. Development of a base set of toxicity tests using ultrafine TiO2 particles as a component of nanoparticle risk management. Toxicol Lett 171, 99-110. Warheit, D.B., Webb, T.R., Sayes, C.M., Colvin, V.L., Reed, K.L., 2006. Pulmonary instillation studies with nanoscale TiO2 rods and dots in rats: toxicity is not dependent upon particle size and surface area. Toxicol Sci 91, 227-236. Weinstein, J.S., Varallyay, C.G., Dosa, E., Gahramanov, S., Hamilton, B., Rooney, W.D., Muldoon, L.L., Neuwelt, E.A., 2010. Superparamagnetic iron oxide nanoparticles: diagnostic magnetic resonance imaging and potential therapeutic applications in neurooncology and central nervous system inflammatory pathologies, a review. J Cereb Blood Flow Metab 30, 15-35. Weissleder, R.a., Stark, D., Engelstad, B., Bacon, B., Compton, C., White, D., Jacobs, P., Lewis, J., 1989. Superparamagnetic iron oxide: pharmacokinetics and toxicity. American Journal of Roentgenology 152, 167-173. Wikstrom, M.E., Batanero, E., Smith, M., Thomas, J.A., von Garnier, C., Holt, P.G., Stumbles, P.A., 2006. Influence of mucosal adjuvants on antigen passage and CD4+ T cell activation during the primary response to airborne allergen. J Immunol 177, 913-924. Wu, X., Tan, Y., Mao, H., Zhang, M., 2010. Toxic effects of iron oxide nanoparticles on human umbilical vein endothelial cells. Int J Nanomedicine 5, 385-399. Xie, J., Huang, J., Li, X., Sun, S., Chen, X., 2009. Iron oxide nanoparticle platform for biomedical applications. Curr Med Chem 16, 1278-1294. Xu, S., Jordan, E.K., Brocke, S., Bulte, J.W., Quigley, L., Tresser, N., Ostuni, J.L., Yang, Y., McFarland, H.F., Frank, J.A., 1998. Study of relapsing remitting experimental allergic encephalomyelitis SJL mouse model using MION‐46L enhanced in vivo MRI: Early histopathological correlation. J Neurosci Res 52, 549-558. Xue, Y., Wu, J., Sun, J., 2012. Four types of inorganic nanoparticles stimulate the inflammatory reaction in brain microglia and damage neurons in vitro. Toxicol Lett 214, 91-98. Yang, D., Zhao, Y., Guo, H., Li, Y., Tewary, P., Xing, G., Hou, W., Oppenheim, J.J., Zhang, N., 2010a. [Gd@C(82)(OH)(22)](n) nanoparticles induce dendritic cell maturation and activate Th1 immune responses. ACS Nano 4, 1178-1186. Yang, X., Liu, J., He, H., Zhou, L., Gong, C., Wang, X., Yang, L., Yuan, J., Huang, H., He, L., Zhang, B., Zhuang, Z., 2010b. SiO2 nanoparticles induce cytotoxicity and protein expression alteration in HaCaT cells. Part Fibre Toxicol 7, 1. Yang, Y., Qu, Y., Lu, X., 2010c. Global gene expression analysis of the effects of gold nanoparticles on human dermal fibroblasts. J Biomed Nanotechnol 6, 234-246. Yang, Z., Liu, Z.W., Allaker, R.P., Reip, P., Oxford, J., Ahmad, Z., Ren, G., 2010d. A review of nanoparticle functionality and toxicity on the central nervous system. J R Soc Interface 7 Suppl 4, S411-422. Yu, M.K., Jeong, Y.Y., Park, J., Park, S., Kim, J.W., Min, J.J., Kim, K., Jon, S., 2008. Drug-loaded superparamagnetic iron oxide nanoparticles for combined cancer imaging and therapy in vivo. Angew Chem Int Ed Engl 47, 5362-5365. Zhao, J., Xu, L., Zhang, T., Ren, G., Yang, Z., 2009. Influences of nanoparticle zinc oxide on acutely isolated rat hippocampal CA3 pyramidal neurons. Neurotoxicology 30, 220-230. | |
| dc.identifier.uri | http://tdr.lib.ntu.edu.tw/jspui/handle/123456789/60226 | - |
| dc.description.abstract | 氧化鐵奈米粒子廣泛應用於生物醫學及臨床上核磁共振成像的影像對比劑,包括了中樞神經系統的造影。微膠細胞為中樞神經系統中類似巨噬細胞的免疫細胞,在神經免疫扮演重要功能,且負責處理入侵中樞的外來抗原。本研究目的在於探討氧化鐵奈米粒子對小鼠微膠細胞攝入、處理及呈現抗原的影響。初代小鼠微膠細胞暴露於氧化鐵奈米粒子後,以流式細胞儀藉由pHrodo E. coli 粒子, Alexa647-卵白蛋白 (OVA)以及DQ-OVA分別分析其抗原吞噬、攝入及處理的能力。而抗原呈現的能力則是在脂多醣及IFN-r刺激後,以流式細胞儀及real-time RT-PCR測定其相關因子,包括了MHCII,共同刺激分子CD40、CD80、CD86以及介白素-12、23、27的表現。此外,氧化鐵奈米粒子對微膠細胞刺激T淋巴球的能力則以與抗原免疫過小鼠之T淋巴球共同培養後T淋巴球所表現的細胞激素進行評估。實驗結果顯示氧化鐵奈米粒子的暴露會抑制微膠細胞的吞噬作用,及對OVA的攝入和處理能力。且氧化鐵奈米粒子會抑制CD40及IL-12 p35 mRNA的表現,但促進IL-23、CD80及CD86 mRNA以及細胞膜上CD86的表現。另外,氧化鐵奈米粒子處理後的微膠細胞對T淋巴球刺激的能力可藉由IL-2及IFN-r的分泌上升可見顯著的增加。綜合上述,本研究結果指出氧化鐵奈米粒子雖抑制了微膠細胞吞噬及處理抗原的能力,卻促進了微膠細胞刺激T 淋巴球的能力,並伴隨共同刺激分子及介白素的改變。 | zh_TW |
| dc.description.abstract | Superparamagnetic iron oxide nanoparticles have been employed as magnetic resonance imaging (MRI) contrast agents for a variety of biomedical research and clinical applications, including the imaging of the central nervous system (CNS). As the central resident immune cells with macrophage-like functions, microglial cells play a key role in neuroimmunity and are the dominant cells responsible for managing foreign materials entering to the CNS. The objective of this study was to investigate the effect of iron oxide nanoparticles on the antigen-uptake, processing and presenting activities of murine microglia. Primary murine microglial cells were exposed to iron oxide nanoparticles, and their phagocytotic, antigen uptake and processing activities were determined by flow cytometry using pHrodo E. coli bioparticles, Alexa FluorR 647 conjugated with ovalbumin (Alexa647-OVA) and DQ-OVA, respectively. The expression of antigen presentation-related molecules, including major histocompatibility complex (MHC) II, the costimulatory molecules CD40, CD80, and CD86 and the cytokines IL-12, IL-23 and IL-27 by microglia stimulated with lipopolysaccharide (LPS) and interferon-r was measured by flow cytometry and real time RT-PCR. In addition, the capability of iron oxide nanoparticle-exposed microglia to stimulate T cell cytokine production was evaluated by co-culture of microglia and antigen-primed splenocytes. Exposure to iron oxide nanoparticles attenuated the phagocytosis of pHrodo E. coli and the uptake and processing of ovalbumin (OVA) by microglia. Iron oxide nanoparticles decreased the CD40 and IL-12 p35 mRNA expression, but increased the expression of CD80, CD86 and IL-23 mRNA and the cell membrane CD86. In addition, the capacity of microglia to stimulate OVA-primed splenocytes was enhanced by iron oxide nanoparticles, as evidenced by the increased production of IL-2 and IFN-r. Collectively, the present study demonstrated that iron oxide nanoparticles affected microglial functionality. The phagocytic, antigen-uptake and processing activities were attenuated. In contrast, the capability of microglia to stimulate T cells was enhanced, which may be attributed to the alteration of the expression of surface markers and cytokines. | en |
| dc.description.provenance | Made available in DSpace on 2021-06-16T10:13:54Z (GMT). No. of bitstreams: 1 ntu-102-R00629026-1.pdf: 1829257 bytes, checksum: bbcfa8c95d036bd1eb456880f9c9af3e (MD5) Previous issue date: 2013 | en |
| dc.description.tableofcontents | 中文摘要 I
ABSTRACT III CONTENTS V LIST OF TABLES VII LIST OF FIGURES VIII ABBREVIATIONS IIX Chapter 1 Introduction 1 1.1 Background of nanoparticles 1 1.2 Iron oxide nanoparticles 1 1.3 Toxicity of nanoparticles 3 1.4 Immunological impacts of nanoparticles 5 1.5 Immunological impacts of iron oxide nanoparticles 6 1.6 The application and toxicity of nanoparticles in the central nervous system 8 1.7 Antigen-presenting cells 9 1.8 Microglia 10 1.9 Immunological impacts of nanoparticles on microglia 13 1.10 Antigen-processing and presenting impacts of nanoparticles in vivo and in vitro 14 1.11 Objective of the study 15 Chapter 2 Materials and Methods 17 2.1 Chemicals and reagents 17 2.2 Culture of primary murine microglial cells 18 2.3 Analysis of phagocytic activity by flow cytometry 19 2.4 Analysis of antigen-uptake ability by flow cytometry 20 2.5 Measurement of proteolytic activity by flow cytometry 20 2.6 Detection of microglial surface markers expression by flow cytometry 21 2.7 Measurement of cytokine IL-12 by enzyme-linked immunosorbent assay (ELISA) 21 2.8 Measurement of cytokine and surface marker mRNA expression by real-time reverse t ranscription-PCR (RT-PCR) 22 2.9 Measurement of T cell stimulation capability of microglia 27 2.10 Measurement of T lymphocyte associated cytokines by ELISA 27 2.11 Statistical analysis 28 Chapter 3 Results 29 3.1 Iron oxide nanoparticles inhibited the phagocytic activity of microglia 29 3.2 Iron oxide nanoparticles inhibited the antigen-uptake activity of microglia. 31 3.3 Iron oxide nanoparticles inhibited the lysosomal degradation capacity in microglia. 33 3.4 The effect of iron oxide nanoparticles on the expression of antigen presentation-related surface markers in activated microglia 35 3.4.1 High surface levels of MHCII, CD40, CD80 and CD86 expressed in activated microglia. 35 3.4.2 The effect of iron oxide nanoparticles on the expression of antigen presentation-related surface markers in activated microglia. 39 3.5 The effect of iron oxide nanoparticles on the mRNA expression of antigen presentation-related surface markers in activated microglia . 45 3.6 The effect of iron oxide nanoparticles on the mRNA expression of IL-12 family cytokines in microglia stimulated with LPS plus IFN-r. 48 3.7 The effect of iron oxide nanoparticles on the T cell stimulation capability of murine microglia. 51 3.7.1 The capacity of murine microglia to stimulate T lymphocytes 51 3.7.2 Iron oxide nanoparticles increased the T cell stimulation capability of activated microglia. 54 Chapter 4 Discussion 56 References 62 | |
| dc.language.iso | en | |
| dc.subject | 抗原吞噬 | zh_TW |
| dc.subject | 微膠細胞 | zh_TW |
| dc.subject | 氧化鐵奈米粒子 | zh_TW |
| dc.subject | 抗原呈現 | zh_TW |
| dc.subject | 共同刺激分子 | zh_TW |
| dc.subject | 介白素 | zh_TW |
| dc.subject | 抗原處理 | zh_TW |
| dc.subject | microglia | en |
| dc.subject | iron oxide nanoparticles | en |
| dc.subject | interleukin | en |
| dc.subject | costimulatory molecule | en |
| dc.subject | antigen presenting | en |
| dc.subject | antigen processing | en |
| dc.subject | murine | en |
| dc.subject | antigen uptake | en |
| dc.title | 氧化鐵奈米粒子對小鼠初代微膠細胞處理及呈現抗原的影響 | zh_TW |
| dc.title | The Effect of Iron Oxide Nanoparticles on the Antigen Processing and Presenting in Murine Microglia | en |
| dc.type | Thesis | |
| dc.date.schoolyear | 101-2 | |
| dc.description.degree | 碩士 | |
| dc.contributor.oralexamcommittee | 梁弘人,魏孝萍,王家琪 | |
| dc.subject.keyword | 氧化鐵奈米粒子,微膠細胞,抗原吞噬,抗原處理,抗原呈現,共同刺激分子,介白素, | zh_TW |
| dc.subject.keyword | antigen uptake,antigen processing,antigen presenting,costimulatory molecule,interleukin,iron oxide nanoparticles,microglia,murine, | en |
| dc.relation.page | 81 | |
| dc.rights.note | 有償授權 | |
| dc.date.accepted | 2013-08-19 | |
| dc.contributor.author-college | 獸醫專業學院 | zh_TW |
| dc.contributor.author-dept | 獸醫學研究所 | zh_TW |
| 顯示於系所單位: | 獸醫學系 | |
文件中的檔案:
| 檔案 | 大小 | 格式 | |
|---|---|---|---|
| ntu-102-1.pdf 未授權公開取用 | 1.79 MB | Adobe PDF |
系統中的文件,除了特別指名其著作權條款之外,均受到著作權保護,並且保留所有的權利。
