請用此 Handle URI 來引用此文件:
http://tdr.lib.ntu.edu.tw/jspui/handle/123456789/60207
完整後設資料紀錄
DC 欄位 | 值 | 語言 |
---|---|---|
dc.contributor.advisor | 黃慶怡(Ching-I Huang) | |
dc.contributor.author | Yu-Chieh Hsu | en |
dc.contributor.author | 許喻傑 | zh_TW |
dc.date.accessioned | 2021-06-16T10:13:39Z | - |
dc.date.available | 2015-08-26 | |
dc.date.copyright | 2013-08-26 | |
dc.date.issued | 2013 | |
dc.date.submitted | 2013-08-20 | |
dc.identifier.citation | 1 G. S. Kwon and T. Okano, Adv. Drug Delivery Rev., 1996,
21, 107–116. 2. S. A. Walker, M. T. Kennedy and J. A. Zasadzinski, Nature, 1997, 387, 61–64. 3. Y. Kakizawa and K. Kataoka, Adv. Drug Delivery Rev., 2002, 54, 203–222. 4. A. V. Kabanova, P. Lemieuxb, S. Vinogradova and V. Alakhovb, Adv. Drug Delivery Rev., 2002, 54, 223–233. 5. C. J. Behrend, J. N. Anker, B. H. McNaughton, M. Brasuel, M. A. Philbert and R. Kopelman,J. Phys. Chem. B, 2004, 108, 10408–10414. 6. L. Y. Wu, B. M. Ross, S. Hong and L. P. Lee, Small, 2010, 6, 503–507. 7. R. Glass, M. Moller and J. P. Spatz, Nanotechnology, 2003, 14, 1153–1160. 8. T. Lohmuller, Daniel Aydin, M. Schwieder, C. Morhard, I. Louban, C. Pacholski and J. P. Spatz, Biointerphases, 2011, 6, MR1–MR12. 9. G. E. Yu and A. Eisenberg, Macromolecules, 1998, 31, 5546–5549. 10.M. R. Talingting, P. Munk, S. E. Webber and Z. Tuzar, Macromolecules, 1999, 32, 1593–1601. 11.J. F. Gohy, N. Willet, S. Varshney, J. X. Zhang and R. Jerome, Angew. Chem. Int. Ed., 2001, 40, 3214–3216. 12.S. Kubowicz, J. F. Baussard, J. F. Lutz, A. F. Thunemann, H. von Berlepsch and A. Laschewsky, Angew. Chem. Int. Ed., 2005, 44, 5262–5265. 13.J. Hu, G. Njikang and G. Liu, Macromolecules, 2008, 41, 7993–7999. 14.K. Skrabania, A. Laschewsky, H. von Berlepsch and C. Boettcher, Langmuir, 2009, 25, 7594–7601. 15.X. Jiang, G. Zhang, R. Narain and S. Liu, Langmuir, 2009, 25, 2046–2054. 16.K. Skrabania, H. von Berlepsch, C. Boettcher, A. Laschewsky, Macromolecules, 2010, 43, 271–281. 17.A. Walther, C. Barner-Kowollik and A. H. E. Mueller, Langmuir, 2010, 26, 12237–12246. 18.S. Lin, W. Zhu, X. He, Y. Xing, L. Liang, T. Chen and L. P. Lin, J. Phys. Chem. B, 2013, 117, 2586–2593. 19.R. Wang, P. Tang, F. Qiu and Y. L. Yang, J. Phys. Chem. B, 2005, 109, 17120–17127. 20.S. H. Chou, H. K. Tsao and Y. J. Sheng, J. Chem. Phys., 2006, 125, 194903. 21.Z. W. Ma and W. Jiang, J. Polym. Sci. Part B Polym. Phys., 2009, 47, 484–492. 22.Z. W. Ma, H. Z. Yu and W. Jiang, J. Phys. Chem. B, 2009, 113, 3333–3338. 23.L. Q. Wang and L. P. Lin, Soft Matter, 2011, 7, 3383– 3391. 24.T. Jiang, L. Wang, S. Lin, J. P. Lin and Y. Li, Langmuir, 2011, 27, 6440–6448. 25.Y. Zhu, H. Yu, Y. Wang, J. Cui, W. Kong and W. Jiang, Soft Matter, 2012, 8, 4695–4707. 26.C. Zhou, M. A. Hillmyer and T. P. Lodge, J. Am. Chem. Soc., 2012, 134, 10365–10368. 27.O.V. Borisov and E.B. Zhulina, Polymer, 2013, 54, 2043– 2048. 28.Y. Nagata, J. Masuda, A. Noro, D. Y. Cho, A. Takano and Y. Matsushita, Macromolecules, 2005, 38, 10220–10225. 29.J. Masuda, A. Takano, Y. Nagata, A. Noro, Y. Matsushita, Phys. Rev. Lett., 2006, 97, 098301. 30.J. Masuda, A. Takano, J. Suzuki, Y. Nagata, A. Noro, K. Hayashida and Y. Matsushita, Macromolecules, 2007, 40, 4023–4027. 31.G. Fleury and F. S. Bates, Macromolecules, 2009, 42, 1691–1694. 32.G. Fleury and F. S. Bates, Macromolecules, 2009, 42, 3598–3610. 33.C. G. Alfonzo, G. Fleury, K. A. Chaffin and F. S. Bates, Macromolecules, 2010, 43, 5295–5305. 34.M. Faber, V. S. D. Voet, G. ten Brinke and K. Loos, Soft Matter, 2012, 8, 4479–4485. 35.R. Nap, I. Erukhimovich, G. ten Brinke, Macromolecules, 2004, 37, 4296–4303. 36.R. Nap, N. Sushko, I. Erukhimovich and G. ten Brinke, Macromolecules 2006, 39, 6765–6770. 37.A. Subbotin, T. Klymko and G. ten Brinke, Macromolecules 2007, 40, 2915–2918. 38.T. Klymko, A. Subbotin and G. ten Brinke, J. Chem. Phys., 2008, 129, 114902. 39.C. I Huang and C. M. Chen, ChemPhysChem, 2007, 8, 2588– 2594. 40.W. H. Li and A. C. Shi, Macromolecules, 2009, 42, 811– 819. 41.Y. C. Xu, W. H. Li, F. Qiu, Y. L. Yang and A. C. Shi AC, J. Phys. Chem. B, 2010, 114, 14875–14883. 42.Y. C. Xu, W. H. Li, F. Qiu, Y. L. Yang and A. C. Shi, Phys. Chem. Chem. Phys., 2011, 13, 12421–12428. 43.L. Q. Wang, J. P. Lin and L. Zhang, Macromolecules, 2010, 43, 1602–1609. 44.A. Laschewsky, Curr. Opin. Colloid Interface Sci., 2003, 8, 274–281. 45.A. K. Brannan and F. S. Bates, Macromolecules, 2004, 37, 8816–8819. 46.A. F. Thunemann, S. Kubowicz, H. von Berlepsch and H. Mohwald, Langmuir, 2006, 22, 2506–2510. 47.A. X. Mei , X. L. Guo , Y. W. Ding , X. H. Zhang , J. T. Xu , Z. Q. Fan and B. Y. Du , Macromolecules, 2010, 43, 7312–7320. 48.N. Beheshti, K. Zhu, A-L. Kjoniksen, K. D. Knudsen and B. Nystrom, Soft Matter, 2011, 7, 1168–.1175 49.M. S. Lee, Y. L. Jang, D. P. Huynh, C. T. Huynh, Y. Lee, S. Y. Chae, S. H. Kim, T. G. Park, D. S. Lee and J. H. Jeong, Macromol. Biosci., 2011, 11, 789–796. 50.T. Ren, X. Lei and W. Yuan, Mater. Lett., 2012, 67, 383– 386. 51.H. S. Abandansaria, E. Aghaghafaria, M. R. Nabida and H. Niknejad, Polymer, 2013, 54, 1329–1340. 52.Y. Lu, T. Chen, A. Mei, T. Chen, Y. Ding, X. Zhang, J. Xu, Z. Fan and B. Du, Phys. Chem. Chem. Phys, 2013, 15, 8276–8286. 53.H. Tan, Z. Wang, J. Li, Z. Pan, M. Ding and Q. Fu, ACS Macro Letters, 2013, 2, 146–151. 54.J. Cui and W. Jiang, Langmuir, 2011, 27, 10141–10147. 55.C. I Huang, C. H. Liao and T. P. Lodge, Soft Matter, 2011, 7, 5638–5647. 56.Y. C. Hsu, C. I. Huang, W. H. Li, F. Qiu and A. C. Shi, Polymer, 2013, 54, 431-439. 57.C. I Huang, H. K. Fang and C. H. Lin, Phys. Rev. E, 2008, 77, 031804. 58.M. W. Matsen and M. Schick, Phys. Rev. Lett., 1994, 72, 2660–2663. 59.M. W. Matsen, J. Phys. Condens. Matter., 2002, 14, R21– R47. 60.G. H. Fredrickson, The Equilibrium Theory of Inhomogeneous Polymers, Oxford University Press, New York, 2006, pp. 203–279. 61.W. Meier; E. Rakhmatullina; T. Braun; M. Chami and V. Malinova, Langmuir, 2007, 23, 12371–12379. 62.F. Drolet and G. H. Fredrickson, Phys. Rev. Lett., 1999, 83, 4317–4320. 63.F. Drolet and G. H. Fredrickson, Macromolecules, 2001, 34, 5317–5324. 64.G. Tzeremes, K. O. Rasmussen, T. Lookman and A. Saxena A, Phys. Rev. E, 2002, 65, 041806. 65.P. Chi, Z. Wang, B. H. Li and A. C. Shi, Langmuir, 2011, 27, 11683–11689. 66.L. F. Zhang and A. Eisenberg, J. Am. Chem. Soc., 1996, 118, 3168–3181. 67.H. Noguchi and M. Takasu, Phys. Rev. E, 2001, 64, 041913. 68.S. Yamamoto, Y. Maruyama and S. Hyodo, J. Chem. Phys., 2002, 116, 5842. 69.S. Marrink and A. E. Mark, J. Am. Chem. Soc., 2003, 125, 15233–15242. 70.T. Uneyama, J. Chem. Phys., 2007, 126, 114902. 71.H. Cui, Z. Chen, K. L. Wooley and D. J. Pochan, Soft Matter, 2009, 5, 1269–1278. 72.P. Mukerjee, J. Phys. Chem., 1972, 76, 565–570. 73.G. Porte and J. Appell, J. Phys. Chem., 1981, 85, 2511– 2519. 74.G. Porte, J. Phys. Chem., 1983, 87, 3541–3550. 75.J. N. Israelachvili, D. J. Mitchell and B. W. Ninham, J. Chem. Soc. Faraday Trans. II, 1975, 72, 1525–1568. 76.Z. J. Guo, G. J. Zhang, F. Qiu, H. D. Zhang, Y. L. Yang and A. C. Shi, Phys. Rev. Lett., 2008, 101, 028301. | |
dc.identifier.uri | http://tdr.lib.ntu.edu.tw/jspui/handle/123456789/60207 | - |
dc.description.abstract | The ability of ABC amphiphilic multiblock terpolymers to self-assemble into multicompartment micelles in dilute solutions is of great current interest. We used three-dimensional self-consistent mean-field theory to investigate the micellization behavior of ABC amphiphilic multiblock terpolymers in the presence of a solvent that is selective to the terminal A block. Firstly, we have explored systematically the morphologies adopted by a particular block terpolymer architecture, A-b-(B-alt-C)n, where the A block is solvophilic and B and C blocks are solvophobic. In particular, we focused on the effects of the incompatibility parameter between B and C, hBC, and the composition of the solvophilic A block, fA, on the formation of micelles from ABC triblock and A(BC)3 multiblock terpolymers, respectively. We observed a general trend that a segmented packing of B- and C-layers along the axial direction of the micelles is favored than the coaxial packing with the increasing of hBC or decreasing of fA. The separation of B and C blocks within a micelle leads to the formation of a variety of multicompartment micelle morphologies, such as core-shell-corona spherical micelles, hamburgers, and bump-surface micelles, in the ABC triblock copolymers. In the A(BC)3 multiblock terpolymers, we discovered more fascinating micelles by implementing the SCFT simulation than by the DPD simulation. Besides the BC-segmented worm-like micelles, which have been found in the DPD simulation work, concentric multilayer spheres and vesicles can be formed by the solvent-induced effect when the solvophilic A block is a majority component. In the A(BC)3A multiblock terpolymers, a series of fascinating micellar structures are observed, such as B- and C-disk segmented vesicles, BC-segmented hollow cylinders, BC-segmented toroidal micelles, infinite BC-segmented cylindrical micelles and BC-mixed toroidal micelles. By the limitation of B and C blocks are all joined to A block, the segmented packing way of B and C layers is along the axial direction of the structures. With the decreasing of fA, the structural transition is from vesicles to micelles in the A(BC)3A multiblock terpolymers. It is opposite result compared to the A(BC)3 multiblock terpolymers system (micelles → vesicles). The SCFT method provides an efficient way to screen promising molecular architectures for the ability to self-assemble into technologically promising hierarchical structures. | en |
dc.description.provenance | Made available in DSpace on 2021-06-16T10:13:39Z (GMT). No. of bitstreams: 1 ntu-102-D96549004-1.pdf: 6120593 bytes, checksum: 92f463de7c5517253ff3a08741a5d4c8 (MD5) Previous issue date: 2013 | en |
dc.description.tableofcontents | Abstract I
Contents Ⅲ Table Captions Ⅴ Figure Captions Ⅵ Chapter 1. Introduction---------1 Chapter 2. Theoretical Method---7 2.1 Theoretical Method: Self-Consistent Mean-Field Theory------------------7 2.2 To Solve the Modified Diffusion Equation by Pseudo- Spectral Method---------10 2.3 The Flow Chart of Self-Consistent Mean-Field Theory ------------------------12 Chapter 3. Micellization of A-b-(B-alt-C)n Multiblock Terpolymer----------------------13 3.1 The Phase Behavior of ABC Linear Triblock Copolymers in Dilute Solutions-----13 3.2 The Variation of the Micellar Structures of BC Diblock Copolymers By the Solvent-Induced Effect ------------------------15 3.3 The Phase Behavior of A-b-(B-alt-C)3 Multiblock Terpolymers in Dilute Solutions ------------------------17 3.4 Summary-----------------19 Chapter 4. A Comparison Between the Micellizations of A-b- (B-alt-C)3 and A-b-(B-alt-C)3-b-A Multiblock Terpolymers-----------28 4.1 Symmetric Interaction Parameters of hBS=hCS ------------------------28 4.2 Asymmetric Interaction Parameters with Respect to the Solvent hBS≠hCS-----32 4.3 The Variation of the Micellar Structures of ABC Multiblock Terpolymers by the Solvent Quality ------------------------33 4.4 Asymmetric Interaction Parameters with Respect to the A Block hAB≠hAC-----35 4.5 Summary-----------------36 Chapter 5. Conclusions----------51 Appendix------------------------53 References----------------------58 | |
dc.language.iso | en | |
dc.title | ABC線性多塊狀雙親性共聚合物在對A塊狀具有選擇性的溶劑下之微胞行為衍變 | zh_TW |
dc.title | Micellization of Linear ABC Amphiphilic Multiblock Terpolymers in A-selective Solvents | en |
dc.type | Thesis | |
dc.date.schoolyear | 101-2 | |
dc.description.degree | 博士 | |
dc.contributor.oralexamcommittee | 童世煌,胡孝光,黃千岳,劉定宇 | |
dc.subject.keyword | 多塊狀高分子,多間隔微胞,自洽平均場理論, | zh_TW |
dc.subject.keyword | multiblock terpolymers,multicompartment micelles,self-consistent mean-field theory, | en |
dc.relation.page | 61 | |
dc.rights.note | 有償授權 | |
dc.date.accepted | 2013-08-20 | |
dc.contributor.author-college | 工學院 | zh_TW |
dc.contributor.author-dept | 高分子科學與工程學研究所 | zh_TW |
顯示於系所單位: | 高分子科學與工程學研究所 |
文件中的檔案:
檔案 | 大小 | 格式 | |
---|---|---|---|
ntu-102-1.pdf 目前未授權公開取用 | 5.98 MB | Adobe PDF |
系統中的文件,除了特別指名其著作權條款之外,均受到著作權保護,並且保留所有的權利。