Skip navigation

DSpace

機構典藏 DSpace 系統致力於保存各式數位資料(如:文字、圖片、PDF)並使其易於取用。

點此認識 DSpace
DSpace logo
English
中文
  • 瀏覽論文
    • 校院系所
    • 出版年
    • 作者
    • 標題
    • 關鍵字
    • 指導教授
  • 搜尋 TDR
  • 授權 Q&A
    • 我的頁面
    • 接受 E-mail 通知
    • 編輯個人資料
  1. NTU Theses and Dissertations Repository
  2. 理學院
  3. 地質科學系
請用此 Handle URI 來引用此文件: http://tdr.lib.ntu.edu.tw/jspui/handle/123456789/60199
完整後設資料紀錄
DC 欄位值語言
dc.contributor.advisor王國龍(Kuo-Lung Wang)
dc.contributor.authorYu-Hsiang Chienen
dc.contributor.author簡于翔zh_TW
dc.date.accessioned2021-06-16T10:13:33Z-
dc.date.available2015-08-25
dc.date.copyright2013-08-25
dc.date.issued2013
dc.date.submitted2013-08-20
dc.identifier.citationBlusztajn, J., Shimizu, N., 1994. The trace-element variations in clinopyroxenes from spinel peridotite xenoliths from southwest Poland. Chemical Geology 111, 227-243.
Bodinier, J.L., Vasseur, G., Vernieres, J., Dupuy, C., Fabries, J., 1990. Mechanisms of mantle metasomatism: Geochemical evidence from the lherz orogenic peridotite. Journal of Petrology 31, 597-628.
Bonadiman, C., Beccaluva, L., Coltorti, M., Siena, F., 2005. Kimberlite-like metasomatism and ‘garnet signature’in spinel-peridotite xenoliths from Sal, Cape Verde archipelago: relics of a subcontinental mantle domain within the Atlantic oceanic lithosphere?. Journal of Petrology 46, 2465-2493.
Boyd, F., 1989. Compositional distinction between oceanic and cratonic lithosphere. Earth and Planetary Science Letters 96, 15-26.
Boyd, F.R., Pokhilenko, N.P., Pearson, D.G., Mertzman, S.A., Sobolev, N.V., Finger, L.W., 1997. Composition of the Siberian cratonic mantle: evidence from Udachnaya peridotite xenoliths. Contributions to Mineralogy and Petrology 128, 228-246.
Brey, G., Kohler, T., 1990. Geothermobarometry in four-phase lherzolites II. New thermobarometers, and practical assessment of existing thermobarometers. Journal of Petrology 31, 1353-1378.
Carpenter, R.L., Edgar, A.D., Thibault, Y., 2002. Origin of spongy textures in clinopyroxene and spinel from mantle xenoliths, Hessian Depression, Germany. Mineralogy and Petrology 74, 149-162.
Dawson, J. B., 1984. Contrasting types of upper-mantle metasomatism. In: Kornprobst, J. (ed) Kimberlites II: the mantle and crust-mantle relationships. Elsevier, Amsterdam, 289-294.
Downes, H., 2001. Formation and modification of the shallow sub-continental lithospheric mantle: a review of geochemical evidence from ultramafic xenolith suites and tectonically emplaced ultramafic massifs of western and central Europe. Journal of Petrology 42, 233-250.
Eggins, S.M., Woodhead, J.D., Kinsley, L.P.J., Mortimer, G.E., Sylvester, P., McCulloch, M.T., Hergt, J.M., Handler, M.R., 1997. A simple method for the precise determination of ≥ 40 trace elements in geological samples by ICPMS using enriched isotope internal standardisation. Chemical Geology 134, 311-326.
Esin, S.V., Ashchepkov, I.V., Ponomarchuk, V.A., 1995. Petrogenesis of alkaline basaltoids from the Vitim plateau (Baikal rift zone). UIGGM SB RAS Press, Novosibirsk (58 pp., in Russian).
Gao, S., Davis, P.M., Liu, H., Slack, P.D., Zorin, Y.A., Logatchev, N.A., Kogan, M., Burkholder, P.D., Meyer, R.P., 1994. Asymmetric upwarp of the asthenosphere beneath the Baikal rift zone, Siberia. Journal of geophysical research 99, 15319-15330.
Gao, S., Davis, P.M., Liu, H., Slack, P.D., Zorin, Y.A., Mordvinova, V.V., Kozhevnikov, V.M., Meyer, R.P., 1994. Seismic anisotropy and mantle flow beneath the Baikal rift zone. Nature 371, 149-151.
Gao, S., Liu, X., Yuan, H., Hattendorf, B., Gunther, D., Chen, L., Hu, S., 2002. Determination of forty two major and trace elements in USGS and NIST SRM glasses by laser ablation‐inductively coupled plasma‐mass spectrometry. Geostandards Newsletter 26, 181-196.
Goldschmidt, V.M., 1922. On the metasomatic processes in silicate rocks. Economic Geology 17, 105-123.
Govindaraju, K., 1994. Compilation of working values and sample description for 383 geostandards. Geostandards Newsletter 18, 1-158.
Harte, B., 1983. Mantle peridotites and processes—the kimberlite sample. In: Hawkesworth CJ, Norry MJ (eds) Continental basalts and their xenoliths. Shiva, Nantwich, 46-91.
Hofmann, A.W., 1997. Mantle geochemistry: the message from oceanic volcanism. Nature 385, 219-229.
Ionov, D.A., 2002. Mantle structure and rifting processes in the Baikal–Mongolia region: geophysical data and evidence from xenoliths in volcanic rocks. Tectonophysics 351, 41-60.
Ionov, D.A., 2004. Chemical variations in peridotite xenoliths from Vitim, Siberia: inferences for REE and Hf behaviour in the garnet-facies upper mantle. Journal of Petrology 45, 343-367.
Ionov, D.A., Hofmann, A.W., Shimizu, N., 1994. Metasomatism-induced melting in mantle xenoliths from Mongolia. Journal of Petrology 35, 753-785.
Ionov, D.A., Ashchepkov, I., Jagoutz, E., 2005. The provenance of fertile off-craton lithospheric mantle: Sr-Nd isotope and chemical composition of garnet and spinel peridotite xenoliths from Vitim, Siberia. Chemical Geology 217, 41-75.
Ionov, D.A., Ashchepkov, I.V., Stosch, H.-G., Witt-Eickschen, G., Seck, H.A., 1993. Garnet peridotite xenoliths from the Vitim volcanic field, Baikal region: the nature of the garnet-spinel peridotite transition zone in the continental mantle. Journal of Petrology 34, 1141-1175.
Ionov, D.A., Dupuy, C., O'Reilly, S.Y., Kopylova, M.G., Genshaft, Y.S., 1993. Carbonated peridotite xenoliths from Spitsbergen: implications for trace element signature of mantle carbonate metasomatism. Earth and Planetary Science Letters 119, 283-297.
Johnson, J., Gibson, S., Thompson, R., Nowell, G., 2005. Volcanism in the Vitim volcanic field, Siberia: geochemical evidence for a mantle plume beneath the Baikal rift zone. Journal of Petrology 46, 1309-1344.
Johnson, K., Dick, H. J., Shimizu, N., 1990. Melting in the oceanic upper mantle: an ion microprobe study of diopsides in abyssal peridotites. Journal of Geophysical Research: Solid Earth 95, 2661-2678.
Klemme, S., Van der Laan, S. R., Foley, S. F., Gunther, D., 1995. Experimentally determined trace and minor element partitioning between clinopyroxene and carbonatite melt under upper mantle conditions. Earth and Planetary Science Letters 133, 439-448.
Korzhinski, D.S., 1936. Mobility and inertness of components in metasomatism. Izv Akad Nauk SSSR Ser Geol 1, 58-60.
Kuzmin, M.I., Yarmolyuk, V.V., Kravchinsky, V.A., 2010. Phanerozoic hot spot traces and paleogeographic reconstructions of the Siberian continent based on interaction with the African large low shear velocity province. Earth-Science Reviews 102, 29-59.
Litasov, K.D., Foley, S.F., Litasov, Y.D., 2000. Magmatic modification and metasomatism of the subcontinental mantle beneath the Vitim volcanic field (East Siberia): evidence from trace element data on pyroxenite and peridotite xenoliths from Miocene picrobasalt. Lithos 54, 83-114.
Lloyd, F. E., Bailey, D., 1975. Light element metasomatism of the continental mantle: the evidence and the consequences. Physics and Chemistry of the Earth 9, 389-416.
Logatchev, N., Zorin, Y.A., 1987. Evidence and causes of the two-stage development of the Baikal rift. Tectonophysics 143, 225-234.
Logatchev, N., Zorin, Y.A., 1992. Baikal rift zone: structure and geodynamics. Tectonophysics 208, 273-286.
Maaloe, S., 1982. Geochemical aspects of permeability controlled partial melting and fractional crystallization. Geochimica et Cosmochimica Acta 46, 43-57.
Molnar, P., Tapponnier, P., 1975. Cenozoic tectonics of Asia: effects of a continental collision. Science 189, 419-426.
Nixon, P.H., 1987. Mantle xenoliths. Wiley, 904.
Norman, M.D., 1998. Melting and metasomatism in the continental lithosphere: laser ablation ICPMS analysis of minerals in spinel lherzolites from eastern Australia. Contributions to Mineralogy and Petrology 130, 240-255.
Norman, M.D., Griffin, W.L., Pearson, N.J., Garcia, M.O., O’Reilly, S., 1998. Quantitative analysis of trace element abundances in glasses and minerals: a comparison of laser ablation inductively coupled plasma mass spectrometry, solution inductively coupled plasma mass spectrometry, proton microprobe and electron microprobe data. Journal of Analytical Atomic Spectrometry 13, 477-482.
O’Reilly, S.Y., Griffin, W.L., 2013. Mantle metasomatism. Metasomatism and the Chemical Transformation of Rock, 471-533.
Obata, M., Ozawa, K., Naemura, K., Miyake, A., 2013. Isochemical breakdown of garnet in orogenic garnet peridotite and its implication to reaction kinetics. Mineralogy and Petrology, 1-15.
Pearce, N.J., Perkins, W.T., Westgate, J.A., Gorton, M.P., Jackson, S.E., Neal, C.R., Chenery, S.P., 1997. A compilation of new and published major and trace element data for NIST SRM 610 and NIST SRM 612 glass reference materials. Geostandards Newsletter 21, 115-144.
Petit, C., Koulakov, I., Deverchere, J., 1998. Velocity structure around the Baikal rift zone from teleseismic and local earthquake traveltimes and geodynamic implications. Tectonophysics 296, 125-144.
Rasskazov, S.V., Ivanov, A.V., Brandt, S.B., 1996. Development of volcanism with rifting relaxation, detail study of late Cenozoic Bereya area, Vitim volcanic field. In Proc. Geol. Symp. IEC SB RAS, Irkutsk, Russia, 56-58 (in Russian).
Rollinson, H.R., 1993. Using geochemical data: evaluation, presentation, interpretation.
Rudnick, R.L., McDonough, W.F., Chappell, B.W., 1993. Carbonatite metasomatism in the northern Tanzanian mantle: petrographic and geochemical characteristics. Earth and Planetary Science Letters 114, 463-475.
Shaw, C.S., Dingwell, D.B., 2008. Experimental peridotite–melt reaction at one atmosphere: a textural and chemical study. Contributions to Mineralogy and Petrology 155, 199-214.
Shaw, C.S., Edgar, A.D., 1997. Post-entrainment mineral-melt reactions in spinel peridotite xenoliths from Inver, Donegal, Ireland. Geological magazine 134, 771-779.
Shaw, C.S., Heidelbach, F., Dingwell, D.B., 2006. The origin of reaction textures in mantle peridotite xenoliths from Sal Island, Cape Verde: the case for “metasomatism” by the host lava. Contributions to Mineralogy and Petrology 151, 681-697.
Su, B.-X. et al., 2011. The origin of spongy texture in minerals of mantle xenoliths from the Western Qinling, central China. Contributions to Mineralogy and Petrology 161, 465-482.
Su, B.-X. et al., 2012. Breakdown of orthopyroxene contributing to melt pockets in mantle peridotite xenoliths from the Western Qinling, central China: constraints from in situ LA-ICP-MS mineral analyses. Mineralogy and Petrology 104, 225-247.
Sun, S.-S., McDonough, W.F., 1989. Chemical and isotopic systematics of oceanic basalts: implications for mantle composition and processes. In: Saunders, A.D., Norry, M.J., (Eds.), Magmatism in the Ocean Basins. Spec. Publ. -Geol. Soc. Lond., vol. 42, pp. 313-345.
Tapponnier, P., Peltzer, G., Le Dain, A., Armijo, R., Cobbold, P., 1982. Propagating extrusion tectonics in Asia: new insights from simple experiments with plasticine. Geology 10, 611-616.
Wilson M., 1989. Igneous petrogenesis.
Windley, B.F., Allen, M.B., 1993. Mongolian plateau: evidence for a late Cenozoic mantle plume under central Asia. Geology 21, 295-298.
Xu, X., O'Reilly, S.Y., Griffin, W., Zhou, X., Huang, X., 1998. The nature of the Cenozoic lithosphere at Nushan, eastern China. Geodynamics Series 27, 167-195.
Xu, X., O’Reilly, S.Y., Griffin, W., Zhou, X., 2000. Genesis of young lithospheric mantle in southeastern China: an LAM–ICPMS trace element study. Journal of Petrology 41, 111-148.
Yaxley, G.M., Crawford, A.J., Green, D.H. 1991. Evidence for carbonatite metasomatism in spinel peridotite xenoliths from western Victoria, Australia. Earth and Planetary Science Letters 107, 305-317.
Yaxley, G.M., Green, D.H., Kamenetsky, V., 1998. Carbonatite metasomatism in the southeastern Australian lithosphere. Journal of Petrology 39, 1917-1930.
Zangana, N.A., Downes, H., Thirlwall, M.F., Hegner, E. 1997. Relationship between deformation, equilibration temperatures, REE and radiogenic isotopes in mantle xenoliths (Ray Pic, Massif Central, France): an example of plume-lithosphere interaction?. Contributions to Mineralogy and Petrology 127, 187-203.
Zindler, A., Hart, S., 1986. Chemical geodynamics. Annual Review of Earth and Planetary Sciences 14, 493-571.
李寄嵎、蔡榮浩、何孝桓、楊燦堯、鍾孫霖、陳正宏, 1997. 應用X光螢光分析儀從事岩石樣本之定量分析(I)主量元素. 中國地質學會八十六年年會暨學術研討會論文摘要. 418-420.
偕嘉如, 2011. 富化岩石圈地函的地球化學特徵:以蒙古Tariat地函橄欖岩為例.國立台灣大學地質科學研究所碩士論文:共108頁。
dc.identifier.urihttp://tdr.lib.ntu.edu.tw/jspui/handle/123456789/60199-
dc.description.abstractVitim火成岩區位於俄羅斯西伯利亞東南部貝加爾湖(Lake Baikal)東方約200公里處,為新生代玄武岩質熔岩流所構成的火山高原,部份熔岩流含有豐富的地函擄獲岩(xenolith),提供良好的材料研究此區域大陸岩石圈地函(subcontinental lithospheric mantle, SCLM)的地球化學特性。此區域的玄武岩質熔岩流噴發時間分兩個時期,分別為中新世及更新世,本研究所採集兩個時期的樣本之鉀氬年代分別是第一期約為14 Ma及第二期約為0.65 Ma。
此區域之地函捕獲岩以二輝橄欖岩(lherzolite)為主,含有橄欖石、直輝石、斜輝石、石榴石或尖晶石、或兩者兼有。大部分二輝橄欖岩為原粒狀組織(protogranular),部分呈現殘碎斑狀組織(porphyroclastic);少數橄欖石有急折帶(kink-band),部分石榴石邊緣有綠泥鎂鋁榴石(kelyphite)發育但無與水反應作用形成的kelyphite III出現,而液包體(fluid inclusion)、礦脈(vein)與含水礦物較少發現。斜輝石體積百分比大於10%,且大部分有蠕蟲狀反應圈(spongy rim),反應此區域岩石圈地函相對較富化且曾受過後期熱事件、小程度部分熔融或是交代變質作用影響。此區域尖晶石與石榴石相變的過渡帶約為78公里(平衡壓力約為26 kbar)。第一期及第二期的地溫梯度有隨著時間越來越高溫的趨勢,與前人(Ionov, 2004)研究結果相同,暗示此區域下方軟流圈地函有逐漸上湧的現象。
Vitim二輝橄欖岩的橄欖石鎂值約為89.2至90.7,及全岩的氧化鎂、氧化鋁及氧化鈣含量與鄰近西伯利亞古陸的二輝橄欖岩相較,顯示此區域下方為相對較富化的岩石圈地函。全岩的氧化鋁、氧化鈣及氧化鈦的含量變化,以及橄欖石的鎂值與尖晶石的鉻值及石榴石氧化鋁含量的變化趨勢,顯示Vitim二輝橄欖岩受控於部分熔融作用。模擬不同部分熔融程度下斜輝石核心的釔與鐿元素含量及鋯與鈦元素含量變化,得知Vitim火成岩區下方為經歷1%到15%部分熔融的殘餘岩石圈地函。大部分斜輝石核心相較於邊緣的氧化鈣含量較低而氧化鋁含量較高,推測是受到後期交代變質作用或附近為氧化鋁含量較低的耐熔地函圍岩影響。
斜輝石的稀土元素分佈形態有三種:虧損輕稀土元素型(depleted LREE type)、富集輕稀土元素型(enriched LREE type)及過渡型(transitional type)。虧損輕稀土元素型指示其為地函發生部分熔融後殘餘的岩石,未受到後期交代質作用影響。富集輕稀土元素型指示其明顯受到後期交代變質作用影響。過渡型中,大多數斜輝石核心是虧損輕稀土元素型,邊緣是富集輕稀土元素型,表示斜輝石邊緣已受到交代變質作用但核心尚未受到後期交代變質作用影響。在有限的全岩分析資料中,所有二輝橄欖岩亦呈現富集型態,顯示後期交代變質作用顯著影響此區域的岩石圈地函。Vitim二輝橄欖岩受到交代變質作用的類型為cryptic metasomatism,但有少數二輝橄欖岩為modal metasomatism;而交代變質作用的介質主要為矽質岩漿,其中有含水礦物的二輝橄欖岩呈現富集的大離子半徑元素(large ion lithosphile element, LILE)及虧損的高場強元素(high field strength element, HFSE),表示受到與隱沒作用有關的含水流體影響。綜合本研究之斜輝石及全岩的鍶釹同位素值與前人報導值(Ionov et al., 2005),顯示第一期二輝橄欖岩為較富集和虧損的端元成分混合,第二期二輝橄欖岩的富集端元成分混合的比例減少,亦是反應此區域有軟流圈上湧現象的證據。
zh_TW
dc.description.abstractLocated east of Lake Baikal in SE Siberia, Vitim volcanic plateau is made of the Cenozoic lava flows with abundant mantle xenoliths that can shed light on composition and evolution of the subcontinental lithospheric mantle (SCLM) beneath the region. There are two main episodes of basalt erupted in Miocene and Pleistocene, and the mantle xenoliths included in this study cover both episodes.
The majority of mantle xenoliths are garnet-, spinel-, or garnet-spinel-bearing lherzolites, with a protogranular texture and to a lesser extent porphyroclastic texture. Kink bands and fluid inclusions are common in the olivines. Spongy rims in clinopyroxenes and kelyphites around garnets are common in these lherzolites, which are attributed to heating, partial melting, or mantle metasomatism. Most lherzolites have high modal clinopyroxene (> 10 vol.%), implying these lherzolites are relatively fertile. Employing the two-pyroxene thermometer and the Al-in-opx barometer of Brey and Kohler (1990) yields equilibration temperatures and pressures of 1100 – 1250oC and 20.9 – 28.5 kbar for garnet-bearing lherzolites, and 1100 – 1200oC and 20.6 – 25.7 kbar for garnet-spinel-bearing lherzolites. The equilibrium temperatures of spinel-bearing lherzolites are 850 – 1050oC by using Ca-in-opx thermometer of Brey and Kohler (1990). The depth of spinel-garnet transition zone is at least 78 km (about 26 kbar). The depth of lherzolites captured by the Miocene basalts are deeper that those in the Pleistocene basalts. Moreover, the Pleistocene Vitim geotherm is hotter than the Miocene Vitim geotherm that similar to Ionov et al. (2004), implying that the advancing asthenosphere upwelled from Miocene to Pleistocene.
Their Fo contents of olivines and whole-rock major elemental compositions indicate relatively fertile SCLM beneath the Vitim volcanic field. The Cr# in spinel and Al2O3 in garnets correlate with Fo contents of olivines show strongly controlled by partial melting. The Vitim lherzolites experienced about 1% ~ 15% partial melting by using the cpx melting model. The CaO and FeO of spongy rims and cores of clinopyroxenes show obvious variations that could be caused by late metasomatism and interaction with refractory mantle wall-rock. Trace element distribution patterns of clinopyroxenes have three different types: depleted LREE type, enriched LREE type, and transitional type. Depleted LREE type indicates these mantle rocks are residue of partial melting without experiencing late metasomatism. On the other hand, enriched LREE type shows evidence of late metasomatism. In contrast, transitional type exhibits composite trace element patterns, i.e., depleted LREE pattern at the core of cpx and enriched LREE patterns at the rim. Available whole-rock geochemical data of the Vitim lherzolites also show enriched LREE pattern, indicating these mantle rocks had experienced metasomatism. Most lherzolites were affected by cryptic metasomatism, and fewer lherzolites were affected by modal metasomatism. Silicate melt is the most likely agent to metasomatize SCLM beneath the region. Lherzolites with hydrous minerals are obviously affected by hydrous fluid, and have enriched LILE and depleted HFSE. The Sr-Nd isotopic ratios of the Vitim lherzolites, combined with those previously reported (Ionov et al., 2005), display that lherzolites captured by the Miocene basalts have wider isotopic range from depleted mantle component to enriched components, whereas lherzolites in the Pleistocene basalts have less enriched component involved. It shows that lherzolites captured by the Miocene basalts from the deeper SCLM were prone to metasomatism by ascending melts, whereas those in the Pleistocene basalts at the shallower depth experienced less extent of metasomatism. The temporal variation reinforced advancing asthenosphere upwelled beneath the Vitim region from Miocene to Pleistocene.
en
dc.description.provenanceMade available in DSpace on 2021-06-16T10:13:33Z (GMT). No. of bitstreams: 1
ntu-102-R00224109-1.pdf: 10605998 bytes, checksum: 18f02a53d1634f3df966948cf436b785 (MD5)
Previous issue date: 2013
en
dc.description.tableofcontents致 謝…………………………………………………………………………………..i
摘 要………………………………………………………………………………….ii
Abstract……………………………………………………………………………...…iiii
目 錄………………………………………………………………………………...vii
圖 目…………………………………………………………………………………ix
表 目…………………………………………………………………………………xi
第一章、 緒論…………………………………………………………….……………1
1.1 前言……………………………………………………………………..1
1.2 地質背景……………………………………………….……………….3
1.3 文獻回顧……………………………………………….……………….6
1.4 研究動機與目的………………………………………………………..8
第二章、 研究分法…………………………………………………….………………9
2.1 研究樣本及分析方法…………………………………………………..9
2.2 岩象觀察………………………………………………...…………….13
2.3 礦物化學分析………………………………………….……..……….13
2.3.1 礦物化學分析前樣本製備…………………………….………..13
2.3.2 主量元素含量分析…………………………………….………..14
2.3.3 微量元素含量分析…..………………………………….………14
2.3.4 鍶釹同位素含量分析…………………………………….……..25
2.3.4.1 鍶釹同位素化學分離流程……………….…….………..25
2.3.4.2 標準樣本測量結果………………………………………27
2.4 全岩化學分析….………………………………….…………………..27
2.4.1 全岩化學分析前樣本製備……………………………………...27
2.4.2 主量元素含量分析…………………………………….………..27
2.4.3 微量元素含量分析…………………………………….………..28
2.4.3.1 樣本分析前處理…………………………………………28
2.4.3.2 USGS標準樣分析結果………………………..…………29
2.4.4 鍶釹同位素含量分析………………………………….….…….29
第三章、 實驗分析結果…..………………………………….………………………32
3.1 岩象觀察…..………………………………….……………………….32
3.2 礦物化學分析結果…………………………………….……………...36
3.2.1 主量元素分析結果…………………………………….………..36
3.2.2 微量元素分析結果….………………………………….……….55
3.3 全岩化學分析結果….………………………………….……………..74
3.3.1 主量元素分析結果….………………………………….……….74
3.3.2 微量元素分析結果….………………………………….……….77
3.4 礦物及全岩鍶釹同位素分析結果….………………………………...78
第四章、 討論………………………………………………………………..….……80
4.1 Vitim火成岩區二輝橄欖岩之平衡溫度與壓力…………………...…80
4.2 Vitim火成岩區二輝橄欖岩之地球化學特性………………………...85
4.3 Vitim火成岩區二輝橄欖岩之部分熔融過程………………………...93
4.4 Vitim火成岩區岩石圈地函之交代變質作用……………………….100
4.4.1 交代變質作用之種類………………………………………….100
4.4.2 交代變質作用之介質…………………………………….……101
第五章、 結論……………………………………………………………...….…….103
第六章、 參考文獻………………………………….……………...……….………105
dc.language.isozh-TW
dc.subjectVitim火成岩區zh_TW
dc.subject地函捕獲岩zh_TW
dc.subject大陸岩石圈地函zh_TW
dc.subjectViitm volcanic fielden
dc.subjectmantle xenolithsen
dc.subjectsubcontinental lithospheric mantleen
dc.title西伯利亞東南部Vitim火成岩區地函捕獲岩之地球化學特性zh_TW
dc.titleGeochemical characteristics of peridotite xenoliths from the Vitim basalt plateau, SE Siberiaen
dc.typeThesis
dc.date.schoolyear101-2
dc.description.degree碩士
dc.contributor.coadvisor鍾孫霖(Sun-Lin Chung)
dc.contributor.oralexamcommittee李德春(Der-Chuen Lee),何恭算(Kung-suan Ho)
dc.subject.keywordVitim火成岩區,地函捕獲岩,大陸岩石圈地函,zh_TW
dc.subject.keywordViitm volcanic field,mantle xenoliths,subcontinental lithospheric mantle,en
dc.relation.page112
dc.rights.note有償授權
dc.date.accepted2013-08-20
dc.contributor.author-college理學院zh_TW
dc.contributor.author-dept地質科學研究所zh_TW
顯示於系所單位:地質科學系

文件中的檔案:
檔案 大小格式 
ntu-102-1.pdf
  未授權公開取用
10.36 MBAdobe PDF
顯示文件簡單紀錄


系統中的文件,除了特別指名其著作權條款之外,均受到著作權保護,並且保留所有的權利。

社群連結
聯絡資訊
10617臺北市大安區羅斯福路四段1號
No.1 Sec.4, Roosevelt Rd., Taipei, Taiwan, R.O.C. 106
Tel: (02)33662353
Email: ntuetds@ntu.edu.tw
意見箱
相關連結
館藏目錄
國內圖書館整合查詢 MetaCat
臺大學術典藏 NTU Scholars
臺大圖書館數位典藏館
本站聲明
© NTU Library All Rights Reserved