Skip navigation

DSpace

機構典藏 DSpace 系統致力於保存各式數位資料(如:文字、圖片、PDF)並使其易於取用。

點此認識 DSpace
DSpace logo
English
中文
  • 瀏覽論文
    • 校院系所
    • 出版年
    • 作者
    • 標題
    • 關鍵字
    • 指導教授
  • 搜尋 TDR
  • 授權 Q&A
    • 我的頁面
    • 接受 E-mail 通知
    • 編輯個人資料
  1. NTU Theses and Dissertations Repository
  2. 生物資源暨農學院
  3. 農業化學系
請用此 Handle URI 來引用此文件: http://tdr.lib.ntu.edu.tw/jspui/handle/123456789/60189
完整後設資料紀錄
DC 欄位值語言
dc.contributor.advisor林乃君
dc.contributor.authorChih-Teng Sheuen
dc.contributor.author許之騰zh_TW
dc.date.accessioned2021-06-16T10:13:26Z-
dc.date.available2018-08-28
dc.date.copyright2013-08-28
dc.date.issued2013
dc.date.submitted2013-08-19
dc.identifier.citationAbe, R., M. Kudou, Y. Tanaka, T. Arakawa and K. Tsumoto (2009). 'Immobilized metal affinity chromatography in the presence of arginine.' Biochem Biophys Res Commun 381(3): 306-310.
Anfinsen, C. B. (1973). 'Principles that govern the folding of protein chains.' Science 181(4096): 223-230.
Arakawa, T., D. Ejima, K. Tsumoto, N. Obeyama, Y. Tanaka, Y. Kita and S. N. Timasheff (2007). 'Suppression of protein interactions by arginine: a proposed mechanism of the arginine effects.' Biophys Chem 127(1-2): 1-8.
Baneyx, F. and M. Mujacic (2004). 'Recombinant protein folding and misfolding in Escherichia coli.' Nat Biotechnol 22(11): 1399-1408.
Braakman, I. and N. J. Bulleid (2011). 'Protein folding and modification in the mammalian endoplasmic reticulum.' Annu Rev Biochem 80: 71-99.
Buck, M., M. T. Gallegos, D. J. Studholme, Y. Guo and J. D. Gralla (2000). 'The bacterial enhancer-dependent sigma(54) (sigma(N)) transcription factor.' J Bacteriol 182(15): 4129-4136.
Bush, M. and R. Dixon (2012). 'The role of bacterial enhancer binding proteins as specialized activators of sigma54-dependent transcription.' Microbiol Mol Biol Rev 76(3): 497-529.
Clark, E. D. B. (1998). 'Refolding of recombinant proteins.' Curr Opin Biotechnol 9(2): 157-163.
Cleland, J. L., S. E. Builder, J. R. Swartz, M. Winkler, J. Y. Chang and D. I. Wang (1992). 'Polyethylene glycol enhanced protein refolding.' Biotechnology (N Y) 10(9): 1013-1019.
De Marco, V., G. Stier, S. Blandin and A. de Marco (2004). 'The solubility and stability of recombinant proteins are increased by their fusion to NusA.' Biochem Biophys Res Commun 322(3): 766-771.
Derman, A. I., W. A. Prinz, D. Belin and J. Beckwith (1993). 'Mutations that allow disulfide bond formation in the cytoplasm of Escherichia coli.' Science 262(5140): 1744-1747.
di Guan, C., P. Li, P. D. Riggs and H. Inouye (1988). 'Vectors that facilitate the expression and purification of foreign peptides in Escherichia coli by fusion to maltose-binding protein.' Gene 67(1): 21-30.
Fox, J. D., R. B. Kapust and D. S. Waugh (2001). 'Single amino acid substitutions on the surface of Escherichia coli maltose-binding protein can have a profound impact on the solubility of fusion proteins.' Protein Sci 10(3): 622-630.
Gatti-Lafranconi, P., A. Natalello, D. Ami, S. M. Doglia and M. Lotti (2011). 'Concepts and tools to exploit the potential of bacterial inclusion bodies in protein science and biotechnology.' FEBS J 278(14): 2408-2418.
Gershenson, A. and L. M. Gierasch (2011). 'Protein folding in the cell: challenges and progress.' Curr Opin Struct Biol 21(1): 32-41.
Hartl, F. U. and M. Hayer-Hartl (2009). 'Converging concepts of protein folding in vitro and in vivo.' Nat Struct Mol Biol 16(6): 574-581.
Ignatova, Z. and L. M. Gierasch (2006). 'Inhibition of protein aggregation in vitro and in vivo by a natural osmoprotectant.' Proc Natl Acad Sci U S A 103(36): 13357-13361.
LaVallie, E. R., Z. Lu, E. A. Diblasio-Smith, L. A. Collins-Racie and J. M. McCoy (2000). 'Thioredoxin as a fusion partner for production of soluble recombinant proteins in Escherichia coli.' Methods Enzymol 326: 322-340.
Lee, S. Y. (1996). 'High cell-density culture of Escherichia coli.' Trends Biotechnol 14(3): 98-105.
Lee, Y., T. Zhou, G. G. Tartaglia, M. Vendruscolo and C. O. Wilke (2010). 'Translationally optimal codons associate with aggregation-prone sites in proteins.' Proteomics 10(23): 4163-4171.
Lilie, H., K. Lang, R. Rudolph and J. Buchner (1993). 'Prolyl isomerases catalyze antibody folding in vitro.' Protein Sci 2(9): 1490-1496.
Morett, E. and M. Buck (1989). 'In vivo studies on the interaction of RNA polymerase-sigma 54 with the Klebsiella pneumoniae and Rhizobium meliloti nifH promoters. The role of NifA in the formation of an open promoter complex.' J Mol Biol 210(1): 65-77.
Morett, E. and L. Segovia (1993). 'The sigma 54 bacterial enhancer-binding protein family: mechanism of action and phylogenetic relationship of their functional domains.' J Bacteriol 175(19): 6067-6074.
Neuwald, A. F., L. Aravind, J. L. Spouge and E. V. Koonin (1999). 'AAA+: A class of chaperone-like ATPases associated with the assembly, operation, and disassembly of protein complexes.' Genome Res 9(1): 27-43.
O'Callaghan, C. A., J. Tormo, B. E. Willcox, C. D. Blundell, B. K. Jakobsen, D. I. Stuart, A. J. McMichael, J. I. Bell and E. Y. Jones (1998). 'Production, crystallization, and preliminary X-ray analysis of the human MHC class Ib molecule HLA-E.' Protein Sci 7(5): 1264-1266.
Rappas, M., D. Bose and X. Zhang (2007). 'Bacterial enhancer-binding proteins: unlocking sigma54-dependent gene transcription.' Curr Opin Struct Biol 17(1): 110-116.
Rappas, M., J. Schumacher, H. Niwa, M. Buck and X. Zhang (2006). 'Structural basis of the nucleotide driven conformational changes in the AAA+ domain of transcription activator PspF.' J Mol Biol 357(2): 481-492.
Raran-Kurussi, S. and D. S. Waugh (2012). 'The ability to enhance the solubility of its fusion partners is an intrinsic property of maltose-binding protein but their folding is either spontaneous or chaperone-mediated.' PLoS One 7(11): e49589.
Sabate, R., N. S. de Groot and S. Ventura (2010). 'Protein folding and aggregation in bacteria.' Cell Mol Life Sci 67(16): 2695-2715.
Schumacher, J., X. Zhang, S. Jones, P. Bordes and M. Buck (2004). 'ATP-dependent transcriptional activation by bacterial PspF AAA+ protein.' J Mol Biol 338(5): 863-875.
Shaki-Loewenstein, S., R. Zfania, S. Hyland, W. S. Wels and I. Benhar (2005). 'A universal strategy for stable intracellular antibodies.' J Immunol Methods 303(1-2): 19-39.
Sorensen, H. P. and K. K. Mortensen (2005). 'Advanced genetic strategies for recombinant protein expression in Escherichia coli.' J Biotechnol 115(2): 113-128.
Tartaglia, G. G. and M. Vendruscolo (2010). 'Proteome-level interplay between folding and aggregation propensities of proteins.' J Mol Biol 402(5): 919-928.
Tuller, T., A. Carmi, K. Vestsigian, S. Navon, Y. Dorfan, J. Zaborske, T. Pan, O. Dahan, I. Furman and Y. Pilpel (2010). 'An evolutionarily conserved mechanism for controlling the efficiency of protein translation.' Cell 141(2): 344-354.
Vera, A., N. Gonzalez-Montalban, A. Aris and A. Villaverde (2007). 'The conformational quality of insoluble recombinant proteins is enhanced at low growth temperatures.' Biotechnol Bioeng 96(6): 1101-1106.
Yamaguchi, S., E. Yamamoto, T. Mannen, T. Nagamune and T. Nagamune (2013). 'Protein refolding using chemical refolding additives.' Biotechnol J 8(1): 17-31.
Zhang, X., M. Chaney, S. R. Wigneshweraraj, J. Schumacher, P. Bordes, W. Cannon and M. Buck (2002). 'Mechanochemical ATPases and transcriptional activation.' Mol Microbiol 45(4): 895-903.
Zhang, Y. B., J. Howitt, S. McCorkle, P. Lawrence, K. Springer and P. Freimuth (2004). 'Protein aggregation during overexpression limited by peptide extensions with large net negative charge.' Protein Expr Purif 36(2): 207-216.
dc.identifier.urihttp://tdr.lib.ntu.edu.tw/jspui/handle/123456789/60189-
dc.description.abstract重組蛋白 (recombinant protein) 表現在現代的生技產業是不可或缺的技術。其中,利用大腸桿菌作為宿主的優勢是可以低成本地獲得大量的重組蛋白。但是在過程當中,許多重組蛋白因為折疊錯誤而形成不具有活性的不可溶沉澱,稱之為包涵體 (inclusion body)。再折疊法 (refolding) 則是利用離散劑 (chaotropic agent) 將折疊錯誤的蛋白質沉澱變性而溶解,在去除離散劑之後,使蛋白質折疊成正確的構型。VasH 在細胞中扮演依賴 sigma factor 54的轉錄調控因子,並且發現其參與 Pseudomonas syringae 第六型分泌系統 (Type VI secretion system) 分泌蛋白 Hcp2 之轉錄,但是以大腸桿菌做為宿主進行重組蛋白 His-VasH 表現時卻都是位於不可溶的包涵體。本篇選擇以快速稀釋法 (rapid dilution) 先將變性蛋白質滴入含有精胺酸 (arginine) 的再折疊緩衝溶液 (refolding buffer),再將大體積的再折疊緩衝溶液通過鎳親和性管柱 (Ni2+-NTA column) 以捉住其中的 His-VasH 重組蛋白,最後以含有咪唑 (imidazole) 的溶液流洗出以達到濃縮的效果。首先,我們以生物資訊學的方式了解 VasH 為一種 AAA protein (ATPase associated with diverse cellular activities),具有典型的AAA功能區塊並且歸類於第三群細菌增強子結合蛋白 (bacterial enhancer binding protein)。由於過去研究發現再折疊緩衝溶液中的精胺酸將影響蛋白質與管柱的結合,所以我們首先以綠色螢光蛋白 (eGFP) 在含有不同濃度精胺酸緩衝液中與管柱結合,以肉眼觀察綠色螢光蛋白與鎳親和性管柱的結合情形和計算蛋白質回收率,得知鎳親和性管柱可容許的精胺酸濃度為100 mM。接著,將不同量的蛋白質加入等體積的再折疊緩衝溶液中,以肉眼觀察沉澱與光度計測定OD600決定稀釋比例,發現每100 mL 的再折疊緩衝溶液可以容納2 mg 的蛋白質進行再折疊。最後,我們對以此方法製備出的 His-VasHAAA 與可溶的 MBP-VasHAAA 進行活性分析,證明此方法可以製備出具有活性的 VasHAAA,而 MBP 也確定能夠在細胞中幫助 VasHAAA 蛋白質正確折疊成有活性的構型。透過本論文的研究,對於未來製備 VasH 重組蛋白進行結構分析有所助益。zh_TW
dc.description.abstractHeterologous expression of recombinant proteins has become a powerful tool in the field of medicine and biotechnology. Escherichia coli is one of the most favorable host for recombinant protein expression due to its rapid, robust and economic advantages. However, many exogenous proteins may not be folded correctly in E.coli. Those mis-folded proteins become insoluble and precipitate as inclusion bodies. Refolding is a method developed to directly recover proteins from inclusion bodies. The process begins with solubilization of inclusion body with solution containing high concentration of chaotropic compounds, such as urea or guanidinium hydrochloride. The denature proteins undergo refolding while those chaotropic compounds are gradually removed. In this study, we used the AAA domain of VasH (VasHAAA), a sigma 54-dependent transcriptional regulator, of Pseudomonas syringae to demonstrate a simple and convenient refolding method for His-tagged recombinant protein by drip dilution following Ni2+-NTA column purification. Bioinformatics research of VasH in this study provides essential understanding of this AAA protein. Sequence alignment with other bacterial enhancer binding proteins reveals that VasH possesses common features of most AAA proteins and is classified in group III. From structural modeling, interaction between ATP and AAA domain of VasH suggests that VasH is a functional ATPase. We had determined the arginine concentration compatible for Ni2+-NTA column is 100 mM, and maximum protein accommodation for 100 mL refolding buffer is 2 mg. Finally, activity of refolded His-VasHAAA is verified and MBP is proven to enhance protein folding to improve recombinant protein solubility. This study provides reasearchers a feasible method to prepare recombinant VasH for further investigation.en
dc.description.provenanceMade available in DSpace on 2021-06-16T10:13:26Z (GMT). No. of bitstreams: 1
ntu-102-R00623007-1.pdf: 1683073 bytes, checksum: a280fdf0d2240d7a1dc9849b96df38c9 (MD5)
Previous issue date: 2013
en
dc.description.tableofcontentsCONTENTS
口試委員會審定書 #
中文摘要 i
ABSTRACT ii
CONTENTS iii
LIST OF FIGURES v
Chapter 1 Introduction 1
1.1 Using E. coli as a host in recombinant protein expression 1
1.2 Some heterogeneous recombinant proteins were expressed in inclusion body in E.coli 1
1.3 Circumvention of inclusion body formation 2
1.4 The discovery of protein refolding by Christian Anfinsen 3
1.5 The refolding process consists of two parts: solubilization of inclusion body and refolding into its correct conformation 4
1.6 Refolding condition is decisive for each individual protein to refold correctly 5
1.7 Two practical approaches for refolding: dialysis and dilution 5
1.8 VasH, a sigma 54-dependent transcriptional regulator in Pseudomonas syringae pv. tomato DC3000 7
Chapter 2 Research goal 10
Chapter 3 Materials and methods 11
3.1 Materials 11
3.1.1 Bacteria strains 11
3.1.2 Culture media 11
3.1.3 Bacterial culture 11
3.2 Methods 12
3.2.1 Pseudomonas syringae genomic DNA extraction 12
3.2.2 Plasmid DNA extraction from E. coli 12
3.2.3 Vectors preparation 12
3.2.4 Polymerase chain reaction (PCR) 13
3.2.5 Insert preparation 14
3.2.6 Ligation and transformation 14
3.2.7 Protein expression 15
3.2.8 Protein extraction 15
3.2.9 Inclusion body solubilization 15
3.2.10 SDS-polyacrylamide gel electrophoresis (SDS-PAGE) 16
3.2.11 Bicinchoninic acid assay 16
3.2.12 Protein refolding 17
3.2.13 Affinity column purification 17
3.2.14 ATP determination assay 17
Chapter 4 Results 18
4.1 Bioinformatic research of VasH 18
4.2 Cloning of vasH 19
4.3 VasH recombinant protein expression 19
4.4 Arginine concentration adjustment in refolding buffer 20
4.5 Dilution ratio determine during refolding 21
4.6 Refolding and enrichment of His-VasHAAA 21
4.7 MBP-tagged fusion protein preparation 21
4.8 ATPase activity assay of MBP-VasHAAA and refolded His-VasHAAA 21
Chapter 5 Discussion 35
References 37
dc.language.isoen
dc.subject重組蛋白zh_TW
dc.subject再折疊法zh_TW
dc.subjectrefoldingen
dc.subjectrecombinant proteinen
dc.title利用再折疊法製備Pseudomonas syringae VasH重組蛋白並探討其結構與活性分析zh_TW
dc.titleRecombinant protein preparation by refolding to study the structure and activity of Pseudomonas syringae VasHen
dc.typeThesis
dc.date.schoolyear101-2
dc.description.degree碩士
dc.contributor.coadvisor徐駿森
dc.contributor.oralexamcommittee林翰佳,羅清維
dc.subject.keyword再折疊法,重組蛋白,zh_TW
dc.subject.keywordrefolding,recombinant protein,en
dc.relation.page39
dc.rights.note有償授權
dc.date.accepted2013-08-20
dc.contributor.author-college生物資源暨農學院zh_TW
dc.contributor.author-dept農業化學研究所zh_TW
顯示於系所單位:農業化學系

文件中的檔案:
檔案 大小格式 
ntu-102-1.pdf
  未授權公開取用
1.64 MBAdobe PDF
顯示文件簡單紀錄


系統中的文件,除了特別指名其著作權條款之外,均受到著作權保護,並且保留所有的權利。

社群連結
聯絡資訊
10617臺北市大安區羅斯福路四段1號
No.1 Sec.4, Roosevelt Rd., Taipei, Taiwan, R.O.C. 106
Tel: (02)33662353
Email: ntuetds@ntu.edu.tw
意見箱
相關連結
館藏目錄
國內圖書館整合查詢 MetaCat
臺大學術典藏 NTU Scholars
臺大圖書館數位典藏館
本站聲明
© NTU Library All Rights Reserved