Skip navigation

DSpace

機構典藏 DSpace 系統致力於保存各式數位資料(如:文字、圖片、PDF)並使其易於取用。

點此認識 DSpace
DSpace logo
English
中文
  • 瀏覽論文
    • 校院系所
    • 出版年
    • 作者
    • 標題
    • 關鍵字
    • 指導教授
  • 搜尋 TDR
  • 授權 Q&A
    • 我的頁面
    • 接受 E-mail 通知
    • 編輯個人資料
  1. NTU Theses and Dissertations Repository
  2. 工學院
  3. 應用力學研究所
請用此 Handle URI 來引用此文件: http://tdr.lib.ntu.edu.tw/jspui/handle/123456789/60170
完整後設資料紀錄
DC 欄位值語言
dc.contributor.advisor周逸儒(Yi-Ju Chou)
dc.contributor.authorWei-Hung Linen
dc.contributor.author林韋宏zh_TW
dc.date.accessioned2021-06-16T10:00:44Z-
dc.date.available2017-02-08
dc.date.copyright2017-02-08
dc.date.issued2016
dc.date.submitted2016-11-14
dc.identifier.citation[1]. Allen, M. P., & Tildesley, D. J. (1989). Computer simulation of liquids. Oxford university press.
[2]. Amoudry, L., Hsu, T. J., & Liu, P. F. (2008). Two‐phase model for sand transport in sheet flow regime. Journal of Geophysical Research: Oceans,113(C3).
[3]. Asano, T. (1995). Sediment transport under sheet-flow conditions. Journal of waterway, port, coastal, and ocean engineering, 121(5), 239-246.
[4]. Auton, T. R., Hunt, J. C. R., & Prud'Homme, M. (1988). The force exerted on a body in inviscid unsteady non-uniform rotational flow. Journal of Fluid Mechanics, 197, 241-257.
[5]. Cheng, Z., & Hsu, T. J. (2014). A turbulence-resolving eulerian two-phase model for sediment transport. Coastal Engineering Proceedings, 1(34), 74.
[6]. Chou, Y. J., & Fringer, O. B. (2008). Modeling dilute sediment suspension using large-eddy simulation with a dynamic mixed model. Physics of Fluids (1994-present), 20(11), 115103.
[7]. Chou, Y. J., Wu, F. C., & Shih, W. R. (2014). Toward numerical modeling of fine particle suspension using a two-way coupled Euler–Euler model. Part 1: Theoretical formulation and implications. International Journal of Multiphase Flow, 64, 35-43.
[8]. Chou, Y. J., Wu, F. C., & Shih, W. R. (2014). Toward numerical modeling of fine particle suspension using a two-way coupled Euler–Euler model: Part 2: Simulation of particle-induced Rayleigh–Taylor instability. International Journal of Multiphase Flow, 64, 44-54.
[9]. Cui, A. (1999). On the parallel computing of turbulent rotating stratified flows(Doctoral dissertation, Ph. D. dissertation, Stanford Univ., Stanford, Calif).
[10]. Cui, A., & Street, R. L. (2004). Large-eddy simulation of coastal upwelling flow.Environmental Fluid Mechanics, 4(2), 197-223.
[11]. Ding, J., & Gidaspow, D. (1990). A bubbling fluidization model using kinetic theory of granular flow. AIChE journal, 36(4), 523-538.
[12]. Fringer, O. B., Armfield, S. W., & Street, R. L. (2005). Reducing numerical diffusion in interfacial gravity wave simulations. International journal for numerical methods in fluids, 49(3), 301-329.
[13]. Ma, G., Chou, Y. J., & Shi, F. (2014). A wave-resolving model for nearshore suspended sediment transport. Ocean Modelling, 77, 33-49.
[14]. Gidaspow, D., & Ettehadieh, B. (1983). Fluidization in two-dimensional beds with a jet. 2. Hydrodynamic modeling. Industrial & Engineering Chemistry Fundamentals, 22(2), 193-201.
[15]. Gidaspow, D. (1994). Multiphase flow and fluidization: continuum and kinetic theory descriptions. Academic press.
[16]. Goldschmidt, M. J. V., Kuipers, J. A. M., & Van Swaaij, W. P. M. (2001). Hydrodynamic modelling of dense gas-fluidised beds using the kinetic theory of granular flow: effect of coefficient of restitution on bed dynamics. Chemical Engineering Science, 56(2), 571-578.
[17]. Goldschmidt, M. J. V., Beetstra, R., & Kuipers, J. A. M. (2004). Hydrodynamic modelling of dense gas-fluidised beds: comparison and validation of 3D discrete particle and continuum models. Powder Technology, 142(1), 23-47.
[18]. Helmholtz, H. (1882). Ueber absolute Maasssysteme für electrische und magnetische Grössen. Annalen der Physik, 253(9), 42-54.
[19]. Hoomans, B. P. B., Kuipers, J. A. M., Briels, W. J., & Van Swaaij, W. P. M. (1996). Discrete particle simulation of bubble and slug formation in a two-dimensional gas-fluidised bed: a hard-sphere approach. Chemical Engineering Science, 51(1), 99-118.
[20]. Hsu, T. J., Jenkins, J. T., & Liu, P. L. F. (2004, August). On two-phase sediment transport: sheet flow of massive particles. In Proceedings of the Royal Society of London A: Mathematical, Physical and Engineering Sciences (Vol. 460, No. 2048, pp. 2223-2250). The Royal Society.
[21]. Huilin, L., Yurong, H., & Gidaspow, D. (2003). Hydrodynamic modelling of binary mixture in a gas bubbling fluidized bed using the kinetic theory of granular flow. Chemical Engineering Science, 58(7), 1197-1205.
[22]. Jenkins, J., & Savage, S. B. (1983). Theory for the rapid flow of identical, smooth, nearly elastic, spherical particles. Journal of Fluid Mechanics, 130(1), 187-202.
[23]. Johnson, P. C., & Jackson, R. (1987). Frictional–collisional constitutive relations for granular materials, with application to plane shearing. Journal of fluid Mechanics, 176, 67-93.
[24]. Johnson, P. C., Nott, P., & Jackson, R. (1990). Frictional–collisional equations of motion for participate flows and their application to chutes. Journal of fluid mechanics, 210, 501-535.
[25]. Kafui, K. D., Thornton, C., & Adams, M. J. (2002). Discrete particle-continuum fluid modelling of gas–solid fluidised beds. Chemical Engineering Science,57(13), 2395-2410.
[26]. Kaushal, D. R., Thinglas, T., Tomita, Y., Kuchii, S., & Tsukamoto, H. (2012). CFD modeling for pipeline flow of fine particles at high concentration.International Journal of Multiphase Flow, 43, 85-100.
[27]. Kaushal, D. R., Kumar, A., Tomita, Y., Kuchii, S., & Tsukamoto, H. (2013). Flow of mono-dispersed particles through horizontal bend. International Journal of Multiphase Flow, 52, 71-91.
[28]. Kim, J., & Moin, P. (1985). Application of a fractional-step method to incompressible Navier-Stokes equations. Journal of computational physics,59(2), 308-323.
[29]. Kuipers, J. A. M., Van Duin, K. J., Van Beckum, F. P. H., & Van Swaaij, W. P. M. (1992). A numerical model of gas-fluidized beds. Chemical Engineering Science, 47(8), 1913-1924.
[30]. Ladd, A. J. (1994). Numerical simulations of particulate suspensions via a discretized Boltzmann equation. Part 1. Theoretical foundation. Journal of Fluid Mechanics, 271(1), 285-309.
[31]. Ladd, A. J. C., & Verberg, R. (2001). Lattice-Boltzmann simulations of particle-fluid suspensions. Journal of Statistical Physics, 104(5-6), 1191-1251.
[32]. Lee, C. H., Huang, Z., & Chiew, Y. M. (2015). A three-dimensional continuum model incorporating static and kinetic effects for granular flows with applications to collapse of a two-dimensional granular column. Physics of Fluids (1994-present), 27(11), 113303.
[33]. Lee, C. H., Low, Y. M., & Chiew, Y. M. (2016). Multi-dimensional rheology-based two-phase model for sediment transport and applications to sheet flow and pipeline scour. Physics of Fluids (1994-present), 28(5), 053305.
[34]. Leonard, B. P. (1979). A stable and accurate convective modelling procedure based on quadratic upstream interpolation. Computer methods in applied mechanics and engineering, 19(1), 59-98.
[35]. Leonard, B. P. (1988). Simple high‐accuracy resolution program for convective modelling of discontinuities. International Journal for Numerical Methods in Fluids, 8(10), 1291-1318.
[36]. Lijie, Y., Shuyan, W., Huilin, L., Shuai, W., Pengfei, X., Lixing, W., & Yurong, H. (2010). Flow of gas and particles in a bubbling fluidized bed with a filtered two-fluid model. Chemical Engineering Science, 65(9), 2664-2679.
[37]. Lun, C. K. K., Savage, S. B., Jeffrey, D. J., & Chepurniy, N. (1984). Kinetic theories for granular flow: inelastic particles in Couette flow and slightly inelastic particles in a general flowfield. Journal of fluid mechanics, 140, 223-256.
[38]. Mansoori, G. A., Carnahan, N. F., Starling, K. E., & Leland Jr, T. W. (1971). Equilibrium thermodynamic properties of the mixture of hard spheres. The Journal of Chemical Physics, 54(4), 1523-1525.
[39]. Mittal, R., & Iaccarino, G. (2005). Immersed boundary methods. Annu. Rev. Fluid Mech., 37, 239-261.
[40]. Nieuwland, J. J., van Sint Annaland, M., Kuipers, J. A. M., & Van Swaaij, W. P. M. (1996). Hydrodynamic modeling of gas/particle flows in riser reactors. AIChE Journal, 42(6), 1569-1582.
[41]. O'Donoghue, T., & Wright, S. (2004). Flow tunnel measurements of velocities and sand flux in oscillatory sheet flow for well-sorted and graded sands. Coastal Engineering, 51(11), 1163-1184.
[42]. Perng, C. Y., & Street, R. L. (1989). Three‐dimensional unsteady flow simulations: Alternative strategies for a volume‐averaged calculation.International journal for numerical methods in fluids, 9(3), 341-362.
[43]. Peskin, C. S. (2002). The immersed boundary method. Acta numerica, 11, 479-517.
[44]. Riber, E., Moureau, V., García, M., Poinsot, T., & Simonin, O. (2009). Evaluation of numerical strategies for large eddy simulation of particulate two-phase recirculating flows. Journal of Computational Physics, 228(2), 539-564.
[45]. Saffman, P. G. T. (1965). The lift on a small sphere in a slow shear flow. Journal of fluid mechanics, 22(02), 385-400.
[46]. Savage, S. B. (1984). The mechanics of rapid granular flows. Advances in applied mechanics, 24, 289-366.
[47]. Savage, S. B. (1988). Streaming motions in a bed of vibrationally fluidized dry granular material. Journal of Fluid Mechanics, 194, 457-478.
[48]. Succi, S. (2001). The lattice Boltzmann equation: for fluid dynamics and beyond. Oxford university press.
[49]. Sumer, B. M., Kozakiewicz, A., Freds?e, J., & Deigaard, R. (1996). Velocity and concentration profiles in sheet-flow layer of movable bed. Journal of Hydraulic Engineering, 122(10), 549-558.
[50]. Syamlal, M., & O’Brien, T. J. (1989). Computer simulation of bubbles in a fluidized bed. In AIChE Symp. Ser (Vol. 85, No. 1, pp. 22-31).
[51]. Syamlal, M., Rogers, W., & O’Brien, T. J. (1993). MFIX documentation: Theory guide. National Energy Technology Laboratory, Department of Energy, Technical Note DOE/METC-95/1013 and NTIS/DE95000031.
[52]. Tardos, G. I. (1997). A fluid mechanistic approach to slow, frictional flow of powders. Powder Technology, 92(1), 61-74.
[53]. Thomson, W. (1871). XLVI. Hydrokinetic solutions and observations. The London, Edinburgh, and Dublin Philosophical Magazine and Journal of Science,42(281), 362-377.
[54]. Tsuji, Y., Kawaguchi, T., & Tanaka, T. (1993). Discrete particle simulation of two-dimensional fluidized bed. Powder technology, 77(1), 79-87.
[55]. Tsuo, Y. P., & Gidaspow, D. (1990). Computation of flow patterns in circulating fluidized beds. AIChE Journal, 36(6), 885-896.
[56]. Uhlmann, M. (2005). An immersed boundary method with direct forcing for the simulation of particulate flows. Journal of Computational Physics, 209(2), 448-476.
[57]. Vanoni, V. A., & Brooks, N. H. (1957). Laboratory studies of the roughness and suspended load of alluvial streams.
[58]. Van der Hoef, M. A., van Sint Annaland, M., Deen, N. G., & Kuipers, J. A. M. (2008). Numerical simulation of dense gas-solid fluidized beds: a multiscale modeling strategy. Annu. Rev. Fluid Mech., 40, 47-70.
[59]. Van Rijn, L. C. (1993). Principles of sediment transport in rivers, estuaries and coastal seas (Vol. 1006). Amsterdam: Aqua publications.
[60]. Wen, C. Y., & Yu, Y. (1966). Mechanics of fluidization. In Chem. Eng. Prog. Symp. Ser. (Vol. 62, No. 62, p. 100).
[61]. Zang, Y., Street, R. L., & Koseff, J. R. (1993). A dynamic mixed subgrid‐scale model and its application to turbulent recirculating flows. Physics of Fluids A: Fluid Dynamics (1989-1993), 5(12), 3186-3196.
[62]. Zang, Y., Street, R. L., & Koseff, J. R. (1994). A non-staggered grid, fractional step method for time-dependent incompressible Navier-Stokes equations in curvilinear coordinates. Journal of Computational Physics, 114(1), 18-33.
[63]. Zang, Y., & Street, R. L. (1995). Numerical simulation of coastal upwelling and inerfacial instability of a rotaion and stratified fluid. Journal of Fluid Mechanics,305, 47-75.
[64]. Zedler, E. A., & Street, R. L. (2001). Large-eddy simulation of sediment transport: currents over ripples. Journal of Hydraulic Engineering, 127(6), 444-452.
[65]. Zedler, E. A., & Street, R. L. (2006). Sediment transport over ripples in oscillatory flow. Journal of Hydraulic Engineering, 132(2), 180-193.
[66]. Zhang, Y., & Campbell, C. S. (1992). The interface between fluid-like and solid-like behaviour in two-dimensional granular flows. Journal of Fluid Mechanics,237, 541-568.
dc.identifier.urihttp://tdr.lib.ntu.edu.tw/jspui/handle/123456789/60170-
dc.description.abstract本研究致力於開發能應用在通道流場之高濃度的固液二相流之三維數值模式,而此模型中,固相以及液相所引用的方程式皆為適用於連續體之廣義納維爾-史托克方程式,因此兩相皆在尤拉網格上做解析。由於在計算靠近底床之流場時,其流場現象非常紊亂,因此在流體的計算上,我們採用了大渦流模式來解紊流流場,並且以混合動力模型來處理次網格尺度的流場。在高濃度的流場中,由於史托克阻力模型以不再適用,因此採用一套可描述在高濃度流場的阻力模型。在顆粒相的碰撞機制則是根據粒子流動力論來處理;而泥沙沉積的部份則是引用了的顆粒摩擦正向應力,來支撐掉落的泥沙。在驗證模型的過程,首先令此組泥沙自由的沉降,並且在沉積一層底床後,開始進行薄層流的驗證。而驗證的結果發現,本研究開發的模型能準確的捕抓到不同希爾參數下薄層流之泥沙濃度的分布。採用這樣的尤拉-尤拉數值模式,對於在高濃度的流場中能比尤拉-拉格朗日數值模式有效的節省計算的資源。zh_TW
dc.description.abstractWe develop a three-dimensional Eulerian-Eulerian computational tool to model dense solid-liquid two-phase flow in the channel. By treating the solid phase as a continuum, a more computationally efficient simulation compared to the Eulerian-Lagrangian model can be achieved. The Large-eddy simulation (LES) is introduced to solve the turbulent flow, which employs a dynamic mixed model to deal with the sub-grid-scale field. As the Stokes drag is only suitable for the dilute case, the drag model for the dense suspension is employed. The collisional mechanism of particles is modeled based on the kinetic theory of granular flow, and the sediment frictional normal stress model isadopted to simulate the deposition of sediment. The model is validated with the experimental data of sheet flow. The model validation shows that our model is able to precisely replicate the mean sediment concentration profiles under different erosion criteria.en
dc.description.provenanceMade available in DSpace on 2021-06-16T10:00:44Z (GMT). No. of bitstreams: 1
ntu-105-R03543075-1.pdf: 3718297 bytes, checksum: 470b8ce8063e463caf5744b87bdb7955 (MD5)
Previous issue date: 2016
en
dc.description.tableofcontents誌謝 i
中文摘要 ii
ABSTRACT iii
總目錄 iv
圖目錄 vi
表目錄 viii
Chapter 1 緒論 1
1.1 研究動機 1
1.2 文獻回顧 3
1.3 研究方法 9
Chapter 2 理論與數值模式 11
2.1 二流體法 12
2.2 大渦流模式 13
2.3 統御方程式 14
2.3.1 阻力模型 18
2.3.2 顆粒相應力模型 20
2.3.3 方程式耦合 26
2.4 粒子溫度傳輸方程式 29
2.5 數值離散化計算 31
2.5.1 統御方程式離散化 32
2.5.2 粒子溫度傳輸方程式離散化 35
2.6 模式介紹 38
Chapter 3 數值模式之驗證 39
3.1 模擬配置 39
3.2 泥沙自由沉降 41
3.2.1 阻力模型對沉降速度之影響 41
3.2.2 沉降過程 45
3.2.3 堆積作用 47
3.3 薄層流之驗證 48
3.3.1 薄層流實驗驗證 49
3.3.2 不同顆粒碰撞黏滯係數模型之影響 51
3.3.3 阻力模型之影響 55
3.3.4 摩擦黏滯係數之影響 58
3.4 粒子溫度之探討 62
3.5 薄層流產生之原因 64
Chapter 4 結論與未來工作 69
4.1 結果與討論 69
4.2 未來工作 72
參考文獻 73
dc.language.isozh-TW
dc.subject大渦流模式zh_TW
dc.subject尤拉-尤拉法zh_TW
dc.subject固液二相流zh_TW
dc.subject粒子流動力論zh_TW
dc.subject薄層流zh_TW
dc.subjectgranular flowen
dc.subjectLESen
dc.subjectSolid-Liquid two-phase flowen
dc.subjectsheet flowen
dc.subjectEuler-Euler methoden
dc.title剪力下液化床行為的兩相流數值模擬zh_TW
dc.titleEuler-Euler simulation of fluidized bed under the shearen
dc.typeThesis
dc.date.schoolyear105-1
dc.description.degree碩士
dc.contributor.oralexamcommittee牛仰堯(Yang-Yao Niu),楊馥菱(Fu-Ling Yang)
dc.subject.keyword固液二相流,大渦流模式,薄層流,粒子流動力論,尤拉-尤拉法,zh_TW
dc.subject.keywordSolid-Liquid two-phase flow,LES,sheet flow,granular flow,Euler-Euler method,en
dc.relation.page80
dc.identifier.doi10.6342/NTU201603742
dc.rights.note有償授權
dc.date.accepted2016-11-15
dc.contributor.author-college工學院zh_TW
dc.contributor.author-dept應用力學研究所zh_TW
顯示於系所單位:應用力學研究所

文件中的檔案:
檔案 大小格式 
ntu-105-1.pdf
  未授權公開取用
3.63 MBAdobe PDF
顯示文件簡單紀錄


系統中的文件,除了特別指名其著作權條款之外,均受到著作權保護,並且保留所有的權利。

社群連結
聯絡資訊
10617臺北市大安區羅斯福路四段1號
No.1 Sec.4, Roosevelt Rd., Taipei, Taiwan, R.O.C. 106
Tel: (02)33662353
Email: ntuetds@ntu.edu.tw
意見箱
相關連結
館藏目錄
國內圖書館整合查詢 MetaCat
臺大學術典藏 NTU Scholars
臺大圖書館數位典藏館
本站聲明
© NTU Library All Rights Reserved