Skip navigation

DSpace

機構典藏 DSpace 系統致力於保存各式數位資料(如:文字、圖片、PDF)並使其易於取用。

點此認識 DSpace
DSpace logo
English
中文
  • 瀏覽論文
    • 校院系所
    • 出版年
    • 作者
    • 標題
    • 關鍵字
  • 搜尋 TDR
  • 授權 Q&A
    • 我的頁面
    • 接受 E-mail 通知
    • 編輯個人資料
  1. NTU Theses and Dissertations Repository
  2. 工學院
  3. 化學工程學系
請用此 Handle URI 來引用此文件: http://tdr.lib.ntu.edu.tw/jspui/handle/123456789/60150
完整後設資料紀錄
DC 欄位值語言
dc.contributor.advisor王大銘(Da-Ming Wang)
dc.contributor.authorSzu-Wei Chenen
dc.contributor.author陳思瑋zh_TW
dc.date.accessioned2021-06-16T09:59:24Z-
dc.date.available2020-02-21
dc.date.copyright2017-02-21
dc.date.issued2016
dc.date.submitted2016-11-30
dc.identifier.citation1. Cui, Z.; Drioli, E.; Lee, Y. M., Recent progress in fluoropolymers for membranes.Progress in Polymer Science, 2014, 39: pp. 164-198.
2. Cui, Z.; Hassankiadeh, N. T.; Zhuang, Y.; Drioli, E.; Lee, Y. M., Crystalline polymorphism in poly(vinylidenefluoride) membranes. Progress in PolymernScience, 2015.
3. Ahner, N.; Gottschlich, D.; Narang, S.; Roberts, D.; Sharma, S.; Ventura, S.,
Piezoelectrically assisted ultrafiltration. Separation Science and Technology,1993, 28: pp. 895-908.
4. Darestani, M. T.; Coster, H. G. L.; Chilcott, T. C., Piezoelectric membranes for separation processes: Operating conditions and filtration performance. Journal
of Membrane Science, 2013, 435: pp. 226-232.
5. Ameduri, B., From Vinylidene Fluoride (VDF) to the Applications of VDF-Containing Polymers and Copolymers: Recent Developments and Future Trends. Chemical Reviews, 2009, 109: pp. 6632-6686.
6. Martins, P.; Lopes, A. C.; Lanceros-Mendez, S., Electroactive phases of poly(vinylidene fluoride): Determination, processing and applications. Progress in Polymer Science, 2014, 39: pp. 683-706.
7. Tao, M. M.; Liu, F.; Ma, B. R.; Xue, L. X., Effect of solvent power on PVDF membrane polymorphism during phase inversion. Desalination, 2013, 316: pp.137-145.
8. Byutner, O. G.; Smith, G. D., Conformational properties of poly(vinylidene fluoride). A quantum chemistry study of model compounds. Macromolecules,1999, 32: pp. 8376-8382.
9. Gregorio, R., Determination of the alpha, beta, and gamma crystalline phases of
poly(vinylidene fluoride) films prepared at different conditions. Journal of Applied Polymer Science, 2006, 100: pp. 3272-3279.
10. Salimi, A.; Yousefi, A. A., Conformational changes and phase transformation mechanisms in PVDF solution-cast films. Journal of Polymer Science Part B-Polymer Physics, 2004, 42: pp. 3487-3495.
11. Daniel, M. E., Manufacturingof Poly (vinylidene fluoride) and Evaluation of its Mechanical Properties. Masters of Science in Materials Science and Engineering
2002, Virginia Polytechnic Institute and State University.
12. Jean-Mistral, C.; Basrour, S.; Chaillout, J. J., Comparison of electroactive polymers for energy scavenging applications. Smart Materials & Structures,
2010, 19.
13. Ramadan, K. S.; Sameoto, D.; Evoy, S., A review of piezoelectric polymers as functional materials for electromechanical transducers. Smart Materials and Structures, 2014, 23.
14. Zhao, X.; Cheng, J.; Chen, S. J.; Zhang, J.; Wang, X. L., Controlled crystallization of poly(vinylidene fluoride) chains from mixed solvents composed of its good solvent and nonsolvent. J Polym Sci Part B: Polym Phys.
Journal of Polymer Science Part B Polymer Physics, 2010.
15. Yee, W. A.; Kotaki, M.; Liu, Y.; Lu, X. H., Morphology, polymorphism behavior and molecular orientation of electrospun poly(vinylidene fluoride) fibers.Polymer, 2007, 48: pp. 512-521.
16. Zheng, J. F.; He, A. H.; Li, J. X.; Han, C. C., Polymorphism control of poly(vinylidene fluoride) through electrospinning. Macromolecular Rapid Communications, 2007, 28: pp. 2159-2162.
17. Li, M. Y.; Stingelin, N.; Michels, J. J.; Spijkman, M. J.; Asadi, K.; Feldman, K.;Blom, P. W. M., Ferroelectric Phase Diagram of PVDF:PMMA. Macromolecules,
2012, 45: pp. 7477-7485.
18. Ahmad, A. L.; Ideris, N.; Ooi, B. S.; Low, S. C.; Ismail, A., Morphology and polymorph study of a polyvinylidene fluoride (PVDF) membrane for protein
binding: Effect of the dissolving temperature. Desalination, 2011, 278: pp.318-324.
19. Lopes, A. C.; Costa, C. M.; Serra, R. S. I.; Neves, I. C.; Ribelles, J. L. G.,Lanceros-Mendez, S., Dielectric relaxation, ac conductivity and electric modulus in poly(vinylidene fluoride)/NaY zeolite composites. Solid State Ionics, 2013,235: pp. 42-50.
20. Martins, P.; Caparros, C.; Gonçalves, R.; Martins, P. M.; Benelmekki, M.;Botelho, G.; Lanceros-Mendez, S., Role of Nanoparticle Surface Charge on the Nucleation of the Electroactive β-Poly(vinylidene fluoride) Nanocomposites for Sensor and Actuator Applications. Journal of physical chemistry, 2012,116: pp.15790–15794.
21. Chen, S.; Yao, K.; Tay, F. E. H.; Liow, C. L., Ferroelectric poly(vinylidene fluoride) thin films on Si substrate with the beta phase promoted by hydrated magnesium nitrate. Journal of Applied Physics, 2007, 102.
22. 謝文馨, 利用改變高分子溶解溫度及添加含水無機鹽來調控PVDF 薄膜之結構及結晶型態. 碩士論文, 2010, 台灣大學化學工程學系.
23. Darestani, M. T.; Coster, H. G. L.; Chilcott, T. C., Piezoelectric membranes for separation processes: Fabrication and piezoelectric properties. Journal of
Membrane Science, 2013, 434: pp. 184-192.
24. Davis, G. T.; Davis, G. T.; Mckinney, J. E.; Broadhurst, M. G.; Roth, S. C.,Electric-field-induced phase-changes in poly(vinylidene fluoride). Journal of
Applied Physics, 1978, 49: pp. 4998-5002.
25. He, Q. J.; Zhang, A. M., Effect of microwave irradiation on crystalline structure and dielectric property of PVDF/PZT composite. Journal of Materials Science,2008, 43: pp. 820-823.
26. Kader, M. A., Novel microporous poly(vinylidene fluoride)-graft-poly(tert-butylacrylate) electrolytes for secondary lithium batteries. Polymer International,2008, 57: pp. 1199-1205.
27. Tiwari, V. K.; Avasthi, D. K.; Maiti, P., Swift Heavy Ion Induced Ordering and Piezoelectric beta-phase in Poly(vinylidene fluoride). Acs Applied Materials &
Interfaces, 2011, 3: pp. 1398-1401.
28. Liu, F.; Liu, N. A.; Abed, Y. T., Progress in the production and modification of PVDF membranes. Journal of Membrane Science, 2011, 375: pp. 1-27.
29. Reuvers, A. J.; Altena, F. W.; Smolders, C. A., Demixing and gelation behavior of ternary cellulose-acetate solutions. Journal of Polymer Science PartB-Polymer Physics, 1986, 24: pp. 793-804.
30. Mulder, J., Basic principles of membrane technology.2nded. Dordrecht, 1996,Netherland,Boston:Kluwer Academic.
31. Remuzzi, A.; Boccardo, P., Albumin treatment reduces invitro platelet deposition to pmma dialysis membrane. International Journal of Artificial Organs, 1993,16: pp. 128-131.
32. Mehta, R. H.; Madsen, D. A.; Kalika, D. S., Microporous membranes based on poly(ether ether ketone) via thermally-induced phase-separation. Journal of
Membrane Science, 1995, 107: pp. 93-106.
33. Vandewitte, P.; Dijkstra, P. J.; Vandenberg, J. W., Phase behavior of polylactides in solvent-nonsolvent mixtures. Journal of Polymer Science Part B-Polymer
Physics, 1996, 34: pp. 2553-2568.
34. Young, T. H.; Lin, D. J.; Gau, J. J.; Chuang, W. Y.; Cheng, L. P., Morphology of crystalline nylon-610 membranes prepared by the immersion-precipitation process: competition between crystallization and liquid liquid phase separation.Polymer, 1999, 40: pp. 5011-5021.
35. Lin, D. J.; Cheng, L. P.; Lin, S. P., Effect of compatible nucleation seeds on the morphology of porous Nylon 6 membrane. Desalination, 2002, 145: pp. 31-37.
36. Matsuyama, H.; Cheng, L. P.; Lin, S. P., Membrane formation via thermally induced phase separation in polypropylene/polybutene/diluent system. Journal of Applied Polymer Science, 2002, 84: pp. 1701-1708.
37. Cheng, L. P.; Dwan, A. H.; Gryte, C. C., Membrane formation by isothermal precipitation in polyamide formic-acid water-systems .1. description of
membrane morphology. Journal of Polymer Science Part B-Polymer Physics,1995, 33: pp. 211-222.
38. Akbari, A.; Hamadanian, M.; Jabbari, V.; Lehi, A. Y., Influence of PVDF concentration on the morphology, surface roughness, crystalline structure, and filtration separation properties of semicrystalline phase inversion polymeric membranes. Desalination and Water Treatment, 2012, 46: pp. 96-106.
39. Keshavarz, L.; Khansary, M. A.; Shirazian, S., Phase diagram of ternary polymeric solutions containing nonsolvent/solvent/polymer: Theoretical calculation and experimental validation. Polymer, 2015, 73: pp. 1-8.
40. Lin, F. C.; Wang, D. M.; Lai, J. Y., Asymmetric TPX membranes with high gas flux. Journal of Membrane Science, 1996, 110: pp. 25-36.
41. Stropnik, C.; Musil, V.; Brumen, M., Polymeric membrane formation by wet-phase separation; turbidity and shrinkage phenomena as evidence for the elementary processes. Polymer, 2000, 41: pp. 9227-9237.
42. Bottino, A.; Capannelli, G.; Munari, S.; Turturro, A., Solubility parameters of poly(vinylidene fluoride). Journal of Polymer Science Part B-Polymer Physics,
1988, 26: pp. 785-794.
43. Young, T. H.; Cheng, L. P.; Lin, D. J.; Fane, L.; Chuang, W. Y., Mechanisms of PVDF membrane formation by immersion-precipitation in soft (1-octanol) and
harsh (water) nonsolvents. Polymer, 1999, 40: pp. 5315-5323.
44. 鄧有宗, 鑄膜液晶核密度對PVDF 薄膜結構之影響. 碩士論文, 2009, 台灣大學化學工程學系.
45. Li, C. L.; Wang, D. M.; Deratani, A.; Quemener, D.; Bouyer, D.; Lai, J. Y.,
Insight into the preparation of poly(vinylidene fluoride) membranes by vapor-induced phase separation. Journal of Membrane Science, 2010, 361: pp.154-166.
46. Lin, D. J.; Young, T. H.; Jeng, Y. S.; Cheng, L. P., Strong effect of precursor preparation on the morphology of semicrystalline phase inversion poly(vinylidene fluoride) membranes. Journal of Membrane Science, 2006, 274:pp. 64-72.
47. Buonomenna, M. G.; Macchi, P.; Davoli, M.; Drioli, E., Poly(vinylidene fluoride) membranes by phase inversion: the role the casting and coagulation conditions play in their morphology, crystalline structure and properties. European Polymer Journal, 2007, 43: pp. 1557-1572.
48. Zhao, X. J.; Cheng, J.; Chen, S. J.; Zhang, J.; Wang, X. L., Controlled Crystallization of Poly(vinylidene fluoride) Chains from Mixed Solvents Composed of Its Good Solvent and Nonsolvent. Journal of Polymer Science Part B-Polymer Physics, 2010, 48: pp. 575-581.
49. Venault, A.; Chang, Y.; Wu, J. R.; Wang, D. M., Influence of solvent composition and non-solvent activity on the crystalline morphology of PVDF membranes prepared by VIPS process and on their arising mechanical properties. Journal of the Taiwan Institute of Chemical Engineers, 2014, 45: pp. 1087-1097.
50. Riddick, J. A.; Burger, W. B., Orangic Solvents,Third Edition. 1970.
51. Schirmer, R. E., Modern Methods of Pharmaceutical Analysis, Second Edition,Volume II. 1990.
52. Guenet, J. M., Thermoreversible gelation of polymers and biopolymers.Academic Press, 1992, London.
53. Benz, M.; Euler, W. B.; Gregory, O. J., The role of solution phase water on the deposition of thin films of poly(vinylidene fluoride). Macromolecules, 2002, 35:
pp. 2682-2688.
54. Lin, D. J.; Chang, C. L.; Chen, T. C.; Cheng, L. P., Microporous PVDF membrane formation by immersion precipitation from water/TEP/PVDF system. Desalination, 2002, 145: pp. 25-29.
55. 洪瑋倫, 非溶劑誘導式相分離過程之膜結構生成探討. 博士論文, 2016, 台灣大學化學工程學系.
56. Sukitpaneenit, P.; Chung, T. S., Molecular elucidation of morphology and mechanical properties of PVDF hollow fiber membranes from aspects of phase inversion, crystallization and rheology. Journal of Membrane Science, 2009. 340:pp. 192-205.
57. Sharma, M.; Srinivas, V.; Madrasc, G.; Bose, S., Outstanding dielectric constant and piezoelectric coefficient in electrospun nanofiber mats of PVDF containing silver decorated multiwall carbon nanotubes: assessing through piezoresponse force microscopy. Rsc advances,2016,6:pp. 6251-6258.
58. Abbas, R. R.; Rammo, N. N.; Alajaj, E. A., Structure and piezoelectricity in blends of PVDF films PVDF. Journal of kerbala university,2008,6: pp.201-208
59. Zhang, D. Q.; Wang, D. W.; Yuan, J.; Zhao, Q. L.; Wang, Z. Y.; Cao, M. S.,Structural and Electrical.Properties of PZT/PVDF Piezoelectric NanocompositesPrepared by Cold-Press and Hot-Press Routes. Chinese physics letters,2008,25:pp. 4410-4413.
60. Schwartz, M.,Smart material.2008,pp. 9-15
61. Mahadeva, S. K.; Berring, J.; Walus, K.; Stoeber, B., Effect of poling time and grid voltage on phase transition and piezoelectricity of poly(vinyledene fluoride) thin films using corona poling. Journal of Physics D: Applied Physics,2013,46.
dc.identifier.urihttp://tdr.lib.ntu.edu.tw/jspui/handle/123456789/60150-
dc.description.abstract本研究是以非溶劑誘導式相分離法製備同時具有雙連續結構且富含β-form 結晶型態的聚偏二氟乙烯(Poly(vinylidene)fluoride, PVDF)薄膜,根據以往的經驗當製備出富含β-form 結晶型態的PVDF 薄膜其形成結構為機械強度不足的顆粒結構,但當製備出富含α-form 結晶型態的PVDF 薄膜其形成結構為機械強度較佳的雙連續結構。因此,為了提PVDF 薄膜的可應用價值並且充足利用具備壓電性質的特性,我們希望將β-form 結晶型態與雙連續結構做結合。
本研究分成兩個部分,第一個部分為利用溶劑特性、高分子分子量、鑄膜液濃度及鑄膜液溶解溫度提升鑄膜液entanglement(鏈段糾結程度),這部分所使用的製程方法主要是液液相分離所主導的濕式法(Wet-immersed method, LIPS) 及結晶所主導的蒸氣誘導式相分離法(Vapor-induced phase separation, VIPS),待找到最高entanglement 的條件後,第二部分為利用改變製膜方法調整非溶劑特性控制溶劑與非溶劑之間的相互質傳速率,希望使高分子富相不易合併而達到目標結構的目的,並且同時探討參數對於結晶型態的影響。結晶型態與結晶度由全反射式紅外線光譜儀與微差掃瞄熱差分析儀進行分析,結構則由掃描式電子顯微鏡進行分析。
在結構的部分,濕式法及蒸氣式誘導相分離法在磷酸三乙酯(Triethyl phosphate,TEP)系統形成的是雙連續構成的多孔顆粒結構及雙連續結構,在N-甲基吡咯烷酮(N-Methyl-2-Pyrrolidone, NMP)系統形成的是巨型孔洞及顆粒結構,然而,隨著entanglement的提升,巨型孔洞變小,顆粒的domain size(高分子合併尺度)變小。結晶型態的部分,我們相信PVDF的溶劑特性不同對於結晶型態形成種類是個關鍵,使用具有強極性的溶劑NMP容易誘導出β-form結晶型態,使用弱極性的溶劑TEP容易誘導出α-form結晶型態,因此選用NMP作為主要溶劑,推論極性的環境誘使鑄膜液內的鏈段偏向TTT conformation,當以液液相分離所主導時,先相分離而後結晶,鑄膜液entanglement會影響結晶環境誘導出不同的結晶型態,當鑄膜液的entanglement較低時,高分子鏈段容易轉動導致結晶排列成TGTG’ conformation形成較多的α-form結晶型態,反之,當鑄膜液的entanglement較高時,高分子鏈段不容易轉動導致結晶按照原本的TTT conformation進行結晶而誘導出較多的β-form結晶型態,當以結晶區所主導時,先結晶而後相分離,由於先形成結晶才產生相分離形成高分子富相,因此不論鑄膜液entanglement高低,其結晶都照著原本的TTT conformation進行排列形成較多的β-form結晶型態。最終使用高分子量1000kDa PVDF/NMP系統以低溫進行溶解(T_D=35℃)作為目前entanglement最高的條件,隨後改變非溶劑特性以低碳醇的雙槽法得到雙連續構成的多孔顆粒結構同時縮短相組成進入液液相分離的時間,得到以非溶劑誘導式相分離法製備出雙連續構成的多孔顆粒結構且富含70% β-form結晶型態之PVDF薄膜。
於未來的發展上面可望將此種富含β-form結晶型態的PVDF薄膜以極化的方式提升壓電特性,搭配機械強度較佳的雙連續結構解決薄膜過濾中結垢的問題。
zh_TW
dc.description.abstractIn this work, the aim of preparing PVDF membranes with bi-continuous structure and β-form crystals via non-solvent induced phase separation method (NIPS) was investigated. Based on previous experience, PVDF membranes which were dominated by β − form crystals were composed of weak mechanical nodules structure, and α -form crystals could be favorably formed with strong mechanical bi-continous structure. Therefore, in order to improve the value of practical application of PVDF membranes and use piezoelectric properties sufficiently, hoping that we can combine β-form crystals with bi-continuous structure.
There is two parts in this research, the first part is using many parameter to increase entanglement and the parameter including solvent characteristic, molecular weight, polymer concentration、dissolution temperature. We used LIPS which was dominated by L-L demixing and VIPS which was dominated by crystallization as preparation ways in this part. When we found the highest entanglement condition, we got on the second part. The second part is using different preparation ways to control non-solvent characteristic and the mass transfer between solvent and non-solvent. Hoped that polymer-rich phase can merge barely and obtain the target structure. In the meanwhile, we can obverse the effect of crystal polymorphism. The crystal polymorphism and crystallinity which were testified in FTIR-ATR spectra and DSC .The morphology structure were testified in SEM.In the part of structure ,the porous nodules composed of bi-continuous structure and the bi-continuous structure were formed with LIPS and VIPS in TEP system. The marco-voids structure and the nodules structure were formed with LIPS and VIPS in NMP system. However, with the increase of entanglement, the decrease of marco-voids and the domain size for nodules. In the part of crystal polymorphism, we believed that the solvent characteristic is a critical condition to the forming of crystal polymorphism. It is easy to induce β-form crystals using polar solvent like NMP and induce alpha-form using non-polar solvent like TEP. Therefore, we choose NMP as the solvent. The polar
environment induce the TTT conformation of the polymer chain in casting solution. If the L-L demixing dominated, solution started phase separation and then crystallized.
Different crystal polymorphism were induced by crystallize environment with entanglement in casting solution. With low entanglement in casting solution, polymer chains can move easily and cause TGTG' conformation forming α-form crystals.Conversely, with high entanglement in casting solution, polymer chains can move hardly and crystallize in TTT conformation originally forming β-form crystals. If the crystallization dominated, solution crystallized first and then started phase separation. Thus, no matter entanglement is low or high, the crystals crystallize in TTT conformation originally forming β-form crystals. Finally, our research used highmolecular weight 1000kDa PVDF/NMP system dissolved in low temperature resultingin the highest entanglement of casting solution , and prepared by the dual bath in low C alcohol. Reducing the time of phase composition staying in L-L demixing area caused porous structure with bi-continuous. The porous PVDF membrane with bi-continuous structure and 70% ratio of β-form crystals with non-solvent induced phase separation was fabricated.
The future of development, we purpose that PVDF membrane composed of β-form crystals can be enhanced piezoelectric properties by polarization. Polar crystals combine with better mechanical bi-continuous structure which can dissolve the fouling of membrane filtration.
en
dc.description.provenanceMade available in DSpace on 2021-06-16T09:59:24Z (GMT). No. of bitstreams: 1
ntu-105-R03524058-1.pdf: 5584718 bytes, checksum: fca8975f32663e4003e965e258d0cf94 (MD5)
Previous issue date: 2016
en
dc.description.tableofcontents中文摘要 .......................................... I
Abstract ........................................III
目錄..............................................VI
圖索引............................................IX
表索引 .........................................XVII
第一章 緒論.........................................1
1-1 薄膜的應用 .....................................1
1-2 聚偏二氟乙烯(Poly(vinliydene fluoride), PVDF)性質介紹 4
1-3 壓電原理........................................7
1-4 富含 β-form 之PVDF 膜製備方法....................8
1-5 非溶劑誘導式相分離成膜理論介紹....................19
1-5-1 熱力學.......................................19
1-5-2 動力學.......................................23
1-6 文獻回顧.......................................26
1-7 研究動機與目的..................................35
第二章 實驗材料與研究方法 ...........................37
2-1 實驗藥品 ......................................37
2-2 實驗儀器 ......................................39
2-3 實驗方法...................................... 40
2-3-1 鑄膜液配製 ................................. 40
2-3-2 薄膜之製備 ..................................42
2-4 薄膜分析方法 ..................................46
2-4-1 黏度量測 ....................................46
2-4-2 表面型態的分析 ...............................47
2-4-3 結晶度測定...................................48
2-4-4 結晶型態測定.................................49
第三章 結果與討論 ..................................51
3-1 結晶行為對於PVDF 薄膜結構與結晶之影響.............52
3-1-1 影響結晶行為機制之控制參數.....................53
3-2 得到目標結構與結晶之策略.........................55
3-2-1 分子量對PVDF/NMP 薄膜結構與結晶之影響..........55
3-2-2 溶劑特性對PVDF 系統薄膜結構與結晶之影響.........65
3-2-3 鏈段糾結程度(entanglement)對於結晶型態之影響...71
3-2-4 濃度對PVDF/NMP 薄膜結構與結晶之影響...........74
3-2-5 溶解溫度對1000kDa PVDF/NMP 薄膜結構與結晶之影響80
3-2-6 非溶劑對1000kDa PVDF/NMP 薄膜結構與結晶之影響..86
3-2-7 製備雙連續結構且富含β-form 結晶型態PVDF 多孔膜的方法.91
3-3 成膜機制.......................................95
第四章結論 .........................................97
參考文獻 .........................................100
dc.language.isozh-TW
dc.title利用非溶劑誘導式相分離法製備雙連續結構且富含β-form 結晶型態之PVDF 多孔膜zh_TW
dc.titlePreparation of PVDF membranes with bi-continuous structure & β-form crystals with non-solvent induced
phase separation
en
dc.typeThesis
dc.date.schoolyear105-1
dc.description.degree碩士
dc.contributor.coadvisor李佳玲(Chia-Ling Li)
dc.contributor.oralexamcommittee張雍(Yung Chang)
dc.subject.keywordPVDF,非溶劑誘導式相分離法,鏈段糾結程度,結晶環境,薄膜結構與結晶型態的控制,zh_TW
dc.subject.keywordPVDF,non-solvent induced phase separation(NIPS),entanglement,crystallization environment,the control of morphology and polymorphism,en
dc.relation.page107
dc.identifier.doi10.6342/NTU201603778
dc.rights.note有償授權
dc.date.accepted2016-11-30
dc.contributor.author-college工學院zh_TW
dc.contributor.author-dept化學工程學研究所zh_TW
顯示於系所單位:化學工程學系

文件中的檔案:
檔案 大小格式 
ntu-105-1.pdf
  目前未授權公開取用
5.45 MBAdobe PDF
顯示文件簡單紀錄


系統中的文件,除了特別指名其著作權條款之外,均受到著作權保護,並且保留所有的權利。

社群連結
聯絡資訊
10617臺北市大安區羅斯福路四段1號
No.1 Sec.4, Roosevelt Rd., Taipei, Taiwan, R.O.C. 106
Tel: (02)33662353
Email: ntuetds@ntu.edu.tw
意見箱
相關連結
館藏目錄
國內圖書館整合查詢 MetaCat
臺大學術典藏 NTU Scholars
臺大圖書館數位典藏館
本站聲明
© NTU Library All Rights Reserved