Skip navigation

DSpace

機構典藏 DSpace 系統致力於保存各式數位資料(如:文字、圖片、PDF)並使其易於取用。

點此認識 DSpace
DSpace logo
English
中文
  • 瀏覽論文
    • 校院系所
    • 出版年
    • 作者
    • 標題
    • 關鍵字
    • 指導教授
  • 搜尋 TDR
  • 授權 Q&A
    • 我的頁面
    • 接受 E-mail 通知
    • 編輯個人資料
  1. NTU Theses and Dissertations Repository
  2. 醫學院
  3. 生物化學暨分子生物學科研究所
請用此 Handle URI 來引用此文件: http://tdr.lib.ntu.edu.tw/jspui/handle/123456789/60117
完整後設資料紀錄
DC 欄位值語言
dc.contributor.advisor周綠蘋(Lu-Ping Chow)
dc.contributor.authorHaur Leeen
dc.contributor.author李豪zh_TW
dc.date.accessioned2021-06-16T09:57:11Z-
dc.date.available2017-03-01
dc.date.copyright2017-03-01
dc.date.issued2016
dc.date.submitted2016-12-19
dc.identifier.citation1. Dunn, B.E., H. Cohen, and M.J. Blaser, Helicobacter pylori. Clin Microbiol Rev, 1997. 10(4): p. 720-41.
2. Marshall, B.J. and J.R. Warren, Unidentified curved bacilli in the stomach of patients with gastritis and peptic ulceration. Lancet, 1984. 1(8390): p. 1311-5.
3. O'Toole, P.W., M.C. Lane, and S. Porwollik, Helicobacter pylori motility. Microbes Infect, 2000. 2(10): p. 1207-14.
4. Scott, D.R., et al., Mechanisms of acid resistance due to the urease system of Helicobacter pylori. Gastroenterology, 2002. 123(1): p. 187-95.
5. Karita, M., M. Tsuda, and T. Nakazawa, Essential role of urease in vitro and in vivo Helicobacter pylori colonization study using a wild-type and isogenic urease mutant strain. J Clin Gastroenterol, 1995. 21 Suppl 1: p. S160-3.
6. Kuipers, E.J., et al., Quasispecies development of Helicobacter pylori observed in paired isolates obtained years apart from the same host. J Infect Dis, 2000. 181(1): p. 273-82.
7. Covacci, A., et al., Helicobacter pylori virulence and genetic geography. Science, 1999. 284(5418): p. 1328-33.
8. Replogle, M.L., et al., Biologic sex as a risk factor for Helicobacter pylori infection in healthy young adults. Am J Epidemiol, 1995. 142(8): p. 856-63.
9. Rowland, M., et al., Age-specific incidence of Helicobacter pylori. Gastroenterology, 2006. 130(1): p. 65-72; quiz 211.
10. Konno, M., et al., Five-year follow-up study of mother-to-child transmission of Helicobacter pylori infection detected by a random amplified polymorphic DNA fingerprinting method. J Clin Microbiol, 2005. 43(5): p. 2246-50.
11. Schistosomes, liver flukes and Helicobacter pylori. IARC Working Group on the Evaluation of Carcinogenic Risks to Humans. Lyon, 7-14 June 1994. IARC Monogr Eval Carcinog Risks Hum, 1994. 61: p. 1-241.
12. Parkin, D.M., Global cancer statistics in the year 2000. Lancet Oncol, 2001. 2(9): p. 533-43.
13. Blaser, M.J., Helicobacter pylori and gastric diseases. BMJ, 1998. 316(7143): p. 1507-10.
14. Perez-Perez, G.I., D. Rothenbacher, and H. Brenner, Epidemiology of Helicobacter pylori infection. Helicobacter, 2004. 9 Suppl 1: p. 1-6.
15. Pounder, R.E. and D. Ng, The prevalence of Helicobacter pylori infection in different countries. Aliment Pharmacol Ther, 1995. 9 Suppl 2: p. 33-9.
16. Ahmad, M.M., et al., Prevalence of Helicobacter pylori in asymptomatic population--a pilot serological study in Bangladesh. J Epidemiol, 1997. 7(4): p. 251-4.
17. Graham, D.Y., et al., Seroepidemiology of Helicobacter pylori infection in India. Comparison of developing and developed countries. Dig Dis Sci, 1991. 36(8): p. 1084-8.
18. Hoang, T.T., et al., Seroprevalence of Helicobacter pylori infection in urban and rural Vietnam. Clin Diagn Lab Immunol, 2005. 12(1): p. 81-5.
19. Wang, K.J. and R.T. Wang, [Meta-analysis on the epidemiology of Helicobacter pylori infection in China]. Zhonghua Liu Xing Bing Xue Za Zhi, 2003. 24(6): p. 443-6.
20. Fujisawa, T., et al., Changes in seroepidemiological pattern of Helicobacter pylori and hepatitis A virus over the last 20 years in Japan. Am J Gastroenterol, 1999. 94(8): p. 2094-9.
21. Yim, J.Y., et al., Seroprevalence of Helicobacter pylori in South Korea. Helicobacter, 2007. 12(4): p. 333-40.
22. Teh, B.H., et al., Seroprevalence and associated risk factors of Helicobacter pylori infection in Taiwan. Anticancer Res, 1994. 14(3B): p. 1389-92.
23. Goh, K.L. and N. Parasakthi, The racial cohort phenomenon: seroepidemiology of Helicobacter pylori infection in a multiracial South-East Asian country. Eur J Gastroenterol Hepatol, 2001. 13(2): p. 177-83.
24. Fock, K.M., Helicobacter pylori infection--current status in Singapore. Ann Acad Med Singapore, 1997. 26(5): p. 637-41.
25. Deankanob, W., et al., Enzyme-linked immunosorbent assay for serodiagnosis of Helicobacter pylori in dyspeptic patients and volunteer blood donors. Southeast Asian J Trop Med Public Health, 2006. 37(5): p. 958-65.
26. Fock, K.M. and T.L. Ang, Epidemiology of Helicobacter pylori infection and gastric cancer in Asia. J Gastroenterol Hepatol, 2010. 25(3): p. 479-86.
27. Peterson, W.L., Helicobacter pylori and peptic ulcer disease. N Engl J Med, 1991. 324(15): p. 1043-8.
28. Parsonnet, J., et al., Helicobacter pylori infection in intestinal- and diffuse-type gastric adenocarcinomas. J Natl Cancer Inst, 1991. 83(9): p. 640-3.
29. Nomura, A., et al., Helicobacter pylori infection and gastric carcinoma among Japanese Americans in Hawaii. N Engl J Med, 1991. 325(16): p. 1132-6.
30. De Falco, M., et al., Molecular Mechanisms of Helicobacter pylori Pathogenesis. J Cell Physiol, 2015. 230(8): p. 1702-7.
31. Tsai, H.F. and P.N. Hsu, Interplay between Helicobacter pylori and immune cells in immune pathogenesis of gastric inflammation and mucosal pathology. Cell Mol Immunol, 2010. 7(4): p. 255-9.
32. Conteduca, V., et al., H. pylori infection and gastric cancer: state of the art (review). Int J Oncol, 2013. 42(1): p. 5-18.
33. Hunt, R.H., K. Sumanac, and J.Q. Huang, Review article: should we kill or should we save Helicobacter pylori? Aliment Pharmacol Ther, 2001. 15 Suppl 1: p. 51-9.
34. Blaser, M.J. and J.C. Atherton, Helicobacter pylori persistence: biology and disease. J Clin Invest, 2004. 113(3): p. 321-33.
35. Kusters, J.G., A.H. van Vliet, and E.J. Kuipers, Pathogenesis of Helicobacter pylori infection. Clin Microbiol Rev, 2006. 19(3): p. 449-90.
36. Yamaoka, Y., Mechanisms of disease: Helicobacter pylori virulence factors. Nat Rev Gastroenterol Hepatol, 2010. 7(11): p. 629-41.
37. Ciociola, A.A., et al., Helicobacter pylori infection rates in duodenal ulcer patients in the United States may be lower than previously estimated. Am J Gastroenterol, 1999. 94(7): p. 1834-40.
38. Chu, K.M., et al., Patients with Helicobacter pylori positive and negative duodenal ulcers have distinct clinical characteristics. World J Gastroenterol, 2005. 11(23): p. 3518-22.
39. Atherton, J.C., The pathogenesis of Helicobacter pylori-induced gastro-duodenal diseases. Annu Rev Pathol, 2006. 1: p. 63-96.
40. Malfertheiner, P., A. Link, and M. Selgrad, Helicobacter pylori: perspectives and time trends. Nat Rev Gastroenterol Hepatol, 2014. 11(10): p. 628-38.
41. Ekstrom, A.M., et al., Helicobacter pylori in gastric cancer established by CagA immunoblot as a marker of past infection. Gastroenterology, 2001. 121(4): p. 784-91.
42. Uemura, N., et al., Helicobacter pylori infection and the development of gastric cancer. N Engl J Med, 2001. 345(11): p. 784-9.
43. Shigematsu, Y., et al., Interleukin-1beta induced by Helicobacter pylori infection enhances mouse gastric carcinogenesis. Cancer Lett, 2013. 340(1): p. 141-7.
44. Yamada, S., et al., Predominant mucosal IL-8 mRNA expression in non-cagA Thais is risk for gastric cancer. World J Gastroenterol, 2013. 19(19): p. 2941-9.
45. Dunn, B.E., et al., Identification and purification of a cpn60 heat shock protein homolog from Helicobacter pylori. Infect Immun, 1992. 60(5): p. 1946-51.
46. Peek, R.M., Jr., C. Fiske, and K.T. Wilson, Role of innate immunity in Helicobacter pylori-induced gastric malignancy. Physiol Rev, 2010. 90(3): p. 831-58.
47. de Martel, C., et al., Global burden of cancers attributable to infections in 2008: a review and synthetic analysis. Lancet Oncol, 2012. 13(6): p. 607-15.
48. Ernst, P.B. and B.D. Gold, The disease spectrum of Helicobacter pylori: the immunopathogenesis of gastroduodenal ulcer and gastric cancer. Annu Rev Microbiol, 2000. 54: p. 615-40.
49. Peter, S. and C. Beglinger, Helicobacter pylori and gastric cancer: the causal relationship. Digestion, 2007. 75(1): p. 25-35.
50. Polk, D.B. and R.M. Peek, Jr., Helicobacter pylori: gastric cancer and beyond. Nat Rev Cancer, 2010. 10(6): p. 403-14.
51. Lee, J.Y., et al., Histologic Findings and Inflammatory Reactions After Long-term Colonization of Helicobacter felis in C57BL/6 Mice. J Cancer Prev, 2014. 19(3): p. 224-30.
52. Papini, E., et al., Selective increase of the permeability of polarized epithelial cell monolayers by Helicobacter pylori vacuolating toxin. J Clin Invest, 1998. 102(4): p. 813-20.
53. Andres, S., et al., Helicobacter pylori defines local immune response through interaction with dendritic cells. FEMS Immunol Med Microbiol, 2011. 61(2): p. 168-78.
54. Ibraghimov, A. and J. Pappo, The immune response against Helicobacter pylori--a direct linkage to the development of gastroduodenal disease. Microbes Infect, 2000. 2(9): p. 1073-7.
55. Lee, J.Y., et al., Histologic Findings and Inflammatory Reactions After Long-term Colonization of Helicobacter felis in C57BL/6 Mice. J Cancer Prev, 2014. 19(3): p. 224-30.
56. Lindholm, C., et al., Local cytokine response in Helicobacter pylori-infected subjects. Infect Immun, 1998. 66(12): p. 5964-71.
57. Ritter, B., et al., Differential effects of multiplicity of infection on Helicobacter pylori-induced signaling pathways and interleukin-8 gene transcription. J Clin Immunol, 2011. 31(1): p. 60-8.
58. Sharma, S.A., et al., Activation of IL-8 gene expression by Helicobacter pylori is regulated by transcription factor nuclear factor-kappa B in gastric epithelial cells. J Immunol, 1998. 160(5): p. 2401-7.
59. Sharma, S.A., et al., Interleukin-8 response of gastric epithelial cell lines to Helicobacter pylori stimulation in vitro. Infect Immun, 1995. 63(5): p. 1681-87.
60. Russo, F., et al., Circulating cytokines and gastrin levels in asymptomatic subjects infected by Helicobacter pylori (H. pylori). Immunopharmacol Immunotoxicol, 2001. 23(1): p. 13-24.
61. Yamaoka, Y., et al., Expression of cytokine mRNA in gastric mucosa with Helicobacter pylori infection. Scand J Gastroenterol, 1995. 30(12): p. 1153-9.
62. Beales, I.L. and J. Calam, Stimulation of IL-8 production in human gastric epithelial cells by Helicobacter pylori, IL-1beta and TNF-alpha requires tyrosine kinase activity, but not protein kinase C. Cytokine, 1997. 9(7): p. 514-20.
63. Gooz, M., et al., Interleukin 1beta induces gastric epithelial cell matrix metalloproteinase secretion and activation during Helicobacter pylori infection. Gut, 2003. 52(9): p. 1250-6.
64. Wen, S., et al., Inflammatory gene profiles in gastric mucosa during Helicobacter pylori infection in humans. J Immunol, 2004. 172(4): p. 2595-606.
65. Castano-Rodriguez, N., N.O. Kaakoush, and H.M. Mitchell, Pattern-recognition receptors and gastric cancer. Front Immunol, 2014. 5: p. 336.
66. Kawai, T. and S. Akira, The role of pattern-recognition receptors in innate immunity: update on Toll-like receptors. Nat Immunol, 2010. 11(5): p. 373-84.
67. Portal-Celhay, C. and G.I. Perez-Perez, Immune responses to Helicobacter pylori colonization: mechanisms and clinical outcomes. Clin Sci (Lond), 2006. 110(3): p. 305-14.
68. Schmausser, B., et al., Expression and subcellular distribution of toll-like receptors TLR4, TLR5 and TLR9 on the gastric epithelium in Helicobacter pylori infection. Clin Exp Immunol, 2004. 136(3): p. 521-6.
69. Lu, Q., H. Ding, and W. Li, Role of Toll-like receptors in microbiota-associated gastrointestinal cancer metastasis. J Cancer Res Ther, 2013. 9 Suppl: p. S142-9.
70. Trinchieri, G. and A. Sher, Cooperation of Toll-like receptor signals in innate immune defence. Nat Rev Immunol, 2007. 7(3): p. 179-90.
71. Smith, S.M., Role of Toll-like receptors in Helicobacter pylori infection and immunity. World J Gastrointest Pathophysiol, 2014. 5(3): p. 133-46.
72. Obonyo, M., et al., Deficiencies of myeloid differentiation factor 88, Toll-like receptor 2 (TLR2), or TLR4 produce specific defects in macrophage cytokine secretion induced by Helicobacter pylori. Infect Immun, 2007. 75(5): p. 2408-14.
73. Su, B., et al., Helicobacter pylori activates Toll-like receptor 4 expression in gastrointestinal epithelial cells. Infect Immun, 2003. 71(6): p. 3496-502.
74. Naito, Y., et al., Biomarkers in patients with gastric inflammation: a systematic review. Digestion, 2005. 72(2-3): p. 164-80.
75. Xuan, J., et al., Relationship between gastric mucosal IL-8 levels and histological gastritis in patients with Helicobacter pylori infection. Tokai J Exp Clin Med, 2005. 30(2): p. 83-8.
76. Kido, S., et al., Interleukin 8 and vascular endothelial growth factor -- prognostic factors in human gastric carcinomas? Eur J Cancer, 2001. 37(12): p. 1482-7.
77. Eftang, L.L., et al., Interleukin-8 is the single most up-regulated gene in whole genome profiling of H. pylori exposed gastric epithelial cells. BMC Microbiol, 2012. 12: p. 9.
78. Lee, K.E., et al., Helicobacter pylori and interleukin-8 in gastric cancer. World J Gastroenterol, 2013. 19(45): p. 8192-202.
79. Yamaoka, Y., et al., Importance of Helicobacter pylori oipA in clinical presentation, gastric inflammation, and mucosal interleukin 8 production. Gastroenterology, 2002. 123(2): p. 414-24.
80. Hisatsune, J., et al., Molecular characterization of Helicobacter pylori VacA induction of IL-8 in U937 cells reveals a prominent role for p38MAPK in activating transcription factor-2, cAMP response element binding protein, and NF-kappaB activation. J Immunol, 2008. 180(7): p. 5017-27.
81. Harris, P.R., et al., Helicobacter pylori urease is a potent stimulus of mononuclear phagocyte activation and inflammatory cytokine production. Gastroenterology, 1996. 111(2): p. 419-25.
82. Brandt, S., et al., NF-kappaB activation and potentiation of proinflammatory responses by the Helicobacter pylori CagA protein. Proc Natl Acad Sci U S A, 2005. 102(26): p. 9300-5.
83. Tanahashi, T., et al., Cytokine expression and production by purified Helicobacter pylori urease in human gastric epithelial cells. Infect Immun, 2000. 68(2): p. 664-71.
84. Beswick, E.J., et al., The Helicobacter pylori urease B subunit binds to CD74 on gastric epithelial cells and induces NF-kappaB activation and interleukin-8 production. Infect Immun, 2006. 74(2): p. 1148-55.
85. Smoot, D.T., et al., Helicobacter pylori urease activity is toxic to human gastric epithelial cells. Infect Immun, 1990. 58(6): p. 1992-4.
86. Kuwahara, H., et al., Helicobacter pylori urease suppresses bactericidal activity of peroxynitrite via carbon dioxide production. Infect Immun, 2000. 68(8): p. 4378-83.
87. Labigne, A., V. Cussac, and P. Courcoux, Shuttle cloning and nucleotide sequences of Helicobacter pylori genes responsible for urease activity. J Bacteriol, 1991. 173(6): p. 1920-31.
88. Velin, D., et al., Mast cells are critical mediators of vaccine-induced Helicobacter clearance in the mouse model. Gastroenterology, 2005. 129(1): p. 142-55.
89. Nomura, S., et al., Effect of dietary anti-urease immunoglobulin Y on Helicobacter pylori infection in Mongolian gerbils. Helicobacter, 2005. 10(1): p. 43-52.
90. Eaton, K.A., et al., Colonization of gnotobiotic piglets by Helicobacter pylori deficient in two flagellin genes. Infect Immun, 1996. 64(7): p. 2445-8.
91. Chochi, K., et al., Helicobacter pylori augments growth of gastric cancers via the lipopolysaccharide-toll-like receptor 4 pathway whereas its lipopolysaccharide attenuates antitumor activities of human mononuclear cells. Clin Cancer Res, 2008. 14(10): p. 2909-17.
92. Muotiala, A., et al., Low biological activity of Helicobacter pylori lipopolysaccharide. Infect Immun, 1992. 60(4): p. 1714-6.
93. Cover, T.L. and S.R. Blanke, Helicobacter pylori VacA, a paradigm for toxin multifunctionality. Nat Rev Microbiol, 2005. 3(4): p. 320-32.
94. Cover, T.L., The vacuolating cytotoxin of Helicobacter pylori. Mol Microbiol, 1996. 20(2): p. 241-6.
95. Hennig, E.E., et al., Helicobacter pylori VacA cytotoxin interacts with fibronectin and alters HeLa cell adhesion and cytoskeletal organization in vitro. FEMS Immunol Med Microbiol, 2005. 44(2): p. 143-50.
96. Lupetti, P., et al., Oligomeric and subunit structure of the Helicobacter pylori vacuolating cytotoxin. J Cell Biol, 1996. 133(4): p. 801-7.
97. Blaser, M.J., et al., Infection with Helicobacter pylori strains possessing cagA is associated with an increased risk of developing adenocarcinoma of the stomach. Cancer Res, 1995. 55(10): p. 2111-5.
98. Huang, J.Q., et al., Meta-analysis of the relationship between cagA seropositivity and gastric cancer. Gastroenterology, 2003. 125(6): p. 1636-44.
99. Arnold, I.C., et al., The C-terminally encoded, MHC class II-restricted T cell antigenicity of the Helicobacter pylori virulence factor CagA promotes gastric preneoplasia. J Immunol, 2011. 186(11): p. 6165-72.
100. Yamaoka, Y., D.H. Kwon, and D.Y. Graham, A M(r) 34,000 proinflammatory outer membrane protein (oipA) of Helicobacter pylori. Proc Natl Acad Sci U S A, 2000. 97(13): p. 7533-8.
101. Lu, H., et al., Functional and intracellular signaling differences associated with the Helicobacter pylori AlpAB adhesin from Western and East Asian strains. J Biol Chem, 2007. 282(9): p. 6242-54.
102. Mahdavi, J., et al., Helicobacter pylori SabA adhesin in persistent infection and chronic inflammation. Science, 2002. 297(5581): p. 573-8.
103. Ilver, D., et al., Helicobacter pylori adhesin binding fucosylated histo-blood group antigens revealed by retagging. Science, 1998. 279(5349): p. 373-7.
104. Boren, T., et al., Attachment of Helicobacter pylori to human gastric epithelium mediated by blood group antigens. Science, 1993. 262(5141): p. 1892-5.
105. Gerhard, M., et al., Clinical relevance of the Helicobacter pylori gene for blood-group antigen-binding adhesin. Proc Natl Acad Sci U S A, 1999. 96(22): p. 12778-83.
106. Rad, R., et al., The Helicobacter pylori blood group antigen-binding adhesin facilitates bacterial colonization and augments a nonspecific immune response. J Immunol, 2002. 168(6): p. 3033-41.
107. Galdiero, M., G.C. de l'Ero, and A. Marcatili, Cytokine and adhesion molecule expression in human monocytes and endothelial cells stimulated with bacterial heat shock proteins. Infect Immun, 1997. 65(2): p. 699-707.
108. Ausiello, C.M., et al., 60-kDa heat shock protein of Chlamydia pneumoniae promotes a T helper type 1 immune response through IL-12/IL-23 production in monocyte-derived dendritic cells. Microbes Infect, 2006. 8(3): p. 714-20.
109. Homuth, G., et al., Transcriptional analysis of major heat shock genes of Helicobacter pylori. J Bacteriol, 2000. 182(15): p. 4257-63.
110. Zhao, Y., et al., Helicobacter pylori heat-shock protein 60 induces interleukin-8 via a Toll-like receptor (TLR)2 and mitogen-activated protein (MAP) kinase pathway in human monocytes. J Med Microbiol, 2007. 56(Pt 2): p. 154-64.
111. Takenaka, R., et al., Helicobacter pylori heat-shock protein 60 induces inflammatory responses through the Toll-like receptor-triggered pathway in cultured human gastric epithelial cells. Microbiology, 2004. 150(Pt 12): p. 3913-22.
112. Lin, Y.F., et al., Comparative immunoproteomics of identification and characterization of virulence factors from Helicobacter pylori related to gastric cancer. Mol Cell Proteomics, 2006. 5(8): p. 1484-96.
113. Su, Y.L., et al., The C-terminal disulfide bonds of Helicobacter pylori GroES are critical for IL-8 secretion via the TLR4-dependent pathway in gastric epithelial cells. J Immunol, 2015. 194(8): p. 3997-4007.
114. Tang, Y.C., et al., Structural features of the GroEL-GroES nano-cage required for rapid folding of encapsulated protein. Cell, 2006. 125(5): p. 903-14.
115. Cun, S., et al., A histidine-rich and cysteine-rich metal-binding domain at the C terminus of heat shock protein A from Helicobacter pylori: implication for nickel homeostasis and bismuth susceptibility. J Biol Chem, 2008. 283(22): p. 15142-51.
116. Schauer, K., et al., The Helicobacter pylori GroES cochaperonin HspA functions as a specialized nickel chaperone and sequestration protein through its unique C-terminal extension. J Bacteriol, 2010. 192(5): p. 1231-7.
117. Loguercio, S., et al., In HspA from Helicobacter pylori vicinal disulfide bridges are a key determinant of domain B structure. FEBS Lett, 2008. 582(23-24): p. 3537-41.
118. Kansau, I., et al., Nickel binding and immunological properties of the C-terminal domain of the Helicobacter pylori GroES homologue (HspA). Mol Microbiol, 1996. 22(5): p. 1013-23.
119. Rowinska-Zyrek, M., et al., The C terminus of HspA--a potential target for native Ni(II) and Bi(III) anti-ulcer drugs. Dalton Trans, 2010. 39(25): p. 5814-26.
120. Jeng, U.S., et al., A small/wide-angle X-ray scattering instrument for structural characterization of air–liquid interfaces, thin films and bulk specimens. J. Appl. Cryst., 2010. 43: p. 110-121.
121. Klewpatinond, M. and J.H. Viles, Empirical rules for rationalising visible circular dichroism of Cu2+ and Ni2+ histidine complexes: applications to the prion protein. FEBS Lett, 2007. 581(7): p. 1430-4.
122. Rowinska-Zyrek, M., et al., The -Cys-Cys- motif in Helicobacter pylori's Hpn and HspA proteins is an essential anchoring site for metal ions. Dalton Trans, 2011. 40(20): p. 5604-10.
123. Stanyon, H.F., et al., Developing predictive rules for coordination geometry from visible circular dichroism of copper(II) and nickel(II) ions in histidine and amide main-chain complexes. FEBS J, 2014. 281(17): p. 3945-54.
124. Neupane, K.P., A.R. Aldous, and J.A. Kritzer, Metal-binding and redox properties of substituted linear and cyclic ATCUN motifs. J Inorg Biochem, 2014. 139: p. 65-76.
125. Richardson, A., S.J. Landry, and C. Georgopoulos, The ins and outs of a molecular chaperone machine. Trends Biochem Sci, 1998. 23(4): p. 138-43.
126. Landry, S.J., et al., Interplay of structure and disorder in cochaperonin mobile loops. Proc Natl Acad Sci U S A, 1996. 93(21): p. 11622-7.
127. Choi, J., et al., Identification of mono- or poly-specific monoclonal antibody to Porphyromonas gingivalis heat-shock protein 60. J Periodontal Implant Sci, 2011. 41(2): p. 54-9.
128. Kim, T.H., et al., Synergistic effect of muramyl dipeptide with heat shock protein 70 from Mycobacterium tuberculosis on immune activation. Immunobiology, 2015. 220(1): p. 26-31.
129. Kim, T.H., et al., Critical role of TRIF and MyD88 in Mycobacterium tuberculosis Hsp70-mediated activation of dendritic cells. Cytokine, 2015. 71(2): p. 139-44.
130. Lewthwaite, J.C., et al., Mycobacterium tuberculosis chaperonin 60.1 is a more potent cytokine stimulator than chaperonin 60.2 (Hsp 65) and contains a CD14-binding domain. Infect Immun, 2001. 69(12): p. 7349-55.
131. Maguire, M., et al., Comparative cell signalling activity of ultrapure recombinant chaperonin 60 proteins from prokaryotes and eukaryotes. Immunology, 2005. 115(2): p. 231-8.
132. Lin, C.Y., et al., Characterizing the polymeric status of Helicobacter pylori heat shock protein 60. Biochem Biophys Res Commun, 2009. 388(2): p. 283-9.
133. Retzlaff, C., et al., Bacterial heat shock proteins directly induce cytokine mRNA and interleukin-1 secretion in macrophage cultures. Infect Immun, 1994. 62(12): p. 5689-93.
134. Crabtree, J.E. and I.J. Lindley, Mucosal interleukin-8 and Helicobacter pylori-associated gastroduodenal disease. Eur J Gastroenterol Hepatol, 1994. 6 Suppl 1: p. S33-8.
135. Maier, R.J., S.L. Benoit, and S. Seshadri, Nickel-binding and accessory proteins facilitating Ni-enzyme maturation in Helicobacter pylori. Biometals, 2007. 20(3-4): p. 655-64.
136. Ge, R.G., et al., Nickel trafficking system responsible for urease maturation in Helicobacter pylori. World J Gastroenterol, 2013. 19(45): p. 8211-8.
137. Kansau, I. and A. Labigne, Heat shock proteins of Helicobacter pylori. Aliment Pharmacol Ther, 1996. 10 Suppl 1: p. 51-6.
138. Higurashi, T., et al., Structural stability and solution structure of chaperonin GroES heptamer studied by synchrotron small-angle X-ray scattering. J Mol Biol, 2003. 333(3): p. 605-20.
139. Timchenko, A.A., et al., GroES co-chaperonin small-angle X-ray scattering study shows ring orifice increase in solution. FEBS Lett, 2000. 471(2-3): p. 211-4.
140. Roberts, M.M., et al., Crystallization, x-ray diffraction and preliminary structure analysis of Mycobacterium tuberculosis chaperonin 10. Acta Crystallogr D Biol Crystallogr, 1999. 55(Pt 4): p. 910-4.
141. Roberts, M.M., et al., Mycobacterium tuberculosis chaperonin 10 heptamers self-associate through their biologically active loops. J Bacteriol, 2003. 185(14): p. 4172-85.
142. Taneja, B. and S.C. Mande, Structure of Mycobacterium tuberculosis chaperonin-10 at 3.5 A resolution. Acta Crystallogr D Biol Crystallogr, 2002. 58(Pt 2): p. 260-6.
143. Numoto, N., A. Kita, and K. Miki, Crystal structure of the Co-chaperonin Cpn10 from Thermus thermophilus HB8. Proteins, 2005. 58(2): p. 498-500.
144. Inobe, T., et al., Asymmetry of the GroEL-GroES complex under physiological conditions as revealed by small-angle x-ray scattering. Biophys J, 2008. 94(4): p. 1392-402.
145. Eitinger, T., et al., Secondary transporters for nickel and cobalt ions: theme and variations. Biometals, 2005. 18(4): p. 399-405.
146. Sudan, R.J., J.L. Kumari, and C. Sudandiradoss, Ab initio coordination chemistry for nickel chelation motifs. PLoS One, 2015. 10(5): p. e0126787.
147. Zhang, Y., I-TASSER server for protein 3D structure prediction. BMC Bioinformatics, 2008. 9(1): p. 40.
148. Trott, O. and A.J. Olson, AutoDock Vina: Improving the speed and accuracy of docking with a new scoring function, efficient optimization, and multithreading. Journal of Computational Chemistry, 2010. 31(2): p. 455-461.
149. Ryckaert, J.-P., G. Ciccotti, and H.J.C. Berendsen, Numerical integration of the cartesian equations of motion of a system with constraints: molecular dynamics of n-alkanes. Journal of Computational Physics, 1977. 23(3): p. 327-341.
150. Darden, T., D. York, and L. Pedersen, Particle mesh Ewald: An N [center-dot] log(N) method for Ewald sums in large systems. The Journal of Chemical Physics, 1993. 98(12): p. 10089-10092.
151. Sindhikara, D.J., A.E. Roitberg, and K.M. Merz, Apo and Nickel-Bound Forms of the Pyrococcus horikoshii Species of the Metalloregulatory Protein: NikR Characterized by Molecular Dynamics Simulations. Biochemistry, 2009. 48(50): p. 12024-12033.
dc.identifier.urihttp://tdr.lib.ntu.edu.tw/jspui/handle/123456789/60117-
dc.description.abstract胃潰瘍、十二指腸潰瘍還有胃癌的發生和幽門螺旋桿菌的感染息息相關,而許多先前報導指出,幽門螺旋桿菌所產生的致病因子,與其在腸胃道的感染也扮演著非常重要的角色。在我們之前的研究中,鑑定出了和導致胃癌發生相關的新致病因子GroES (HpGroES),而此研究中顯示,HpGroES會藉由結合第四型類鐸受體(Toll-like receptor 4, TLR4)這條路徑產生白細胞介素八(interleukin-8, IL-8)。其中,HpGroES上的功能區域B部分,對於結合第四型類鐸受體扮演著很重要的角色。在本篇研究中,我們探討了在HpGroES功能區域B上面的組氨酸 (histidine),在此機制中扮演的重要性,因此我們分別純化出了各個組氨酸的點突變,結果發現,組氨酸H96, H104, H115突變後,其導致產生白細胞介素八的能力和WT組相同,顯示此三個組氨酸位點對於致發炎反應是不需要的。相對的H100, H102, H108, H113, H118在產生白細胞介素八的這條路徑當中,是扮演重要的角色。進一步研究顯示,H100, H102, H108, H113, H118也參與了在功能區域B上與鎳金屬的結合,而其中的H102, H108, H113, H118參與了維持功能區域B的構型的角色,以利於與四型類鐸受體的結合和白細胞介素八的產生。此外,在分子模擬模型的結果表示H100, H102, H108會和第一個鎳金屬結合,H113和H118則會和第二個鎳金屬結合,結果顯示在功能區域B上的區域序列HDH(X)nH對於結合鎳金屬扮演重要的角色。而進一步的雙突變蛋白實驗結果顯示,H100A/H102A, H100A/H108A, H102A/H108A, H113A/H118A也影響了在功能區域B上與鎳金屬的結合,並影響其構型,降低了蛋白與四型類鐸受體的結合以及白細胞介素八的產生。因此,在本篇研究當中,我們找出了在HpGroES功能區域B上面的H102, H108, H113, H118在維持羧基端構型的完整性,和產生白細胞介素八上扮演著非常重要的角色。zh_TW
dc.description.abstractHelicobacter pylori infection is associated with the development of gastric and duodenal ulcers as well as gastric cancer. Many virulence factors of H. pylori also involve in inflammation response or the development of peptic ulcer and gastric cancer when H. pylori colonization at gastrointestinal tract. GroES of H. pylori (HpGroES) was previously identified as a gastric cancer-associated virulence factor. Our group showed that HpGroES induces interleukin-8 (IL-8) cytokine release via a Toll-like receptor 4 (TLR4)-dependent mechanism and domain B of the protein is crucial for interactions with TLR4. In the present study, we investigated the importance of the histidine residues in domain B. To this end, a series of point mutants were expressed in Escherichia coli, and the corresponding proteins purified. Interestingly, H96, H104 and H115 were not essential, whereas H100, H102, H108, H113 and H118 were crucial for IL-8 production and TLR4 interactions in KATO-III cells. These residues were involved in nickel binding. Four of five residues, H102, H108, H113 and H118 induced certain conformation changes in extended domain B structure, which is essential for interactions with TLR4 and consequent IL-8 production. Moreover, the results of molecular modeling indicated that H100, H102 and H108 interacted with one nickel ion, and H113 and H118 interacted with another nickel ion. This indicated the nickel prefer coordinate motif HDH(X)nH on domain B. According to the modeling result, the double mutants H100A/H102A, H100A/H108A, H102A/H108A, H113A/H118A were constructed and purified. These double mutants exhibited greatly reduced IL-8 production, affinity for nickel ion and significantly disappeared and formed a compact oblate shape compared with WT. We conclude that interactions of nickel ions with histidine residues in domain B help to maintain the conformation of the C-terminal region to conserve the integrity of the HpGroES structure and modulate IL-8 release.en
dc.description.provenanceMade available in DSpace on 2021-06-16T09:57:11Z (GMT). No. of bitstreams: 1
ntu-105-F95442019-1.pdf: 2403215 bytes, checksum: 9caee3b86de097ae150d162bf4e606da (MD5)
Previous issue date: 2016
en
dc.description.tableofcontents口委審定書 i
摘要 ii
Abstract iii
圖目錄 vii
表目錄 ix
Abbreviations x
Chapter I - Overview and Rationale 1
1.1 Microbiology and epidemiology of Helicobacter pylori 2
Table 1-1 Prevalence of H. pylori infection and gastric cancer in Asia 3
1.2 Helicobacter pylori infection and gastric diseases/gastric cancer 4
1.3 Helicobacter pylori infection and the immune responses 8
1.4 Virulence factors of Helicobacter pylori and the immune responses 10
1.5 Specific aim 14
Chapter II - Importance of the C-terminal histidine residues of Helicobacter pylori GroES for Toll-like receptor 4 binding and interleukin-8 cytokine production 15
2.1 Introduction 16
2.2 Materials and Methods 18
2.3 Results 24
2.4 Discussion 30
Chapter III – Conclusion and Perspectives 34
Chapter IV – Tables and Figures 37
Table I. Primer sequences used for HpGroES constructs 38
Table II. The percentage of secondary structure content of WT and histidine mutants calculated by the CDSSTR program 39
Table III. Kd and Bmax values of WT and histidine mutant proteins 40
Table IV. SAXS data analysis of WT and various histidine mutants 41
Figure 1. Schematic representation of the domain structures and domain B sequences (residues 91-118) of WT and histidine mutants. 42
Figure 2. FPLC profiles of purified WT and histidine mutant proteins. 43
Figure 3. Purified His-tagged fusion WT and histidine mutants were separated via 15% SDS-PAGE and stained with Coomassie Blue. 44
Figure 4. The IL-8 levels of WT and histidine mutants by ELISA assay from KATO-III cells. 45
Figure 5. The steady state binding affinity analysis of WT and histidine mutants to immobilized TLR4 by surface plasmon resonance (SPR) assay 46
Figure 6. Visible Circular dichroism (CD) spectra of Ni2+ bound to WT and histidine mutant proteins. 48
Figure 7. Far-ultra violet (UV) circular dichroism (CD) analysis of the differences between histidine mutant and WT proteins. 50
Figure 8. SAXS data analysis and ab initio models of WT and variant proteins. 51
Figure 9. IL-8 levels of WT, H118A and histidine double mutants by ELISA assay from KATO-III cells. 53
Figure 10. Visible Circular dichroism (CD) spectra of Ni2+ bound to WT and various histidine double mutants. 54
Figure 11. The averaged envelopes DAMMIN models of various histidine double mutants. 55
Reference 56
Appendix 71
Supplementary Method 72
Supplementary Figure S1. Binding abilities of WT and histidine mutant proteins to TLR4 on KATO-III cell membranes evaluated via confocal microscopy. 73
Supplementary Figure S2. Surface plasmon resonance (SPR) assay of specific binding affinities of WT and histidine mutants to immobilized TLR4. 75
Supplementary Figure S3. Model of the domain B with putative nickel binding residues 76
dc.language.isoen
dc.subject幽門螺旋桿菌zh_TW
dc.subject胃癌zh_TW
dc.subject細胞介素八zh_TW
dc.subject第四型類鐸受體zh_TW
dc.subjectGroESzh_TW
dc.subject組氨酸殘基zh_TW
dc.subject鎳金屬zh_TW
dc.subjectnickel ionen
dc.subjectHelicobacter pylorien
dc.subjectgastric canceren
dc.subjectinterleukin-8en
dc.subjectToll-like receptor 4en
dc.subjectGroESen
dc.subjecthistidineen
dc.title探討幽門螺旋桿菌蛋白GroES羧基端上之組氨酸殘基對於結合第四型類鐸受體產生白細胞介素八之重要性zh_TW
dc.titleImportance of the C-terminal histidine residues of Helicobacter pylori GroES for Toll-like receptor 4 binding and interleukin-8 cytokine productionen
dc.typeThesis
dc.date.schoolyear105-1
dc.description.degree博士
dc.contributor.oralexamcommittee徐駿森(Chun-Hua Hsu),曾秀如(Shiou-Ru Tzeng),李惠珍(Hwei-Jen Lee),鄭有舜(U-Ser Jeng)
dc.subject.keyword幽門螺旋桿菌,胃癌,細胞介素八,第四型類鐸受體,GroES,組氨酸殘基,鎳金屬,zh_TW
dc.subject.keywordHelicobacter pylori,gastric cancer,interleukin-8,Toll-like receptor 4,GroES,histidine,nickel ion,en
dc.relation.page76
dc.identifier.doi10.6342/NTU201603821
dc.rights.note有償授權
dc.date.accepted2016-12-20
dc.contributor.author-college醫學院zh_TW
dc.contributor.author-dept生物化學暨分子生物學研究所zh_TW
顯示於系所單位:生物化學暨分子生物學科研究所

文件中的檔案:
檔案 大小格式 
ntu-105-1.pdf
  未授權公開取用
2.35 MBAdobe PDF
顯示文件簡單紀錄


系統中的文件,除了特別指名其著作權條款之外,均受到著作權保護,並且保留所有的權利。

社群連結
聯絡資訊
10617臺北市大安區羅斯福路四段1號
No.1 Sec.4, Roosevelt Rd., Taipei, Taiwan, R.O.C. 106
Tel: (02)33662353
Email: ntuetds@ntu.edu.tw
意見箱
相關連結
館藏目錄
國內圖書館整合查詢 MetaCat
臺大學術典藏 NTU Scholars
臺大圖書館數位典藏館
本站聲明
© NTU Library All Rights Reserved