Skip navigation

DSpace

機構典藏 DSpace 系統致力於保存各式數位資料(如:文字、圖片、PDF)並使其易於取用。

點此認識 DSpace
DSpace logo
English
中文
  • 瀏覽論文
    • 校院系所
    • 出版年
    • 作者
    • 標題
    • 關鍵字
  • 搜尋 TDR
  • 授權 Q&A
  • 幫助
    • 我的頁面
    • 接受 E-mail 通知
    • 編輯個人資料
  1. NTU Theses and Dissertations Repository
  2. 理學院
  3. 地質科學系
請用此 Handle URI 來引用此文件: http://tdr.lib.ntu.edu.tw/jspui/handle/123456789/60104
完整後設資料紀錄
DC 欄位值語言
dc.contributor.advisor詹瑜璋(Yu-chang Chan),胡植慶(Jyr-Ching Hu)
dc.contributor.authorYu-Chung Hsiehen
dc.contributor.author謝有忠zh_TW
dc.date.accessioned2021-06-16T09:56:20Z-
dc.date.available2017-02-08
dc.date.copyright2017-02-08
dc.date.issued2016
dc.date.submitted2016-12-26
dc.identifier.citationBaltsavias, E. P. (1999), A comparison between photogrammetry and laser scanning, ISPRS J. Photogramm. Remote Sens., 54(2-3), 83-94, doi: 10.1016/s0924-2716(99)00014-3.
Benjamin, M. J., Jason, M. S., Ann, E. G., Guido, G., Vladimir, E. R., Thomas, A. D., Nicole, E. M. K., Bruce, M. R. (2013), Quantifying landscape change in an arctic coastal lowland using repeat airborne LiDAR, Environ. Res. Lett., 8(4), 045025, doi: 10.1088/1748-9326/8/4/045025.
Betts, H. D., DeRose, R. C. (1999), Digital elevation models as a tool for monitoring and measuring gully erosion, Int. J. Appl. Earth Obs. Geoinf., 1(2), 91-101, doi: 10.1016/S0303-2434(99)85002-8.
Brasington, J., Langham, J., Rumsby, B. (2003), Methodological sensitivity of morphometric estimates of coarse fluvial sediment transport, Geomorphology, 53(3–4), 299-316, doi: 10.1016/s0169-555x(02)00320-3.
Bremer, M., Sass, O. (2012), Combining airborne and terrestrial laser scanning for quantifying erosion and deposition by a debris flow event, Geomorphology, 138(1), 49-60, doi: 10.1016/j.geomorph.2011.08.024.
Burbank, D. W., Leland, J., Fielding, E., Anderson, R. S., Brozovic, N., Reid, M. R., Duncan, C. (1996), Bedrock incision, rock uplift and threshold hillslopes in the northwestern Himalayas, Nature, 379(6565), 505-510, doi: 10.1038/379505a0.
Burbank, D. W., Blythe, A. E., Putkonen, J., Pratt-Sitaula, B., Gabet, E., Oskin, M., Barros, A., Ojha, T. P. (2003), Decoupling of erosion and precipitation in the Himalayas, Nature, 426(6967), 652-655, doi: 10.1038/nature02187.
Cavalli, M., Tarolli, P., Marchi, L., Dalla Fontana, G. (2008), The effectiveness of airborne LiDAR data in the recognition of channel-bed morphology, Catena, 73(3), 249-260, doi: 10.1016/j.catena.2007.11.001.
Central Weather Bureau, R. O. C.(2014), Typhoon Database, http://rdc28.cwb.gov.tw/ (accessed on 15 August 2016).
Chan, Y.-C., Chang, K.-J., Chen, R.-F., Liu, J.-K. (2012), Topographic changes revealed by airborne LiDAR surveys in regions affected by the 2009 Typhoon Morakot, southern Taiwan, Western Pac. Earth Sci., 12(1), 67-82.
Chang, K.-J., Taboada, A., Chan, Y.-C. (2005), Geological and morphological study of the Jiufengershan landslide triggered by the Chi-Chi Taiwan earthquake, Geomorphology, 71(3-4), 293-309, doi: 10.1016/j.geomorph.2005.02.004.
Chang, K.-J., Wei, S.-K., Chen, R.-F., Chan, Y.-C., Tsai, P.-W., Kuo, C.-Y. (2013), Empirical modal decomposition of near field seismic signals of Tsaoling Landslide, In K. Ugai, H. Yagi, & A. Wakai (Eds.), Earthquake-Induced Landslides: Proceedings of the International Symposium on Earthquake-Induced Landslides, Kiryu, Japan, 2012 (pp. 421-430). Berlin, Heidelberg: Springer Berlin Heidelberg.
Chen, R.-F., Chang, K.-J., Angelier, J., Chan, Y.-C., Deffontaines, B., Lee, C.-T., Lin, M.-L. (2006), Topographical changes revealed by high-resolution airborne LiDAR data: The 1999 Tsaoling landslide induced by the Chi–Chi earthquake, Eng. Geol., 88(3–4), 160-172, doi: 10.1016/j.enggeo.2006.09.008.
Chen, R.-F., Lin, C.-W., Chen, Y.-H., He, T.-C., Fei, L.-Y. (2015), Detecting and characterizing active thrust fault and deep-seated landslides in dense forest areas of southern taiwan using airborne LiDAR DEM, Remote Sens., 7(11), 15443-15466, doi: 10.3390/rs71115443.
Chen, T. C., Lin, M. L., Wang, K. L. (2014a), Landslide seismic signal recognition and mobility for an earthquake-induced rockslide in Tsaoling, Taiwan, Eng. Geol., 171, 31-44, doi: j.enggeo.2013.11.018.
Chen, Z., Zhang, B., Han, Y., Zuo, Z., Zhang, X. (2014b), Modeling accumulated volume of landslides using remote sensing and DTM data, Remote Sens., 6(2), 1514-1537, doi: 10.3390/rs6021514.
Chigira, M., Wang, W.-N., Furuya, T., Kamai, T. (2003), Geological causes and geomorphological precursors of the Tsaoling landslide triggered by the 1999 Chi-Chi earthquake, Taiwan, Eng. Geol., 68(3–4), 259-273, doi: 10.1016/s0013-7952(02)00232-6.
Clarke, B. A., Burbank, D. W. (2010), Bedrock fracturing, threshold hillslopes, and limits to the magnitude of bedrock landslides, Earth Planet. Sci. Lett., 297(3–4), 577-586, doi: j.epsl.2010.07.011.
Collins, B. D., Montgomery, D. R., Schanz, S. A., Larsen, I. J. (2016), Rates and mechanisms of bedrock incision and strath terrace formation in a forested catchment, Cascade Range, Washington, Geol. Soc. Am. Bull., doi: 10.1130/b31340.1.
Cook, K. L., Turowski, J. M., Hovius, N. (2013), A demonstration of the importance of bedload transport for fluvial bedrock erosion and knickpoint propagation, Earth Surf. Process. Landf., 38(7), 683-695, doi: 10.1002/esp.3313.
Corsini, A., Borgatti, L., Cervi, F., Dahne, A., Ronchetti, F., Sterzai, P. (2009), Estimating mass-wasting processes in active earth slides – earth flows with time-series of High-Resolution DEMs from photogrammetry and airborne LiDAR, Nat. Hazards Earth Syst. Sci., 9(2), 433-439, doi: 10.5194/nhess-9-433-2009.
Dadson, S. J., Hovius, N., Chen, H., Dade, W. B., Hsieh, M.-L., Willett, S. D., Hu, J.-C., Horng, M.-J., Chen, M.-C., Stark, C. P., Lague, D., Lin, J.-C. (2003), Links between erosion, runoff variability and seismicity in the Taiwan orogen, Nature, 426(6967), 648-651, doi: 10.1038/nature02150.
Daehne, A., Corsini, A. (2013), Kinematics of active earthflows revealed by digital image correlation and DEM subtraction techniques applied to multi-temporal LiDAR data, Earth Surf. Process. Landf., 38(6), 640-654, doi: 10.1002/esp.3351.
DeLong, S. B., Prentice, C. S., Hilley, G. E., Ebert, Y. (2012), Multitemporal ALSM change detection, sediment delivery, and process mapping at an active earthflow, Earth Surf. Process. Landf., 37(3), 262-272, doi: 10.1002/esp.2234.
Derose, R. C., Gomez, B., Marden, M., Trustrum, N. A. (1998), Gully erosion in Mangatu Forest, New Zealand, estimated from digital elevation models, Earth Surf. Process. Landf., 23(11), 1045-1053, doi: 10.1002/(SICI)1096-9837(1998110)23:11<1045::AID-ESP920>3.0.CO;2-T.
Dewitte, O., Jasselette, J. C., Cornet, Y., Van Den Eeckhaut, M., Collignon, A., Poesen, J., Demoulin, A. (2008), Tracking landslide displacements by multi-temporal DTMs: A combined aerial stereophotogrammetric and LiDAR approach in western Belgium, Eng. Geol., 99(1–2), 11-22, doi: j.enggeo.2008.02.006.
Dong, J.-J., Yang, C.-M., Yu, W.-L., Lee, C.-T., Miyamoto, Y., Shimamoto, T. (2013), Velocity-displacement dependent friction coefficient and the kinematics of giant landslide, In K. Ugai, H. Yagi, & A. Wakai (Eds.), Earthquake-Induced Landslides: Proceedings of the International Symposium on Earthquake-Induced Landslides, Kiryu, Japan, 2012 (pp. 397-403). Berlin, Heidelberg: Springer Berlin Heidelberg.
Duffy, B., Quigley, M., Barrell, D. J. A., Van Dissen, R., Stahl, T., Leprince, S., McInnes, C., Bilderback, E. (2013), Fault kinematics and surface deformation across a releasing bend during the 2010 MW 7.1 Darfield, New Zealand, earthquake revealed by differential LiDAR and cadastral surveying, Geol. Soc. Am. Bull., 125(3-4), 420-431, doi: 10.1130/b30753.1.
Evans, M., Lindsay, J. (2010), High resolution quantification of gully erosion in upland peatlands at the landscape scale, Earth Surf. Process. Landf., 35(8), 876-886, doi: 10.1002/esp.1918.
Finnegan, N. J., Schumer, R., Finnegan, S. (2014), A signature of transience in bedrock river incision rates over timescales of 104-107 years, Nature, 505(7483), 391-394, doi: 10.1038/nature12913.
Ghuffar, S., Székely, B., Roncat, A., Pfeifer, N. (2013), Landslide displacement monitoring using 3D range flow on airborne and terrestrial LiDAR data, Remote Sens., 5(6), 2720-2745, doi: 10.3390/rs5062720.
Glennie, C. L., Hinojosa-Corona, A., Nissen, E., Kusari, A., Oskin, M. E., Arrowsmith, J. R., Borsa, A. (2014), Optimization of legacy LiDAR data sets for measuring near-field earthquake displacements, Geophys. Res. Lett., 41(10), 3494-3501, doi: 10.1002/2014gl059919.
Gneeniss, A. S., Mills, J. P., Miller, P. E. (2013), Reference LiDAR surfaces for enhanced aerial triangulation and camera calibration, Int. Arch. Photogramm. Remote Sens. Spatial Inf. Sci., XL-1/W1, 111-116, doi: 10.5194/isprsarchives-XL-1-W1-111-2013.
Gneeniss, A. S., Mills, J. P., Miller, P. E. (2015), In-flight photogrammetric camera calibration and validation via complementary LiDAR, ISPRS J. Photogramm. Remote Sens., 100, 3-13, doi: j.isprsjprs.2014.04.019.
Goodwin, N. R., Armston, J., Stiller, I., Muir, J. (2016), Assessing the repeatability of terrestrial laser scanning for monitoring gully topography: A case study from Aratula, Queensland, Australia, Geomorphology, 262, 24-36, doi: j.geomorph.2016.03.007.
Grove, J. R., Croke, J., Thompson, C. (2013), Quantifying different riverbank erosion processes during an extreme flood event, Earth Surf. Process. Landf., 38(12), 1393-1406, doi: 10.1002/esp.3386.
Guzzetti, F., Ardizzone, F., Cardinali, M., Galli, M., Reichenbach, P., Rossi, M. (2008), Distribution of landslides in the Upper Tiber River basin, central Italy, Geomorphology, 96(1–2), 105-122, doi: 10.1016/j.geomorph.2007.07.015.
Guzzetti, F., Ardizzone, F., Cardinali, M., Rossi, M., Valigi, D. (2009), Landslide volumes and landslide mobilization rates in Umbria, central Italy, Earth Planet. Sci. Lett., 279(3–4), 222-229, doi: 10.1016/j.epsl.2009.01.005.
Hergarten, S., Robl, J., Stüwe, K. (2014), Extracting topographic swath profiles across curved geomorphic features, Earth Surf. Dynam., 2(1), 97-104, doi: 10.5194/esurf-2-97-2014.
Heritage, G., Hetherington, D. (2007), Towards a protocol for laser scanning in fluvial geomorphology, Earth Surf. Process. Landf., 32(1), 66-74, doi: 10.1002/esp.1375.
Hodgson, M. E., Bresnahan, P. (2004), Accuracy of airborne LiDAR-derived elevation: empirical assessment and error budget, Photogramm. Eng. Remote Sens., 70(3), 331-339, doi: 10.14358/PERS.70.3.331.
Hsieh, Y.-C., Chan, Y.-C., Hu, J.-C. (2016a), Digital Elevation Model Differencing and Error Estimation from Multiple Sources: A Case Study from the Meiyuan Shan Landslide in Taiwan, Remote Sens., 8(3), 199, doi: 10.3390/rs8030199.
Hsieh, Y.-C., Chan, Y.-C., Hu, J.-C., Chen, Y.-Z., Chen, R.-F., Chen, M.-M. (2016b), Direct Measurements of Bedrock Incision Rates on the Surface of a Large Dip-slope Landslide by Multi-Period Airborne Laser Scanning DEMs, Remote Sens., 8(11), 900, doi: 10.3390/rs8110900.
Hsu, T.-L., Leung, H. (1977), Mass movements in the Tsaoling area, Yunlin-Hsien, Taiwan, Proceed. Geol. Soc. China, 20, 114-118.
Huang, C.-S., Ho, H., Liu, H. (1983), The geology and landslide of Tsaoling area, Yunlin, Taiwan, Bull. Cent. Geol. Surv., 2, 95-112.
Huang, M.-W., Pan, Y.-W., Liao, J.-J. (2013), A case of rapid rock riverbed incision in a coseismic uplift reach and its implications, Geomorphology, 184, 98-110, doi: j.geomorph.2012.11.022.
Huang, Y., Yu, M., Xu, Q., Sawada, K., Moriguchi, S., Yashima, A., Liu, C., Xue, L. (2014), InSAR-derived digital elevation models for terrain change analysis of earthquake-triggered flow-like landslides based on ALOS/PALSAR imagery, Environ. Earth Sci., 73(11), 7661-7668, doi: 10.1007/s12665-014-3939-5.
Hung, J.-J. (2000), Chi-Chi earthquake induced landslides in Taiwan, Earthq. Eng. Eng.Seismol., 2(2), 25-33.
Hung, J.-J., Lee, C.-T., Lin, M.-L. (2002), Tsao-Ling rockslides, Taiwan, Reviews in Engineering Geology, 15, 91-116, doi: 10.1130/REG15-p91.
Iverson, R. M., George, D. L., Allstadt, K., Reid, M. E., Collins, B. D., Vallance, J. W., Schilling, S. P., Godt, J. W., Cannon, C. M., Magirl, C. S., Baum, R. L., Coe, J. A., Schulz, W. H., Bower, J. B. (2015), Landslide mobility and hazards: Implications of the 2014 Oso disaster, Earth Planet. Sci. Lett., 412, 197-208, doi: j.epsl.2014.12.020.
James, L. A., Watson, D. G., Hansen, W. F. (2007), Using LiDAR data to map gullies and headwater streams under forest canopy: South Carolina, USA, CATENA, 71(1), 132-144, doi: j.catena.2006.10.010.
Kao, S.-J., Liu, K.-K. (2001), Estimating the suspended sediment load by using the historical hydrometric record from the Lanyang-Hsi watershed, Terr. Atmos. Ocean. Sci., 12(2), 401-414.
Kao, S.-J., Liu, K.-K. (2002), Exacerbation of erosion induced by human perturbation in a typical Oceania watershed: Insight from 45 years of hydrological records from the Lanyang-Hsi River, northeastern Taiwan, Global Biogeochem. Cycles, 16(1), 1016, doi: 10.1029/2000gb001334.
Kasperski, J., Delacourt, C., Allemand, P., Potherat, P., Jaud, M., Varrel, E. (2010), Application of a terrestrial laser scanner (TLS) to the study of the Séchilienne Landslide (Isère, France), Remote Sens., 2(12), 2785-2802, doi: 10.3390/rs122785.
Kuo, C.-Y., Chang, K.-J., Tsai, P.-W., Wei, S.-K., Chen, R.-F., Dong, J.-J., Yang, C.-M., Chan, Y.-C., Tai, Y.-C. (2015), Identification of co-seismic ground motion due to fracturing and impact of the Tsaoling landslide, Taiwan, Eng. Geol., 196, 268-279, doi: j.enggeo.2015.07.013.
Lallias-Tacon, S., Liébault, F., Piégay, H. (2014), Step by step error assessment in braided river sediment budget using airborne LiDAR data, Geomorphology, 214, 307-323, doi: j.geomorph.2014.02.014.
Lane, S. N., Richards, K. S., Chandler, J. H. (1994), Developments in monitoring and modelling small-scale river bed topography, Earth Surf. Process. Landf., 19(4), 349-368, doi: 10.1002/esp.3290190406.
Lane, S. N., Richards, K. S. (1998), High resolution, two-dimensional spatial modelling of flow processes in a multi-thread channel, Hydrological Processes, 12(8), 1279-1298, doi: 10.1002/(SICI)1099-1085(19980630)12:8<1279::AID-HYP615>3.0.CO;2-E.
Lane, S. N., Westaway, R. M., Murray Hicks, D. (2003), Estimation of erosion and deposition volumes in a large, gravel-bed, braided river using synoptic remote sensing, Earth Surf. Process. Landf., 28(3), 249-271, doi: 10.1002/esp.483.
Larsen, I. J., Montgomery, D. R., Korup, O. (2010), Landslide erosion controlled by hillslope material, Nat. Geosci., 3(4), 247-251, doi: 10.1038/ngeo776.
Lee, C.-T. (2011), Geomorphological Evolution and Geology of the Tsaoling Rockslide, J. Chinese Soil Water Conserv., 42(4), 63-73.
Leland, J., Reid, M. R., Burbank, D. W., Finkel, R., Caffee, M. (1998), Incision and differential bedrock uplift along the Indus River near Nanga Parbat, Pakistan Himalaya, from 10Be and 26Al exposure age dating of bedrock straths, Earth Planet. Sci. Lett., 154(1–4), 93-107, doi: 10.1016/S0012-821X(97)00171-4.
Liang, H., Zhang, K., Fu, J., Li, L., Chen, J., Li, S., Chen, L. (2015), Bedrock river incision response to basin connection along the Jinshan Gorge, Yellow River, North China, J. Asian Earth Sci., 114, Part 1, 203-211, doi: j.jseaes.2015.07.010.
Lin, C.-W., Tseng, C.-M., Tseng, Y.-H., Fei, L.-Y., Hsieh, Y.-C., Tarolli, P. (2013), Recognition of large scale deep-seated landslides in forest areas of Taiwan using high resolution topography, J. Asian Earth Sci., 62, 389-400, doi: j.jseaes.2012.10.022.
Liu, H.-C., Lee, J.-F., Chi, C.-C. (2004), Yunlin, Geological map of Taiwan (scale 1:50,000), Central Geological Survey, MOEA, New Taipei City.
Liu, X., Zhang, Z., Peterson, J., Chandra, S. (2007), LiDAR-derived high quality ground control information and DEM for image orthorectification, GeoInformatica, 11(1), 37-53, doi: 10.1007/s10707-006-0005-9.
Lu, C.-Y., Tang, C.-L., Chan, Y.-C., Hu, J.-C., Chi, C.-C. (2014), Forecasting landslide hazard by the 3D discrete element method: A case study of the unstable slope in the Lushan hot spring district, central Taiwan, Eng. Geol., 183, 14-30, doi: j.enggeo.2014.09.007.
Müller, J., Gärtner-Roer, I., Thee, P., Ginzler, C. (2014), Accuracy assessment of airborne photogrammetrically derived high-resolution digital elevation models in a high mountain environment, ISPRS J. Photogramm. Remote Sens., 98, 58-69, doi: j.isprsjprs.2014.09.015.
Mackey, B. H., Roering, J. J. (2011), Sediment yield, spatial characteristics, and the long-term evolution of active earthflows determined from airborne LiDAR and historical aerial photographs, Eel River, California, Geol. Soc. Am. Bull., 123(7-8), 1560-1576, doi: 10.1130/b30306.1.
Malik, I. (2008), Dating of small gully formation and establishing erosion rates in old gullies under forest by means of anatomical changes in exposed tree roots (Southern Poland), Geomorphology, 93(3–4), 421-436, doi: j.geomorph.2007.03.007.
Milan, D. J., Heritage, G. L., Hetherington, D. (2007), Application of a 3D laser scanner in the assessment of erosion and deposition volumes and channel change in a proglacial river, Earth Surf. Process. Landf., 32(11), 1657-1674, doi: 10.1002/esp.1592.
Ministry of the Interior, R. O. C.(2011a), Establishment of The national coordinate system, http://gps.moi.gov.tw/SSCenter/Introduce_E/IntroducePage_E.aspx?Page=GPS_E8 (accessed on 15 December 2015).
Ministry of the Interior, R. O. C.(2011b), Taiwan Vertical Datum, http://gps.moi.gov.tw/SSCenter/Introduce_E/IntroducePage_E.aspx?Page=Height_E4 (accessed on 15 December 2015).
Montgomery, D. R. (2004), Observations on the role of lithology in strath terrace formation and bedrock channel width, Am. J. Sci., 304(5), 454-476, doi: 10.2475/ajs.304.5.454.
Murphy, B. P., Johnson, J. P. L., Gasparini, N. M., Sklar, L. S. (2016), Chemical weathering as a mechanism for the climatic control of bedrock river incision, Nature, 532(7598), 223-227, doi: 10.1038/nature17449.
Nissen, E., Krishnan, A. K., Arrowsmith, J. R., Saripalli, S. (2012), Three-dimensional surface displacements and rotations from differencing pre- and post-earthquake LiDAR point clouds, Geophys. Res. Lett., 39(16), L16301, doi: 10.1029/2012gl052460.
Orem, C. A., Pelletier, J. D. (2015), Quantifying the time scale of elevated geomorphic response following wildfires using multi-temporal LiDAR data: An example from the Las Conchas fire, Jemez Mountains, New Mexico, Geomorphology, 232, 224-238, doi: j.geomorph.2015.01.006.
Oskin, M. E., Arrowsmith, J. R., Corona, A. H., Elliott, A. J., Fletcher, J. M., Fielding, E. J., Gold, P. O., Garcia, J. J. G., Hudnut, K. W., Liu-Zeng, J., Teran, O. J. (2012), Near-field deformation from the El Mayor–Cucapah Earthquake revealed by differential LIDAR, Science, 335(6069), 702-705, doi: 10.1126/science.1213778.
Peng, M. H., Shih, T. Y. (2006), Error assessment in two LiDAR-derived TIN datasets, Photogramm. Eng. Remote Sens., 72(8), 933-947, doi: 10.14358/PERS.72.8.933.
Perroy, R. L., Bookhagen, B., Asner, G. P., Chadwick, O. A. (2010), Comparison of gully erosion estimates using airborne and ground-based LiDAR on Santa Cruz Island, California, Geomorphology, 118(3-4), 288-300, doi: 10.1016/j.geomorph.2010.01.009.
Podobnikar, T. (2005), Production of integrated digital terrain model from multiple datasets of different quality, Int. J. Geogr. Inf. Sci., 19(1), 69-89, doi: 10.1080/13658810412331280130.
Pratt-Sitaula, B., Garde, M., Burbank, D. W., Oskin, M., Heimsath, A., Gabet, E. (2007), Bedload-to-suspended load ratio and rapid bedrock incision from Himalayan landslide-dam lake record, Quaternary Res., 68(1), 111-120, doi: j.yqres.2007.03.005.
Prokešová, R., Kardoš, M., Medveďová, A. (2010), Landslide dynamics from high-resolution aerial photographs: A case study from the Western Carpathians, Slovakia, Geomorphology, 115(1–2), 90-101, doi: j.geomorph.2009.09.033.
Reusser, L. J., Bierman, P. R., Pavich, M. J., Zen, E.-a., Larsen, J., Finkel, R. (2004), Rapid Late Pleistocene Incision of Atlantic Passive-Margin River Gorges, Science, 305(5683), 499-502, doi: 10.1126/science.1097780.
Reutebuch, S. E., McGaughey, R. J., Andersen, H.-E., Carson, W. W. (2003), Accuracy of a high-resolution LiDAR terrain model under a conifer forest canopy, Can. J. Remote Sens., 29(5), 527-535, doi: 10.5589/m03-022.
Robl, J., Hergarten, S., Stüwe, K. (2008), Morphological analysis of the drainage system in the Eastern Alps, Tectonophysics, 460(1–4), 263-277, doi: j.tecto.2008.08.024.
Roering, J. J., Stimely, L. L., Mackey, B. H., Schmidt, D. A. (2009), Using DInSAR, airborne LiDAR, and archival air photos to quantify landsliding and sediment transport, Geophys. Res. Lett., 36(19), doi: 10.1029/2009gl040374.
Rumsby, B., Brasington, J., Langham, J., McLelland, S., Middleton, R., Rollinson, G. (2008), Monitoring and modelling particle and reach-scale morphological change in gravel-bed rivers: Applications and challenges, Geomorphology, 93(1-2), 40-54, doi: 10.1016/j.geomorph.2006.12.017.
Saez, J. L., Corona, C., Stoffel, M., Rovéra, G., Astrade, L., Berger, F. (2011), Mapping of erosion rates in marly badlands based on a coupling of anatomical changes in exposed roots with slope maps derived from LiDAR data, Earth Surf. Process. Landf., 36(9), 1162-1171, doi: 10.1002/esp.2141.
Schaller, M., Hovius, N., Willett, S. D., Ivy-Ochs, S., Synal, H. A., Chen, M. C. (2005), Fluvial bedrock incision in the active mountain belt of Taiwan from in situ-produced cosmogenic nuclides, Earth Surf. Process. Landf., 30(8), 955-971, doi: 10.1002/esp.1256.
Schanz, S. A., Montgomery, D. R. (2016), Lithologic controls on valley width and strath terrace formation, Geomorphology, 258, 58-68, doi: j.geomorph.2016.01.015.
Siame, L. L., Angelier, J., Chen, R. F., Godard, V., Derrieux, F., Bourlès, D. L., Braucher, R., Chang, K. J., Chu, H. T., Lee, J. C. (2011), Erosion rates in an active orogen (NE-Taiwan): A confrontation of cosmogenic measurements with river suspended loads, Quat. Geochronol., 6(2), 246-260, doi: 10.1016/j.quageo.2010.11.003.
Sugarbaker, L. J., Constance, E. W., Heidemann, H. K., Jason, A. L., Lukas, V., Saghy, D. L., Stoker, J. M. (2014). The 3D Elevation Program initiative—A call for action. U.S. Geological Survey Retrieved from http://dx.doi.org/10.3133/cir1399.
Tang, C.-L., Hu, J.-C., Lin, M.-L., Angelier, J., Lu, C.-Y., Chan, Y.-C., Chu, H.-T. (2009), The Tsaoling landslide triggered by the Chi-Chi earthquake, Taiwan: Insights from a discrete element simulation, Eng. Geol., 106(1–2), 1-19, doi: j.enggeo.2009.02.011.
Tarolli, P. (2014), High-resolution topography for understanding Earth surface processes: Opportunities and challenges, Geomorphology, 216, 295-312, doi: j.geomorph.2014.03.008.
Taylor, J. R. (1982), An Introduction to Error Analysis: The Study of Uncertainties in Physical Measurements, 327 pp, Univ. Sci. Books, Mill Valley, Calif.
Telbisz, T., Kovács, G., Székely, B., Szabó, J. (2013), Topographic swath profile analysis: a generalization and sensitivity evaluation of a digital terrain analysis tool, Z. Geomorphol., 57(4), 485-513, doi: 10.1127/0372-8854/2013/0110.
The Aerial Survey Office, F. B., R.O.C.(2015), ASO historical aerial photogrammetry database, http://www.afasi.gov.tw/ (accessed on 15 December 2015).
Tseng, C.-M., Lin, C.-W., Stark, C. P., Liu, J.-K., Fei, L.-Y., Hsieh, Y.-C. (2013), Application of a multi-temporal, LiDAR-derived, digital terrain model in a landslide-volume estimation, Earth Surf. Process. Landf., 38(13), 1587-1601, doi: 10.1002/esp.3454.
Tseng, C.-M., Lin, C.-W., Chang, K.-J. (2015), The Sediment Budgets Evaluation in a Basin Using LiDAR DTMs, In G. Lollino, M. Arattano, M. Rinaldi, O. Giustolisi, J.-C. Marechal, & G. E. Grant (Eds.), Engineering Geology for Society and Territory - Volume 3: River Basins, Reservoir Sedimentation and Water Resources (pp. 37-41). Cham: Springer International Publishing.
Ventura, G., Vilardo, G., Terranova, C., Sessa, E. B. (2011), Tracking and evolution of complex active landslides by multi-temporal airborne LiDAR data: The Montaguto landslide (Southern Italy), Remote Sens. Environ., 115(12), 3237-3248, doi: 10.1016/j.rse.2011.07.007.
Water Resources Agency, M., R.O.C.(2015), Water Resources Agency, http://eng.wra.gov.tw/ (accessed on 15 December 2015).
Wehr, A., Lohr, U. (1999), Airborne laser scanning--an introduction and overview, ISPRS J. Photogramm. Remote Sens., 54(2-3), 68-82, doi: 10.1016/s0924-2716(99)00011-8.
Wheaton, J. M., Brasington, J., Darby, S. E., Sear, D. A. (2009), Accounting for uncertainty in DEMs from repeat topographic surveys: improved sediment budgets, Earth Surf. Process. Landf., 35(2), 135-156, doi: 10.1002/esp.1886.
Whipple, K. X., Tucker, G. E. (1999), Dynamics of the stream-power river incision model: Implications for height limits of mountain ranges, landscape response timescales, and research needs, Journal of Geophysical Research: Solid Earth, 104(B8), 17661-17674, doi: 10.1029/1999jb900120.
Whipple, K. X., Snyder, N. P., Dollenmayer, K. (2000a), Rates and processes of bedrock incision by the Upper Ukak River since the 1912 Novarupta ash flow in the Valley of Ten Thousand Smokes, Alaska, Geology, 28(9), 835-838, doi: 10.1130/0091-7613(2000)28<835:rapobi>2.0.co;2.
Whipple, K. X., Hancock, G. S., Anderson, R. S. (2000b), River incision into bedrock: Mechanics and relative efficacy of plucking, abrasion, and cavitation, Geol. Soc. Am. Bull., 112(3), 490-503, doi: 10.1130/0016-7606(2000)112<490:riibma>2.0.co;2.
Whittaker, A. C., Cowie, P. A., Attal, M., Tucker, G. E., Roberts, G. P. (2007), Bedrock channel adjustment to tectonic forcing: Implications for predicting river incision rates, Geology, 35(2), 103-106, doi: 10.1130/g23106a.1.
Yang, C.-M., Yu, W.-L., Dong, J.-J., Kuo, C.-Y., Shimamoto, T., Lee, C.-T., Togo, T., Miyamoto, Y. (2014), Initiation, movement, and run-out of the giant Tsaoling landslide — What can we learn from a simple rigid block model and a velocity–displacement dependent friction law?, Eng. Geol., 182, Part B, 158-181, doi: j.enggeo.2014.08.008.
史天元、彭淼祥、吳木吉、吳麗娟(2005),農委會空載光達台灣地區測試。航測及遙測學刊,10(1),第103-128頁,doi: 10.6574/JPRS.2005.10(1).8。
朱怡亭、徐美玲(2007),玉峰集水區颱風事件河川流量和懸移質濃度關係之研究。地理學報,49,第1-22頁。
江陽聖、陳錕山、梁隆鑫、王志添(2007),以SPOT影像及數值地形模型推估集水區泥砂產量。航測及遙測學刊,12(4),第447-456頁,doi: 10.6574/JPRS.2007.12(4).13。
何春蓀(1986),臺灣地質概論(第二版),164頁,臺北:經濟部中央地質調查所。
吳永助(1976),清水土場地熱區及其外圍之地質。礦業技術,14,第484-489頁。
林孟龍、林俊全(2003),颱風對於蘭陽溪上游集水區懸移質生產特性的影響。地理學報,33,第39-53頁。
林致遠(2004),蘭陽溪泥沙來源與下游河道沖淤關係之探討。蘭陽溪生命史-『宜蘭研究』第五屆學術研討會論文集,第113-129頁。
林啟文、林偉雄(1995),臺灣東北部蘭陽溪中下游地質構造研究。經濟部中央地質調查所彙刊,10,第23-49頁。
林啟文、劉桓吉、高銘健(2008),環山(梨山)斷層、牛鬥斷層與武陵斷層的探討。臺灣礦業,60(3),第31-52頁。
陳文山、楊志成、楊小青、劉進金、詹瑜璋、謝凱旋、謝有忠(2007),從LiDAR的2公尺×2公尺數值模擬地形分析大屯火山群的火山地形。經濟部中央地質調查所彙刊,20,第101-128頁。
陳奕中、侯進雄、謝有忠、陳柔妃、吳若穎(2014),高解析度空載光達資料結合地形開闊度分析於構造地形特徵之應用。航測及遙測學刊,18(2),第67-78頁,doi: 10.6574/JPRS.2014.18(2).4。
陳映璇、沈淑敏、詹瑜璋、謝有忠(2009),光達資料在台灣海岸地形變遷上的應用。航測及遙測學刊,14(2),第157-170頁,doi: 10.6574/JPRS.2009.14(2).6。
陳翰霖、張瑞津(2007),曾文溪流域豪大雨事件的流量及輸沙量。地理學報,48,第43-65頁。
黃鐘、胡植慶、陳于高、詹瑜璋、李建成、史天元(2004),空載雷射掃描數值高程模型簡介。地質,23(1),第43-54頁。
經濟部中央地質調查所(2010),集水區侵蝕及堆積之調查與評估計畫 (3/3),877頁,新北市:經濟部中央地質調查所。
經濟部水利署(2008),中華民國97年臺灣水文年報,47頁,臺北市:經濟部水利署。
詹新甫(1976),台灣雪山山脈之褶皺與塊體運動。台灣省地質調查所彙刊,25,第29-34頁。
詹瑜璋(2005),見樹又見地--雷射測距掃描。科學發展月刊,390,第24-29頁。
詹瑜璋、張國楨、陳柔妃、劉進金(2012),空載光達資料顯示之莫拉克風災前後高精度地形變化。西太平洋地質科學,12(1),第67-82頁。
劉治中、蕭國鑫、饒見有、劉進金、吳哲榮、黃群修(2010),結合空載LiDAR與彩色航照應用於崩塌地研判。航測及遙測學刊,15(1),第111-122頁,doi: 10.6574/JPRS.2010.15(1).8。
鄭錦桐、顧承宇、邱顯晉、張玉麟、陳錦清(2005),遙測方法應用於集水區泥砂產量推估之研究。中興工程季刊,87,第1-11頁。
蕭國鑫、劉進金、游明芳、曾義星(2005),航測與三維雷射掃描資料應用於九份二山地形變化分析。航測及遙測學刊,10(2),第191-202頁,doi: 10.6574/JPRS.2005.10(2).6。
謝有忠、詹瑜璋、胡植慶、林朝宗(2013),激光雷達地形资料用于河道输沙的研究。遥感学报,17(1),第193-209頁,doi: 10.11834/jrs.20132002。
謝有忠、陳勉銘、費立沅(2016a),光達俯看中央山脈湖泊。科學發展月刊,524,第42-46頁。
謝有忠、侯進雄、胡植慶、費立沅、陳宏仁、邱禎龍、詹瑜璋(2016b),地形計測方法應用於潛在大規模崩塌之判釋。航測及遙測學刊,20(4),第263-277頁,doi: 10.6574/jprs.2016.20(4).3。
dc.identifier.urihttp://tdr.lib.ntu.edu.tw/jspui/handle/123456789/60104-
dc.description.abstract近年來遙測技術在硬體和資料處理上不斷地發展,數值地形資料的精度與解析度也隨著不斷提升,高解析度數值地形資料是一項可以廣泛應用於國土管理與防災減災的基礎工具,也在許多領域可以發揮其效益,尤其是在地質科學領域中如山崩、河道地形的變遷等重要課題。經濟部中央地質調查所自2005年開始以空載光達技術進行數值地形資料測製,至2016年將完成臺灣全島1m x 1m的高解析度數值地形資料。本論文則以地調所產製之數值地形資料為出發點,選擇發生大規模崩塌及受颱風季節影響的河道範圍,在這些範圍進行重複空載光達測製作業或以歷史資料產製不同時期的數值地形資料,藉由多期數值地形資料的比對,以了解這些造成地形變遷的地質作用。
本論文以多期數值地形資料分別進行3個不同主題之地形變遷的研究。第一主題為利用航空攝影測量、空載光達、無人載具等不同遙測技術所獲取之6個不同時期的數值地形模型資料,探討資料誤差分析及山崩後地形變遷之應用。多期數值地形資料的應用裡,誤差分析結果為重要的關鍵訊息。本研究發現在植生茂密、地形陡峭之高山地區,可應用至少1期之空載光達產製之高程資料為評估基準,來解決高山林區高程檢核點實測困難而量不足的問題,結果顯示精度也可符合分析需求。由各期資料產製及比對過程誤差分析之結果驗證,這些多期資料能有效應用至山崩之地形變遷比對。經由多期資料比對,南投眉原山崩塌後之土方量搬運,主要受豪大雨事件影響其土砂遞移率而逐年遞減,此崩塌在發生後數年仍有約半數土方量仍留存於集水區內。研究成果也說明多期航空攝影測量(含無人機)和空載光達數值地形資料,可以在坡地災害後觀測於下游河道地形變遷及其潛在影響。
第二主題為藉由多時序的數值地形資料比對可以直接觀測與判釋地形變遷之過程,本研究選擇在1999年集集地震所誘發之草嶺山崩地區,使用3期空載光達數值地形資料,探討歷經約10年後之蝕溝侵蝕的發展。採用固定間隔斷面取樣以及條帶式剖面(Swath profile)連續取樣等2種蝕溝基岩下切速率計算方法,其中連續斷面方法獲取較完整的蝕溝變化資料,可為較合理也便利之方法。藉由多期數值地形資料的比較加上誤差評估,可以直接呈現不同時期地形演化,而能減少費時且大量的野外工作。以3期空載光達數值地形資料所求的坡面蝕溝基岩侵蝕下切速率,結果界於0.23至3.98 m/yr,呈現出基岩抗侵蝕能力與所組成岩性有關,且颱風豪雨事件確實為引發地形變化主要作用,本區下切速率也明顯快於其他相關研究,反映本區域快速之侵蝕作用也是影響山崩多次發生、循環的因素之一。
第三主題為在2008年蘭陽溪地區經歷卡玫基(Kalmaegi)、鳳凰(Fung-Wong)、辛樂克(Sinlaku)、薔蜜(Jangmi)等四次重大颱風事件,造成河床地形變化甚劇,本研究利用兩次空載光達測製之數值地形資料,分析比較颱風事件前後河床地形以及河道輸砂之變化。研究成果呈現空載光達技術,在大流域面積測製河道地形上的極佳應用,以颱風季節前後飛航測製所產製之不同時期之數值地形資料,應用高程差值之地形計量方法,計算在颱風季節前後河道土石量之體積變化量,也可推估蘭陽溪在此河段颱風季節前後的輸砂量。從河道地形高程值變化,觀察蘭陽溪不同河段所程現的沉積物搬運特性,主要仍受河道坡度所影響。
本論文分別利用空載光達、立體航測、無人飛行載具等技術所獲取的多期數值地形資料,以多期資料比對方法能直接觀測山崩與河道地形變遷之過程,另經由誤差評估和地形計測方法,也明確表示出各種數值地形資料應用的範圍和其誤差值。針對這些地形變化所引發的坡地災害,未來可持續利用這些技術來獲得有效的基礎資訊,而提供後續了解地質災害致災潛勢、機制和影響範圍等相關需求。
zh_TW
dc.description.abstractIn recent years, the precision and resolution of digital terrain model (DTM) data are constantly increasing with the advancement of the hardware and data processing of remote sensing technology. High resolution DTM is the basic data that could be widely applied in land management and disaster prevention, and also shows its analytical benefits in many fields, especially in geological science such as landforms, landslides, and fluvial changes. Central Geological Survey, MOEA has carried out LiDAR-DTM survey since 2005, and complete high-resolution (1m x 1m) LiDAR-DTM data of the whole island of Taiwan in 2016. In this dissertation, we chose the areas affected by large-scale landslides and the river channels affected before and after typhoon season, and used repeated airborne-LiDAR survey or historical data processing to acquire multi-period DTM data. We analyzed the terrain changes from the multi-period DTM data to better understand the effects of landslides and fluvial evolution.
The dissertation mainly consists of three subjects. In the first subject, six different periods of DTM data obtained from various flight vehicles by using the techniques of aerial photogrammetry, airborne LiDAR (ALS), and unmanned aerial vehicles (UAV) were adopted to discuss the errors and applications of these techniques. Error estimation provides critical information for DTM data users. This study conducted error estimation from the perspective of general users for mountainus and forest areas with poor traffic accessibility using limited information, including error reports obtained from the data generation process and comparison errors of terrain elevations. Our results suggested that the precision of the DTM data generated in this work using different aircrafts and generation techniques is suitable for landslide analysis. Especially in mountainous and densely vegetated areas, data generated by ALS can be used as a benchmark to solve the problem of insufficient control points. Based on digital elevation model (DEM) differencing of multiple periods, this study suggests that sediment delivery rate decreased each year and was affected by heavy rainfall during each period for the Meiyuan Shan landslide area. Multi-period aerial photogrammetry and ALS can be effectively applied after the landslide disaster for monitoring the terrain changes of the downstream river channel and their potential impacts.
In the second subject, we used three periods of ALS DEM data to analyze the short-term erosional features of the Tsaoling landslide triggered by the 1999 Chi-Chi earthquake in Taiwan. Two methods for calculating the bedrock incision rate, the equal-interval cross section selection method and the continuous swath profiles selection method, were used in the study after nearly ten years of gully incision following the earthquake-triggered dip-slope landslide. Multi-temporal gully incision rates were obtained using the continuous swath profiles selection method, which is considered a practical and convenient approach in terrain change studies. After error estimation and comparison of the multi-period ALS DEMs, the terrain change in different periods can be directly calculated, reducing time-consuming fieldwork such as installation of erosion pins and measurement of topographic cross sections on site. The gully bedrock incision rate calculated by the three periods of ALS DEMs on the surface of the Tsaoling landslide ranged from 0.23 m/yr to 3.98 m/yr. The local gully incision rate in the lower part of the landslide surface was found to be remarkably faster than that of the other regions, suggesting that the fast incision of the toe area possibly contributes to the occurrence of repeated landslides in the Tsaoling area.
In the third subject, the Lanyang River region experienced four major typhoon events in 2008: Kalmaegi, Fung-Wong, Sinlaku, and Jangmi. These typhoons changed the riverbed terrain dramatically. Therefore, we used two occasions of digital terrain data measured using the airborne LiDAR system to conduct analytical comparisons of the riverbed terrain and river sediment transportation changes before and after typhoon events. Our results shows the excellent applications of the airborne LiDAR system for measuring river terrains in a large watershed area; digital terrain data were produced for periods before and after a typhoon season. We used the elevation difference topography measurement method to calculate river terrain changes before and after a typhoon season. This study’s results showed that the airborne LiDAR high resolution digital terrain model data produced excellent results when used to calculate river terrain and sediment volume changes or change amounts.
In this dissertation, multi-period DEM differencing was applied to study the processes of landslides and fluvial morphological changes by means of airborne LiDAR, photogrammetry and unmanned aerial vehicle. Through error estimation and geomorphometric analysis, the errors of DEMs and their applicability in topographic analysis were stated and systematically discussed. For disasters caused by the terrain changes on slopes and channels, the proposed methods in the dissertation can be used to analyze and understand the disaster potential, mechanisms and affected areas, thereby, offering useful information for the assessment of geological hazards.
en
dc.description.provenanceMade available in DSpace on 2021-06-16T09:56:20Z (GMT). No. of bitstreams: 1
ntu-105-D97224008-1.pdf: 39018557 bytes, checksum: bf693ace2933bc2ecdc4f6d1cb747c31 (MD5)
Previous issue date: 2016
en
dc.description.tableofcontents口試委員會審定書 i
致謝 ii
中文摘要 iv
英文摘要 vi
目錄 ix
圖目錄 xi
表目錄 xii
第一章 前言 1
1.1 研究動機 1
1.2 臺灣數值地形資料測製 2
1.3 論文架構 8
第二章 多元多期數值地形模型資料差異分析及誤差評估之應用-以南投眉原山崩塌地為例 10
2.0. 摘要 10
2.1. 前言 10
2.2. 研究區域背景與研究方法 12
2.2.1. 研究區域 12
2.2.2. 地質概況 15
2.2.3. 立體航空攝影測量 15
2.2.4. 空載光達 17
2.3. 研究結果 19
2.3.1. 正射影像 19
2.3.2. 數值地形模型結果 20
2.3.3. 誤差評估 21
2.3.4. 數值地形資料比對 23
2.3.5. 體積計算 24
2.3.6. 剖面 25
2.4. 討論 29
2.4.1. 數值地形資料之誤差評估與其應用 29
2.4.2. 剖面比較 32
2.5. 結論 33
第三章 以多期空載光達數值地形資料直接量測大型順向坡坡面之基岩下切速率 35
3.0. 摘要 35
3.1. 前言 35
3.2. 研究區域 37
3.2.1. 地質概況 37
3.2.2. 草嶺山崩概述 38
3.3. 研究資料及方法 42
3.3.1. 空載光達 42
3.3.2. 航照影像 43
3.3.3. 蝕溝下切深度計算方法 44
3.4. 研究結果 46
3.4.1. 影像判釋結果 46
3.4.2. 地形判釋 47
3.4.3. 蝕溝下切計算結果 48
3.4.4. 3期空載光達數值地形資料比較與誤差評估 53
3.5.討論 55
3.5.1. 3期資料比對及誤差評估 55
3.5.2. 蝕溝下切速率 56
3.5.3. 連續取樣和間隔斷面取樣 58
3.5.4. 蘇拉颱風(Typhoon Soula)的影響 59
3.5.5. 基岩侵蝕下切速率 60
3.6. 結論 61
第四章 利用光達數值地形資料於河道輸砂之研究 63
4.0. 摘要 63
4.1. 前言 63
4.2. 研究區域概況 66
4.3. 研究成果 69
4.3.1. 光達數值地形資料 69
4.3.2. 數值地形資料計算分析 72
4.4. 討論 75
4.4.1. 颱風季節蘭陽溪河道之變化 75
4.4.2. 河道堆積物搬運特性 78
4.4.3. 河道橫剖面與縱剖面變化 79
4.4.4. 蘭陽溪河床輸砂量 81
4.5. 結論 83
第五章 總結 84
參考文獻 87
附錄 A 97
A1. 其他文章附註 (謝有忠等,2016,航測及遙測學刊) 97
A2. 第二章附註(Hsieh et al. 2016, Remote Sens,) 113
A3. 第三章附註 (Hsieh et al. 2016, Remote Sens) 134
個人簡歷 157
dc.language.isozh-TW
dc.title以多期數值地形資料評估山崩區及河道地形之變遷zh_TW
dc.titleEvaluation of Landslide Area and Fluvial Changes using Multi-period Digital Elevation Modelsen
dc.typeThesis
dc.date.schoolyear105-1
dc.description.degree博士
dc.contributor.oralexamcommittee朱傚祖(Hao-Tsu Chu),林銘郎(Ming-Lang Lin),林慶偉(Ching-Weei Lin),董家鈞(Jia-Jyun Dong),賴進松(Jihn-Sung Lai)
dc.subject.keyword空載光達,多期數值地形資料比對,無人飛行載具,立體航測技術,條帶式剖面,侵蝕下切速率,河道輸砂,zh_TW
dc.subject.keywordAirborne LiDAR (ALS),Unmanned Aerial Vehicles (UAV),Photogrammetry,Multi-period Digital Elevation Model (DEM) Differencing,Swath profile,Incision Rates,Sediment Transport,en
dc.relation.page160
dc.identifier.doi10.6342/NTU201603713
dc.rights.note有償授權
dc.date.accepted2016-12-26
dc.contributor.author-college理學院zh_TW
dc.contributor.author-dept地質科學研究所zh_TW
顯示於系所單位:地質科學系

文件中的檔案:
檔案 大小格式 
ntu-105-1.pdf
  目前未授權公開取用
38.1 MBAdobe PDF
顯示文件簡單紀錄


系統中的文件,除了特別指名其著作權條款之外,均受到著作權保護,並且保留所有的權利。

社群連結
聯絡資訊
10617臺北市大安區羅斯福路四段1號
No.1 Sec.4, Roosevelt Rd., Taipei, Taiwan, R.O.C. 106
Tel: (02)33662353
Email: ntuetds@ntu.edu.tw
意見箱
相關連結
館藏目錄
國內圖書館整合查詢 MetaCat
臺大學術典藏 NTU Scholars
臺大圖書館數位典藏館
本站聲明
© NTU Library All Rights Reserved