請用此 Handle URI 來引用此文件:
http://tdr.lib.ntu.edu.tw/jspui/handle/123456789/60098完整後設資料紀錄
| DC 欄位 | 值 | 語言 |
|---|---|---|
| dc.contributor.advisor | 吳章甫 | |
| dc.contributor.author | Chi-Chang Ho | en |
| dc.contributor.author | 何紀璋 | zh_TW |
| dc.date.accessioned | 2021-06-16T09:55:55Z | - |
| dc.date.available | 2019-12-26 | |
| dc.date.copyright | 2017-02-24 | |
| dc.date.issued | 2016 | |
| dc.date.submitted | 2016-12-27 | |
| dc.identifier.citation | Agrawal, H., Welch, W. A., Miller, J. W. and Cocker, D. R., 2008. Emission measurements from a crude oil tanker at sea. Environmental Science & Technology 42, 7098-7103.
Aguilera, I., Eeftens, M., Meier, R., Ducret-Stich, R. E., Schindler, C., Ineichen, A., Phuleria, H. C., Probst-Hensch, N., Tsai, M.Y. and Künzli, N., 2015. Land use regression models for crustal and traffic-related PM 2.5 constituents in four areas of the SAPALDIA study. Environmental Research 140, 377-384. Andreae, M. O. and Merlet, P., 2001. Emission of trace gases and aerosols from biomass burning. Global biogeochemical cycles 15, 955-966. Babich, P., Davey, M., Allen, G., and Koutrakis, P., 2000. Method comparisons for particulate nitrate, elemental carbon, and PM2.5 mass in seven US cities. Journal of the Air and Waste Management Association 50(7), 1095-1105. Babyak, M. A., 2004. What you see may not be what you get: a brief, nontechnical introduction to overfitting in regression-type models. Psychosomatic medicine 66, 411-421. Barnett, A. G., Williams, G. M., Schwartz, J., Best, T. L., Neller, A. H., Petroeschevsky, A. L. and Simpson, R. W., 2006. The effects of air pollution on hospitalizations for cardiovascular disease in elderly people in Australian and New Zealand cities. Environmental Health Perspectives, 1018-1023. Basha, S., Gaur, P. M., Thorat, R. B., Trivedi, R. H., Mukhopadhyay, S. K., Anand, N., Desai, S. H., Mody, K. H. and Jha, B., 2007. Heavy metal content of suspended particulate matter at world's largest ship-breaking yard, Alang-Sosiya, India. Water Air and Soil Pollution 178, 373-384. Beelen, R., Hoek, G., Fischer, P., van den Brandt, P. A. and Brunekreef, B., 2007. Estimated long-term outdoor air pollution concentrations in a cohort study. Atmospheric Environment 41, 1343-1358. Birmili, W., Allen, A. G., Bary, F. and Harrison, R. M., 2006. Trace metal concentrations and water solubility in size-fractionated atmospheric particles and influence of road traffic. Environmental Science & Technology 40, 1144-1153. Brauer, M., Hoek, G., van Vliet, P., Meliefste, K., Fischer, P., Gehring, U., Heinrich, J., Cyrys, J., Bellander, T., Lewne, M. and Brunekreef, B., 2003. Estimating long-term average particulate air pollution concentrations: Application of traffic indicators and geographic information systems. Epidemiology 14, 228-239. Brauer, M., Hoek, G., Van Vliet, P., Meliefste, K., Fischer, P. H., Wijga, A., Koopman, L. P., Neijens, H. J., Gerritsen, J. and Kerkhof, M., 2002. Air pollution from traffic and the development of respiratory infections and asthmatic and allergic symptoms in children. American journal of respiratory and critical care medicine 166, 1092-1098. Cachier, H., Ducret, J., Bremond, M., Yoboue, V., Lacaux, J., Gaudichet, A. and Baudet, J., 1991. Biomass burning aerosols in a savanna region of the Ivory Coast, Global biomass burning. Atmospheric, climatic, and biospheric implications. Chan, C. C., Chuang, K. J., Chen, W. J., Chang, W. T., Lee, C. T. and Peng, C. M., 2008. Increasing cardiopulmonary emergency visits by long-range transported Asian dust storms in Taiwan. Environmental Research 106, 393-400. Chao, C. Y. and Wong, K. K., 2002. Residential indoor PM10 and PM2.5 in Hong kong and the elemental composition. Atmospheric Environment 36, 265-277. Chen, B.Y., Chan, C.C., Lee, C.T., Cheng, T.J., Huang, W.C., Jhou, J.C., Han, Y.Y., Chen, C.C. and Guo, Y. L., 2012. The association of ambient air pollution with airway inflammation in schoolchildren. American journal of epidemiology 175, 764-774. Chen, C.H., Chan, C.C., Chen, B.Y., Cheng, T.J. and Guo, Y. L., 2015. Effects of particulate air pollution and ozone on lung function in non-asthmatic children. Environmental Research 137, 40-48. Chen, S.Y., Wu, C. F., Lee, J. H., Hoffmann, B., Peters, A., Brunekreef, B., Da-Chen, C. and Chan C. C., 2015. Associations between long-term air pollutant exposures and blood pressure in elderly residents of Taipei City: a cross-sectional study. Environmental Health Perspectives (Online) 123, 779. Chiang, K.C. and Liao, C.M., 2006. Heavy incense burning in temples promotes exposure risk from airborne PMs and carcinogenic PAHs. Science of The Total Environment 372, 64-75. Chuang, K. J., Chan, C. C., Su, T. C., Lin, L. Y. and Lee, C. T., 2007. Associations between particulate sulfate and organic carbon exposures and heart rate variability in patients with or at risk for cardiovascular diseases. Journal of Occupational and Environmental Medicine 49, 610-617. Clougherty, J. E., Houseman, E. A. and Levy, J. I., 2009. Examining intra-urban variation in fine particle mass constituents using GIS and constrained factor analysis. Atmospheric environment 43, 5545-5555. Crespi, A., Bernardoni, V., Calzolai, G., Lucarelli, F., Nava, S., Valli, G. and Vecchi, R., 2016. Implementing constrained multi-time approach with bootstrap analysis in ME-2: An application to PM2.5 data from Florence (Italy). Science of The Total Environment 541, 502-511. Cyrys, J., Pitz, M., Arx, M.E.H., Kunzli, N., Heinrich, J., 2006. Evaluation of a sampling strategy for estimation of long-term PM2.5 exposure for epidemiological studies. Environmental Monitoring and Assessment 119, 161-171. de Hoogh, K., Wang, M., Adam, M., Badaloni, C., Beelen, R., Birk, M., Cesaroni, G., Cirach, M., Declercq, C., Dedele, A., Dons, E., de Nazelle, A., Eeftens, M., Eriksen, K., Eriksson, C., Fischer, P., Grazuleviciene, R., Gryparis, A., Hoffmann, B., Jerrett, M., Katsouyanni, K., Iakovides, M., Lanki, T., Lindley, S., Madsen, C., Molter, A., Mosler, G., Nador, G., Nieuwenhuijsen, M., Pershagen, G., Peters, A., Phuleria, H., Probst-Hensch, N., Raaschou-Nielsen, O., Quass, U., Ranzi, A., Stephanou, E., Sugiri, D., Schwarze, P., Tsai, M. Y., Yli-Tuomi, T., Varro, M. J., Vienneau, D., Weinmayr, G., Brunekreef, B. and Hoek, G., 2013. Development of Land Use Regression Models for Particle Composition in Twenty Study Areas in Europe. Environmental Science & Technology 47, 5778-5786. Eeftens, M., Beelen, R., de Hoogh, K., Bellander, T., Cesaroni, G., Cirach, M., Declercq, C., Dedele, A., Dons, E., de Nazelle, A., Dimakopoulou, K., Eriksen, K., Falq, G., Fischer, P., Galassi, C., Grazuleviciene, R., Heinrich, J., Hoffmann, B., Jerrett, M., Keidel, D., Korek, M., Lanki, T., Lindley, S., Madsen, C., Moelter, A., Nador, G., Nieuwenhuijsen, M., Nonnemacher, M., Pedeli, X., Raaschou-Nielsen, O., Patelarou, E., Quass, U., Ranzi, A., Schindler, C., Stempfelet, M., Stephanou, E., Sugiri, D., Tsai, M.-Y., Yli-Tuomi, T., Varro, M. J., Vienneau, D., von Klot, S., Wolf, K., Brunekreef, B. and Hoek, G., 2012. Development of Land Use Regression Models for PM2.5, PM2.5 Absorbance, PM10 and PMcoarse in 20 European Study Areas; Results of the ESCAPE Project. Environmental Science & Technology 46, 11195-11205. Eeftens, M., Tsai, M. Y., Ampe, C., Anwander, B., Beelen, R., Bellander, T., Cesaroni, G., Cirach, M., Cyrys, J., de Hoogh, K., De Nazelle, A., de Vocht, F., Declercq, C., Dedele, A., Eriksen, K., Galassi, C., Grazuleviciene, R., Grivas, G., Heinrich, J., Hoffmann, B., Iakovides, M., Ineichen, A., Katsouyanni, K., Korek, M., Kramer, U., Kuhlbusch, T., Lanki, T., Madsen, C., Meliefste, K., Molter, A., Mosler, G., Nieuwenhuijsen, M., Oldenwening, M., Pennanen, A., Probst-Hensch, N., Quass, U., Raaschou-Nielsen, O., Ranzi, A., Stephanou, E., Sugiri, D., Udvardy, O., Vaskoevi, E., Weinmayr, G., Brunekreef, B. and Hoek, G., 2012. Spatial variation of PM2.5, PM10, PM2.5 absorbance and PMcoarse concentrations between and within 20 European study areas and the relationship with NO2 - Results of the ESCAPE project. Atmospheric Environment 62, 303-317. Fakayode, S. O. and Olu-Owolabi, B. I., 2003. Heavy metal contamination of roadside topsoil in Osogbo, Nigeria: its relationship to traffic density and proximity to highways. Environmental Geology 44, 150-157. Fang, G. C., Chang, C. N., Chu, C. C., Wu, Y. S., Fu, P. P. C., Chang, S. C. and Yang, I. L., 2003. Fine (PM 2.5), coarse (PM 2.5–10), and metallic elements of suspended particulates for incense burning at Tzu Yun Yen temple in central Taiwan. Chemosphere 51, 983-991. Franklin, M., Koutrakis, P. and Schwartz, J., 2008. The role of particle composition on the association between PM2. 5 and mortality. Epidemiology (Cambridge, Mass.) 19, 680. Gauvin, S., Reungoat, P., Cassadou, S., Dechenaux, J., Momas, I., Just, J. and Zmirou, D., 2002. Contribution of indoor and outdoor environments to PM2.5 personal exposure of children - VESTA study. Science of the Total Environment 297, 175-181. Gehring, U., Beelen, R., Eeftens, M., Hoek, G., De Hoogh, K., De Jongste, J. C., Keuken, M., Koppelman, G. H., Meliefste, K. and Oldenwening, M., 2015. Particulate matter composition and respiratory health: the PIAMA Birth Cohort Study. Epidemiology 26, 300-309. Gehring, U., Cyrys, J., Sedlmeir, G., Brunekreef, B., Bellander, T., Fischer, P., Bauer, C., Reinhardt, D., Wichmann, H. and Heinrich, J., 2002. Traffic-related air pollution and respiratory health during the first 2 yrs of life. European respiratory journal 19, 690-698. Gold, D. R., Litonjua, A., Schwartz, J., Lovett, E., Larson, A., Nearing, B., Allen, G., Verrier, M., Cherry, R. and Verrier, R., 2000. Ambient pollution and heart rate variability. Circulation 101, 1267-1273. Henderson, S. B., Beckerman, B., Jerrett, M. and Brauer, M., 2007. Application of land use regression to estimate long-term concentrations of traffic-related nitrogen oxides and fine particulate matter. Environmental Science & Technology 41, 2422-2428. Hewitt, C. N., 1991. Spatial variations in nitrogen-dioxide concentrations in an urban area. Atmospheric Environment Part B-Urban Atmosphere 25, 429-434. Hitchins, J., Morawska, L., Gilbert, D. and Jamriska, M., 2002. Dispersion of particles from vehicle emissions around high- and low-rise buildings. Indoor Air 12, 64-71. Hjortenkrans, D., Bergback, B. and Haggerud, A., 2006. New metal emission patterns in road traffic environments. Environmental Monitoring and Assessment 117, 85-98. Ho, C. C., Chan, C. C., Cho, C. W., Lin, H. I., Lee, J. H. and Wu, C. F., 2015. Land use regression modeling with vertical distribution measurements for fine particulate matter and elements in an urban area. Atmospheric Environment 104, 256-263. Hoek, G., Beelen, R., de Hoogh, K., Vienneau, D., Gulliver, J., Fischer, P. and Briggs, D., 2008. A review of land-use regression models to assess spatial variation of outdoor air pollution. Atmospheric Environment 42, 7561-7578. Hoek, G., Brunekreef, B., Goldbohm, S., Fischer, P. and van den Brandt, P. A., 2002a. Association between mortality and indicators of traffic-related air pollution in the Netherlands: a cohort study. Lancet 360, 1203-1209. Hoek, G., Meliefste, K., Cyrys, J., Lewné, M., Bellander, T., Brauer, M., Fischer, P., Gehring, U., Heinrich, J. and van Vliet, P., 2002b. Spatial variability of fine particle concentrations in three European areas. Atmospheric Environment 36, 4077-4088. Hsu, C.Y., Chiang, H.C., Lin, S.L., Chen, M.J., Lin, T.Y. and Chen, Y.C., 2016. Elemental characterization and source apportionment of PM10 and PM2.5 in the western coastal area of central Taiwan. Science of the Total Environment 541, 1139-1150. Hsueh, C. Y., 2011. Investigation of fine particle composition, source contribution and human exposure of fine particle in northern Taiwan, Master thesis, Chaoyang University of Technology, Taichung, Taiwan, 2011 (in Chinese). Hsueh, H. T., Ko, T. H., Chou, W. C., Hung, W. C. and Chu, H., 2012. Health risk of aerosols and toxic metals from incense and joss paper burning. Environmental Chemistry Letters 10, 79-87. Jerrett, M., Burnett, R. T., Ma, R. J., Pope, C. A., Krewski, D., Newbold, K. B., Thurston, G., Shi, Y. L., Finkelstein, N., Calle, E. E. and Thun, M. J., 2005. Spatial analysis of air pollution and mortality in Los Angeles. Epidemiology 16, 727-736. Jetter, J. J., Guo, Z., McBrian, J. A. and Flynn, M. R., 2002. Characterization of emissions from burning incense. Science of the Total Environment 295, 51-67. Johnson, M., Isakov, V., Touma, J. S., Mukerjee, S. and Oezkaynak, H., 2010. Evaluation of land-use regression models used to predict air quality concentrations in an urban area. Atmospheric Environment 44, 3660-3668. Kao M. C. and Lung S. C., 2000. Personal Particulate Exposures in Buddhist Temples. Chinese Journal of Public Health, 19, 138-143. Khan, M., Latif, M. T., Saw, W., Amil, N., Nadzir, M., Sahani, M., Tahir, N. and Chung, J., 2016. Fine particulate matter in the tropical environment: monsoonal effects, source apportionment, and health risk assessment. Atmospheric Chemistry and Physics 16, 597-617. Kim, E., Hopke, P. K., Pinto, J. P. and Wilson, W. E., 2005. Spatial variability of fine particle mass, components, and source contributions during the regional air pollution study in St. Louis. Environmental science & technology 39, 4172-4179. Kuo, C. P., Liao, H. T., Chou, C. C. K. and Wu, C. F., 2014. Source apportionment of particulate matter and selected volatile organic compounds with multiple time resolution data. Science of the Total Environment 472, 880-887. Lagerwer.Jv and Specht, A. W., 1970. Contamination of Roadside Soil and Vegetation with Cadmium, Nickel, Lead, and Zinc. Environmental Science & Technology 4, 583-586. Lee, J. H., Wu, C. F., Hoek, G., de Hoogh, K., Beelen, R., Brunekreef, B. and Chan, C. C., 2014. Land use regression models for estimating individual NOx and NO2 exposures in a metropolis with a high density of traffic roads and population. Science of the Total Environment 472, 1163-1171. Liang, C.S., Yu, T.Y. and Lin, W.Y., 2015. Source apportionment of submicron particle size distribution and PM2.5 composition during an asian dust storm period in two urban atmospheres. Aerosol and Air Quality Research 15, 2609–2624. Lin, C. C., Chen, S. J., Huang, K. L., Hwang, W. I., Chang-Chien, G. P. and Lin, W. Y., 2005. Characteristics of metals in nano/ultrafine/fine/coarse particles collected beside a heavily trafficked road. Environmental Science & Technology 39, 8113-8122. Liu, L.J.S., Box, M., Kalman, D., Kaufman, J., Koenig, J., et al., 2003. Exposure assessment of particulate matter for susceptible populations in Seattle. Environmental Health Perspectives 111(7), 909-918. Lu, H.Y., Lin, S.L., Mwangi, J. K., Wang, L.C. and Lin, H.Y., 2016. Characteristics and Source Apportionment of Atmospheric PM2. 5 at a Coastal City in Southern Taiwan. Aerosol and Air Quality Research 16, 1022-1034. Luttmann-Gibson, H., Suh, H. H., Coull, B. A., Dockery, D. W., Sarnat, S. E., Schwartz, J., Stone, P. H. and Gold, D. R., 2006. Short-term effects of air pollution on heart rate variability in senior adults in Steubenville, Ohio. Journal of Occupational and Environmental Medicine 48, 780-788. Marcazzan, G. M., Vaccaro, S., Valli, G. and Vecchi, R., 2001. Characterisation of PM10 and PM2.5 particulate matter in the ambient air of Milan (Italy). Atmospheric Environment 35, 4639-4650. Maykut, N. N., Lewtas, J., Kim, E. and Larson, T. V., 2003. Source apportionment of PM2.5 at an urban IMPROVE site in Seattle, Washington. Environmental Science & Technology 37, 5135-5142. Moldanova, J., Fridell, E., Popovicheva, O., Demirdjian, B., Tishkova, V., Faccinetto, A. and Focsa, C., 2009. Characterisation of particulate matter and gaseous emissions from a large ship diesel engine. Atmospheric Environment 43, 2632-2641. Moore, D. K., Jerrett, M., Mack, W. J. and Kunzli, N., 2007. A land use regression model for predicting ambient fine particulate matter across Los Angeles, CA. Journal of Environmental Monitoring 9, 246-252. Morawska, L., Thomas, S., Gilbert, D., Greenaway, C. and Rijnders, E., 1999. A study of the horizontal and vertical profile of submicrometer particles in relation to a busy road. Atmospheric Environment 33, 1261-1274. Mouli, P. C., Mohan, S. V. and Reddy, S. J., 2005. Rainwater chemistry at a regional representative urban site: influence of terrestrial sources on ionic composition. Atmospheric Environment 39, 999-1008. Noth, E. M., Hammond, S. K., Biging, G. S. and Tager, I. B., 2011. A spatial-temporal regression model to predict daily outdoor residential PAH concentrations in an epidemiologic study in Fresno, CA. Atmospheric Environment 45, 2394-2403. Noth, E. M., Hammond, S. K., Biging, G. S. and Tager, I. B., 2013. Mapping and modeling airborne urban phenanthrene distribution using vegetation biomonitoring. Atmospheric Environment 77, 518-524. Peng, R. D., Bell, M. L., Geyh, A. S., McDermott, A., Zeger, S. L., Samet, J. M. and Dominici, F., 2009. Emergency admissions for cardiovascular and respiratory diseases and the chemical composition of fine particle air pollution. Environmental Health Perspectives 117, 957. Pope, C. A., Burnett, R. T., Thurston, G. D., Thun, M. J., Calle, E. E., Krewski, D. and Godleski, J. J., 2004. Cardiovascular mortality and long-term exposure to particulate air pollution - Epidemiological evidence of general pathophysiological pathways of disease. Circulation 109, 71-77. Qiu, H., Yu, I. T. S., Tian, L. W., Wang, X. R., Tse, L. A., Tam, W. and Wong, T. W., 2012. Effects of Coarse Particulate Matter on Emergency Hospital Admissions for Respiratory Diseases: A Time-Series Analysis in Hong Kong. Environmental Health Perspectives 120, 572-576. Reponen, T., Grinshpun, S. A., Trakumas, S., Martuzevicius, D., Wang, Z. M., LeMasters, G., Lockey, J. E. and Biswas, P., 2003. Concentration gradient patterns of aerosol particles near interstate highways in the Greater Cincinnati airshed. Journal of Environmental Monitoring 5, 557-562. Roorda-Knape, M. C., Janssen, N. A. H., De Hartog, J. J., Van Vliet, P. H. N., Harssema, H. and Brunekreef, B., 1998. Air pollution from traffic in city districts near major motorways. Atmospheric Environment 32, 1921-1930. Ross, Z., Jerrett, M., Ito, K., Tempalski, B. and Thurston, G. D., 2007. A land use regression for predicting fine particulate matter concentrations in the New York City region. Atmospheric Environment 41, 2255-2269. RTI., 2009. Standard operating procedure for the X-ray fluorescence analysis of particulate matter deposits on Teflon filters, in: Park, R. T. (Ed.), NC. Rubino, F. M., Floridia, L., Tavazzani, M., Fustinoni, S., Giampiccolo, R. and Colombi, A., 1998. Height profile of some air quality markers in the urban atmosphere surrounding a 100m tower building. Atmospheric Environment 32, 3569-3580. Ryan, P. H. and LeMasters, G. K., 2007. A review of land-use regression for characterizing intraurban air models pollution exposure. Inhalation Toxicology 19, 127-133. See, S. W. and Balasubramanian, R., 2008. Chemical characteristics of fine particles emitted from different gas cooking methods. Atmospheric Environment 42, 8852-8862. Sharma, S. K., Mandal, T. K., Jain, S., Saraswati, Sharma, A. and Saxena, M., 2016. Source Apportionment of PM2.5 in Delhi, India Using PMF Model. Bulletin of Environmental Contamination and Toxicology 97, 286-293. Sofowote, U. M., Rastogi, A. K., Debosz, J. and Hopke, P. K., 2014. Advanced receptor modeling of near-real-time, ambient PM2.5 and its associated components collected at an urban-industrial site in Toronto, Ontario. Atmospheric Pollution Research 5, 13-23. Song, Y., Xie, S., Zhang, Y., Zeng, L., Salmon, L. G. and Zheng, M., 2006. Source apportionment of PM2.5 in Beijing using principal component analysis/absolute principal component scores and UNMIX. Science of the Total Environment 372, 278-286. Sternbeck, J., Sjodin, A. and Andreasson, K., 2002. Metal emissions from road traffic and the influence of resuspension - results from two tunnel studies. Atmospheric Environment 36, 4735-4744. Storch H.V. , Z. F. W., 1999. Statistical Analysis in Climate Research. Cambridge University Press, Cambridge, UK. Sun, X. W., Li, Q. Y., Chen, P. L., Ni, L., Ren, L. and Peng, L., 2016. Effect of the Air Pollution on Acute Exacerbation of COPD Patients in Shanghai. CHEST Journal 149, A343-A343. Tang, R., Blangiardo, M. and Gulliver, J., 2013. Using Building Heights and Street Configuration to Enhance Intraurban PM10, NOX, and NO2 Land Use Regression Models. Environmental Science & Technology 47, 11643-11650. TEPA (Taiwan Environmental Protection Administration), Monitoring data of China sandstorm, < http://taqm.epa.gov.tw/dust/tw/Database.aspx > (accessed November 14, 2016). Thurston, G. D. and Spengler, J. D., 1985. A quantitative assessment of source contributions to inhalable particulate matter pollution in metropolitan Boston. Atmospheric Environment (1967) 19, 9-25. Tie, X. X. and Cao, J. J., 2009. Aerosol pollution in China: Present and future impact on environment. Particuology 7, 426-431. Tripathi, R. M., Vinod Kumar, A., Manikandan, S. T., Bhalke, S., Mahadevan, T. N. and Puranik, V. D., 2004. Vertical distribution of atmospheric trace metals and their sources at Mumbai, India. Atmospheric Environment 38, 135-146. Tsai, S. S., Chen, C. C., Hsieh, H. J., Chang, C. C. and Yang, C. Y., 2006. Air pollution and postneonatal mortality in a tropical city: Kaohsiung, Taiwan. Inhalation Toxicology 18, 185-189. Van Ryswyk, K., Wheeler, A. J., Wallace, L., Kearney, J., You, H., Kulka, R. and Xu, X., 2013. Impact of microenvironments and personal activities on personal PM exposures among asthmatic children. Journal of Exposure Science & Environmental Epidemiology. Wallace, L. A., Emmerich, S. J. and Howard-Reed, C., 2004. Source strengths of ultrafine and fine particles due to cooking with a gas stove. Environmental Science & Technology 38, 2304-2311. Watson, J. G., Chen, L. W. A., Chow, J. C., Doraiswamy, P. and Lowenthal, D. H., 2008. Source apportionment: Findings from the US Supersites program. Journal of the Air & Waste Management Association 58, 265-288. Wu, C. F., Larson, T. V., Wu, S. Y., Williamson, J., Westberg, H. H. and Liu, L. J. S., 2007. Source apportionment of PM2.5 and selected hazardous air pollutants in Seattle. Science of the Total Environment 386, 42-52. Wu, C. F., Li, Y. R., Kuo, I. C., Hsu, S. C., Lin, L. Y. and Su, T. C., 2012. Investigating the association of cardiovascular effects with personal exposure to particle components and sources. Science of the Total Environment 431, 176-182. Wu, C. F., Lin, H. I., Ho, C. C., Yang, T. H., Chen, C. C. and Chan, C. C., 2014. Modeling horizontal and vertical variation in intraurban exposure to PM2.5 concentrations and compositions. Environmental Research 133, 96-102. Wu, J., Li, J., Peng, J., Li, W., Xu, G. and Dong, C., 2015. Applying land use regression model to estimate spatial variation of PM2. 5 in Beijing, China. Environmental Science and Pollution Research 22, 7045-7061. Wu, Y., Hao, J., Fu, L., Wang, Z. and Tang, U., 2002. Vertical and horizontal profiles of airborne particulate matter near major roads in Macao, China. Atmospheric Environment 36, 4907-4918. Yang, C. Y., Chang, C. C., Chuang, H. Y., Tsai, S. S., Wu, T. N. and Ho, C. K., 2004. Relationship between air pollution and daily mortality in a subtropical city: Taipei, Taiwan. Environment International 30, 519-523. Yang, C. Y., Chen, C. C., Chen, C. Y. and Kuo, H. W., 2007. Air pollution and hospital admissions for asthma in a subtropical city: Taipei, Taiwan. Journal of Toxicology and Environmental Health Part A 70, 111-117. Yang, H.H., Jung, R.C., Wang, Y.F. and Hsieh, L.T., 2005. Polycyclic aromatic hydrocarbon emissions from joss paper furnaces. Atmospheric Environment 39, 3305-3312. Yanosky, J.D., and Maclntosh, D.L., 2001. A comparison of four gravimetric fine particle sampling methods. Journal of the Air and Waste Management Association 51, 878-884. Yorifuji, T., Kashima, S., Tsuda, T., Takao, S., Suzuki, E., Doi, H., Sugiyama, M., Ishikawa-Takata, K. and Ohta, T., 2010. Long-term exposure to traffic-related air pollution and mortality in Shizuoka, Japan. Occupational and Environmental Medicine 67, 111-117. Yu, C. H., Fan, Z.-H., Meng, Q., Zhu, X., Korn, L. and Bonanno, L. J., 2011. Spatial/Temporal Variations of Elemental Carbon, Organic Carbon, and Trace Elements in PM10 and the Impact of Land-Use Patterns on Community Air Pollution in Paterson, NJ. Journal of the Air & Waste Management Association 61, 673-688. Zheng, M., Cass, G. R., Schauer, J. J. and Edgerton, E. S., 2002. Source apportionment of PM2. 5 in the southeastern United States using solvent-extractable organic compounds as tracers. Environmental Science & Technology 36, 2361-2371. | |
| dc.identifier.uri | http://tdr.lib.ntu.edu.tw/jspui/handle/123456789/60098 | - |
| dc.description.abstract | 背景: 細懸浮微粒(氣動粒徑小於等於2.5 微米的微粒,PM2.5)是重要的汙染物,對於人體健康有負面的影響。對於PM2.5和其成分而言,樓層高度的差異可能會對土地利用迴歸模式預測出來的汙染物濃度導致一些誤差。在評估汙染源貢獻與人體健康的相關性以及汙染源減量時,樓層高度也可能會導致不準確的評估。然而,在過去研究當中,樓層高度的影響仍未被廣泛地探討。此外受體模式已被應用來進行空氣污染之成因分析,但汙染源貢獻量的垂直分布仍未被廣泛地評估。另受體模式的解析結果有時包含混和型來源,此結果需要被其他模式進一步論證。
目的: 在第一篇研究議題中,建立細懸浮微粒與其成份之土地利用迴歸模式以評估居民的個人暴露,進一步地探討垂直分布特性之量測數據對於預測濃度之影響,以提升個人暴露預測之準確性。在第二篇研究議題中,應用受體模式來評估汙染源貢獻量的空間變異性,以及結合受體模式之結果與土地利用模式來改善受體模式之定性結果和釐清各污染源對於貢獻量推估值之影響。 方法:在30個家戶採樣點與1個參照測點利用哈佛衝擊器來量測細懸浮微粒濃度,並透過能量分散式-X 射線螢光分析儀分析其成份之濃度,此外結合具有水平與垂直分布特性的量測資料來建立土地利用迴歸模式,以預測不同樓層的細懸浮微粒濃度以及改善PM2.5之源解析結果。因素分析則被應用來定性與定量汙染物的來源及其貢獻量。 結果: 在第一篇研究議題中,細懸浮微粒與其成份之土地利用迴歸模式的R2介於0.46到0.80,家戶附近的交通資訊與在家戶半徑300到5000公尺之工業區面積是細懸浮微粒和其成份的主要預測因子。此外未考慮垂直分布上的差異時,細懸浮微粒、矽與鐵的預測濃度推估誤差介在5.6%到11.0%。在第二篇研究中,結果顯示主要的細懸浮微粒來源是因子3 (51.7 %),因子1 (31.8 %)與因子2 (12.9 %)。交通尾氣排放對於因子3是主要的來源,因子1為一混和型汙染源(非尾氣的交通排放、工業活動和二次氣膠)。對於因子2來說,在平常日時非尾氣的交通排放以及工業活動是主要來源,在宗教節日時生質燃燒(燃香和燃燒紙錢)是主要來源。另外土地利用迴歸模式可以改善受體模式對於汙染源之定性結果,並進一步地釐清各污染源對於混和型汙染源之影響。交通尾氣排放貢獻則具有垂直分布的些微差異。 結論: 在流行病學研究中評估個人暴露時,應該要考量垂直高度的影響(即離地表之高度)。為了有效率地進行細懸浮微粒減量(特別是針對那些居住於高樓層的居民),交通尾氣排放的垂直分布之差異是需要被關注的。 | zh_TW |
| dc.description.abstract | Background: Fine particulate matter (Particles with aerodynamic diameters of less than 2.5 μm, PM2.5), an important pollutant, has been investigated for their adverse influences on human health. For PM2.5 and compositions, the difference of building floor possibly causes a bias on predicted concentration of pollutant in land use regression (LUR) model. This influence may also lead to an inaccurate estimation on the association of PM2.5 source contributions and human health, as well as the effectiveness of PM2.5 reduction. This effect is not investigated widely in recent studies. In addition, although receptor models have been applied for source apportionment of air pollution, the vertical distributions of PM2.5 source contributions were still not evaluated extensively. Furthermore, the receptor models sometimes retrieved mixed sources. This needs to be further clarified by another statistical analysis.
Objectives: In the first topic, LUR models of PM2.5 and compositions were developed for exposure assessment of residents and the influence of vertical distribution measurements on predicted concentrations was further evaluated in order to improve the estimation of individual exposure. In the second topic, receptor models were applied to estimate the spatial variations of PM2.5 source contributions. The receptor modeling results were combined with LUR models to improve the source identification from receptor model and to clarify the effect of each source to the estimated contributions. Methods: PM2.5 was measured at thirty residence sites and one reference site by Harvard impactors, and analyzed for its compositions by using energy-dispersive X-ray fluorescence spectrometry. LUR models using horizontal and vertical distribution measurements were developed to predict PM2.5 and composition concentrations at various building floors and improve the source resolution of PM2.5. Factor analysis was applied to identify the sources of ambient PM2.5 and apportion their contributions. Results: The results in the first topic showed that LUR models’ R2 ranged from 0.46 to 0.80. Traffic information in the vicinity of residential houses and industrial areas within large radii of 300m to 5000m were observed to be major predictors of PM2.5 and composition. The estimated bias of the predicted concentrations (i.e., PM2.5, Si, and Fe) ranged from 5.6% to 11.0%, if vertical contrasts were not considered. In the second topic, the major source to PM2.5 was Factor 3 (51.7 %), followed by Factor 1 (31.8 %) and Factor 2 (12.9 %). Tailpipe traffic emission is the main source in Factor 3. Factor 1 is a mixed source of non-tailpipe traffic emissions, industrial activities and secondary aerosols. For Factor 2, non-tailpipe traffic emissions combining industrial processing and biomass burning (incense or joss paper burning) are dominant on normal and scared days, respectively. LUR model can improve the identifications of the factors from receptor models, and further clarify the effect of individual source in mixed sources. Tailpipe traffic emissions had a slightly vertical contrast on the estimated contribution. Conclusions: The influence of vertical height from the ground should be considered in the assessment of individual exposure for future epidemiological studies. The vertical variation of tailpipe traffic emissions needed to be taken into consideration to reduce PM2.5 concentration in air, especially for the residents living at high building floor. | en |
| dc.description.provenance | Made available in DSpace on 2021-06-16T09:55:55Z (GMT). No. of bitstreams: 1 ntu-105-D98841004-1.pdf: 4068858 bytes, checksum: 4cafc44ea4a352201acb67f245771bbc (MD5) Previous issue date: 2016 | en |
| dc.description.tableofcontents | Contents
誌謝....................................................................................................................................i 中文摘要...........................................................................................................................ii Abstract..........................................................................................................................iv Contents...........................................................................................................................vii List of Figures................................................................................................................viii List of Tables....................................................................................................................ix Chapter 1 Introduction....................................................................................................1 1.1 Literature review...................................................................................................4 1.2 Purpose and objectives........................................................................................11 Chapter 2 Land use regression modeling with vertical distribution measurements for fine particulate matter and elements in an urban area.................................................14 2.1 Introduction........................................................................................................14 2.2 Materials and Methods.......................................................................................15 2.3 Results and Discussion.......................................................................................20 Chapter 3 Source apportionment of PM2.5 with horizontal and vertical distribution measurements in an urban area....................................................................................40 3.1 Introduction........................................................................................................40 3.2 Materials and Methods.......................................................................................40 3.3 Results and Discussion.......................................................................................47 Chapter 4 Conclusion...................................................................................................70 4.1 Overall conclusion..............................................................................................70 4.2 Study limitations.................................................................................................71 References.......................................................................................................................74 Appendix.........................................................................................................................84 Appendix 1 Land use regression modeling with vertical distribution measurements for fine particulate matter and elements in an urban area.................................................85 Appendix 2 Source apportionment of mass concentration and inhalation risk with long-term ambient PCDD/Fs measurements in an urban area....................................93 | |
| dc.language.iso | en | |
| dc.subject | 受體模式 | zh_TW |
| dc.subject | 細懸浮微粒 | zh_TW |
| dc.subject | 土地利用迴歸模式 | zh_TW |
| dc.subject | 垂直分布差異 | zh_TW |
| dc.subject | land use regression | en |
| dc.subject | vertical variability | en |
| dc.subject | receptor model | en |
| dc.subject | fine particulate matter | en |
| dc.title | 台北都會區大氣細懸浮微粒成份與來源之空間變異性模式分析 | zh_TW |
| dc.title | Modeling spatial variations of ambient PM2.5, compositions, and sources in Taipei metropolis | en |
| dc.type | Thesis | |
| dc.date.schoolyear | 105-1 | |
| dc.description.degree | 博士 | |
| dc.contributor.oralexamcommittee | 詹長權,林文印,陳志傑,邱嘉斌 | |
| dc.subject.keyword | 細懸浮微粒,土地利用迴歸模式,受體模式,垂直分布差異, | zh_TW |
| dc.subject.keyword | fine particulate matter,land use regression,receptor model,vertical variability, | en |
| dc.relation.page | 100 | |
| dc.identifier.doi | 10.6342/NTU201603855 | |
| dc.rights.note | 有償授權 | |
| dc.date.accepted | 2016-12-27 | |
| dc.contributor.author-college | 公共衛生學院 | zh_TW |
| dc.contributor.author-dept | 職業醫學與工業衛生研究所 | zh_TW |
| 顯示於系所單位: | 職業醫學與工業衛生研究所 | |
文件中的檔案:
| 檔案 | 大小 | 格式 | |
|---|---|---|---|
| ntu-105-1.pdf 未授權公開取用 | 3.97 MB | Adobe PDF |
系統中的文件,除了特別指名其著作權條款之外,均受到著作權保護,並且保留所有的權利。
