Skip navigation

DSpace

機構典藏 DSpace 系統致力於保存各式數位資料(如:文字、圖片、PDF)並使其易於取用。

點此認識 DSpace
DSpace logo
English
中文
  • 瀏覽論文
    • 校院系所
    • 出版年
    • 作者
    • 標題
    • 關鍵字
    • 指導教授
  • 搜尋 TDR
  • 授權 Q&A
    • 我的頁面
    • 接受 E-mail 通知
    • 編輯個人資料
  1. NTU Theses and Dissertations Repository
  2. 電機資訊學院
  3. 電信工程學研究所
請用此 Handle URI 來引用此文件: http://tdr.lib.ntu.edu.tw/jspui/handle/123456789/60095
完整後設資料紀錄
DC 欄位值語言
dc.contributor.advisor江簡富(Jean-Fu Kiang)
dc.contributor.authorHuai-Ming Changen
dc.contributor.author張淮鳴zh_TW
dc.date.accessioned2021-06-16T09:55:43Z-
dc.date.available2019-02-08
dc.date.copyright2017-02-08
dc.date.issued2016
dc.date.submitted2016-12-28
dc.identifier.citation[1] Ph. Grelu and N. Akhmediev, “Dissipative solitons for mode-locked lasers,” Nature Photonics, vol. 6, pp. 84-90, 2012.
[2] N. Akhmediev, J. M. Soto-Crespo and G. Town, Pulsating solitons, chaotic solitons, period doubling, and pulse coexistence in mode-locked lasers: Complex Ginzburg-Landau equation approach,” Phys. Rev. E, vol. 63, 056602, 2001.
[3] J. M. Soto-Crespo, N. Akhmediev, and A. Ankiewicz,“Pulsating, creeping, and erupting solitons in dissipative systems,” Phys. Rev. Lett., vol. 85, 2937, 2000.
[4] W. Chang, J. M. Soto-Crespo, P. Vouzas and N. Akhmediev, “Extreme amplitude spikes in a laser model described by the complex Ginzburg-Landau equation,” Opt. Lett., vol. 40, no. 13, pp. 2949, 2015.
[5] H. Triki, F. Azzouzi, and P. Grelu, “Multipole solitary wave solutions of the higher-order nonlinear Schrぴodinger equation with quintic non-Kerr terms,” Opt. Commun., vol. 309, pp. 71-79, 2013.
[6] G.A. Zakeri and E. Yomba, “Dissipative solitons in a generalized coupled cubic-quintic Ginzburg-Landau equations,” J. Phys. Soc. Japan, vol. 82, 084002, 2013.
[7] M. Saha and A. K. Sarma, “Solitary wave solutions and modulation instability analysis of the nonlinear Schrぴodinger equation with higher order dispersion and nonlinear terms,”Commun. Nonlinear Sci. Num. Simu., vol. 18, pp. 2420-2425, 2013.
[8] H. Triki, F. Azzouzi, and P. Grelu, “An efficient split-step compact finite difference method for cubic-quintic complex Ginzburg-Landau equations,” Computer Phys. Commun., vol. 184, pp. 1511-1521, 2013.
[9] A. F. J. Runge, N. G. R. Broderick, and M. Erkintalo, “Observation of soliton explosions in a passively mode-locked fiber laser,” Optica, vol. 2, pp. 36-39, 2015.
[10] C. Cartes and O. Descalzi, “Periodic exploding dissipative solitons,” Phys. Rev. A, vol 93, 031801, 2016.
[11] W. Chang, J. M. Soto-Crespo, P. Vouzas and N. Akhmediev, “Extreme soliton pulsations in dissipative systems,” Phys. Rev. E, vol. 92, 022926, 2015.
[12] J. M. Soto-Crespo, M. Grapinet, P. Grelu and N. Akhmediev, “Bifurcations and multiple-period soliton pulsations in a passively mode-locked fiber laser,” Phys. Rev. E, vol. 70, 066612, 2004.
[13] N. Akhmediev, J. M. Soto-Crespo, M. Grapinet and P. Grelu, “Dissipative soliton pulsations with periods beyond the laser cavity round trip time,” J. Nonlinear Optical Phys. Materials, vol. 14, no. 2, pp. 177-194, 2005.
[14] E. N. Tsoy and N. Akhmediev, “Bifurcations from stationary to pulsating solitons in the cubic-quintic complex Ginzburg-Landau equation,” Phys. Lett. A, vol. 343, pp. 417-422, 2005.
[15] W. Chang, A. Ankiewicz, N. Akhmediev and J. M. Soto-Crespo, “Creeping solitons in dissipative systems and their bifurcations,” Phys. Rev. E, vol. 76, 016607, 2007.
[16] A. M. Weiner, Ultrafast Optics, John Wiley, 2009.
[17] G. P. Agrawal, Nonlinear Fiber Optics, Academic Press, 2012.
[18] J. M. Soto-Crespo, N. Akhmediev and G. Town, “Continuous-wave versus pulse regime in a passively mode-locked laser with a fast saturable absorber,” J. Opt. Soc. Am. B, vol. 1, pp. 234-242, 2002.
dc.identifier.urihttp://tdr.lib.ntu.edu.tw/jspui/handle/123456789/60095-
dc.description.abstractSoliton solutions of a cubic-quintic Ginzburg-Landau equation (CQGLE) are computed and analyzed on a parametric plane, specifically across the transitional zones that separate regions associated with different types of solitons. The transformation of behaviors in these transitional zones between stationary and pulsating regions are characterized by the total pulse energy and its maximum value. It is also found that the initial pulse waveform has little effect on bifurcation and the valid range of initial amplitude.en
dc.description.provenanceMade available in DSpace on 2021-06-16T09:55:43Z (GMT). No. of bitstreams: 1
ntu-105-R01942024-1.pdf: 5045483 bytes, checksum: e91bc593dd40fba368096c2522ab9610 (MD5)
Previous issue date: 2016
en
dc.description.tableofcontentsAbstract i
Table of Contents ii
List of Figures iv
Acknowledgment v
1 Introduction 1
2 Brief Review of Theoretical Model and Simulation Setup 3
3 Transition between Pulsating and No-Solution Regions 5
4 Transition between Stationary and Pulsating Regions 14
5 Effects of Initial Waveform and Amplitude 17
6 Conclusion 28
Appendix: Split-step Fourier Method 29
Bibliography 31
dc.language.isoen
dc.subject相位平面zh_TW
dc.subject金茲堡朗道方程式zh_TW
dc.subject分岔現象zh_TW
dc.subject孤波zh_TW
dc.subjectSolitonen
dc.subjectcubic-quintic Ginzburg-Landau equation (CQGLE)en
dc.subjectbifurcationen
dc.subjectphase planeen
dc.title三五次金茲堡朗道方程式孤波解在相位面上跨邊界漸變模式zh_TW
dc.titleTransitional Behaviors of CQGLE Solitons across Boundaries on a Phase Planeen
dc.typeThesis
dc.date.schoolyear105-1
dc.description.degree碩士
dc.contributor.oralexamcommittee江衍偉(Yean-Woei Kiang),曹恆偉(Hen-Wai Tsao)
dc.subject.keyword孤波,金茲堡朗道方程式,分岔現象,相位平面,zh_TW
dc.subject.keywordSoliton,cubic-quintic Ginzburg-Landau equation (CQGLE),bifurcation,phase plane,en
dc.relation.page32
dc.identifier.doi10.6342/NTU201603850
dc.rights.note有償授權
dc.date.accepted2016-12-29
dc.contributor.author-college電機資訊學院zh_TW
dc.contributor.author-dept電信工程學研究所zh_TW
顯示於系所單位:電信工程學研究所

文件中的檔案:
檔案 大小格式 
ntu-105-1.pdf
  未授權公開取用
4.93 MBAdobe PDF
顯示文件簡單紀錄


系統中的文件,除了特別指名其著作權條款之外,均受到著作權保護,並且保留所有的權利。

社群連結
聯絡資訊
10617臺北市大安區羅斯福路四段1號
No.1 Sec.4, Roosevelt Rd., Taipei, Taiwan, R.O.C. 106
Tel: (02)33662353
Email: ntuetds@ntu.edu.tw
意見箱
相關連結
館藏目錄
國內圖書館整合查詢 MetaCat
臺大學術典藏 NTU Scholars
臺大圖書館數位典藏館
本站聲明
© NTU Library All Rights Reserved