請用此 Handle URI 來引用此文件:
http://tdr.lib.ntu.edu.tw/jspui/handle/123456789/60095完整後設資料紀錄
| DC 欄位 | 值 | 語言 |
|---|---|---|
| dc.contributor.advisor | 江簡富(Jean-Fu Kiang) | |
| dc.contributor.author | Huai-Ming Chang | en |
| dc.contributor.author | 張淮鳴 | zh_TW |
| dc.date.accessioned | 2021-06-16T09:55:43Z | - |
| dc.date.available | 2019-02-08 | |
| dc.date.copyright | 2017-02-08 | |
| dc.date.issued | 2016 | |
| dc.date.submitted | 2016-12-28 | |
| dc.identifier.citation | [1] Ph. Grelu and N. Akhmediev, “Dissipative solitons for mode-locked lasers,” Nature Photonics, vol. 6, pp. 84-90, 2012.
[2] N. Akhmediev, J. M. Soto-Crespo and G. Town, Pulsating solitons, chaotic solitons, period doubling, and pulse coexistence in mode-locked lasers: Complex Ginzburg-Landau equation approach,” Phys. Rev. E, vol. 63, 056602, 2001. [3] J. M. Soto-Crespo, N. Akhmediev, and A. Ankiewicz,“Pulsating, creeping, and erupting solitons in dissipative systems,” Phys. Rev. Lett., vol. 85, 2937, 2000. [4] W. Chang, J. M. Soto-Crespo, P. Vouzas and N. Akhmediev, “Extreme amplitude spikes in a laser model described by the complex Ginzburg-Landau equation,” Opt. Lett., vol. 40, no. 13, pp. 2949, 2015. [5] H. Triki, F. Azzouzi, and P. Grelu, “Multipole solitary wave solutions of the higher-order nonlinear Schrぴodinger equation with quintic non-Kerr terms,” Opt. Commun., vol. 309, pp. 71-79, 2013. [6] G.A. Zakeri and E. Yomba, “Dissipative solitons in a generalized coupled cubic-quintic Ginzburg-Landau equations,” J. Phys. Soc. Japan, vol. 82, 084002, 2013. [7] M. Saha and A. K. Sarma, “Solitary wave solutions and modulation instability analysis of the nonlinear Schrぴodinger equation with higher order dispersion and nonlinear terms,”Commun. Nonlinear Sci. Num. Simu., vol. 18, pp. 2420-2425, 2013. [8] H. Triki, F. Azzouzi, and P. Grelu, “An efficient split-step compact finite difference method for cubic-quintic complex Ginzburg-Landau equations,” Computer Phys. Commun., vol. 184, pp. 1511-1521, 2013. [9] A. F. J. Runge, N. G. R. Broderick, and M. Erkintalo, “Observation of soliton explosions in a passively mode-locked fiber laser,” Optica, vol. 2, pp. 36-39, 2015. [10] C. Cartes and O. Descalzi, “Periodic exploding dissipative solitons,” Phys. Rev. A, vol 93, 031801, 2016. [11] W. Chang, J. M. Soto-Crespo, P. Vouzas and N. Akhmediev, “Extreme soliton pulsations in dissipative systems,” Phys. Rev. E, vol. 92, 022926, 2015. [12] J. M. Soto-Crespo, M. Grapinet, P. Grelu and N. Akhmediev, “Bifurcations and multiple-period soliton pulsations in a passively mode-locked fiber laser,” Phys. Rev. E, vol. 70, 066612, 2004. [13] N. Akhmediev, J. M. Soto-Crespo, M. Grapinet and P. Grelu, “Dissipative soliton pulsations with periods beyond the laser cavity round trip time,” J. Nonlinear Optical Phys. Materials, vol. 14, no. 2, pp. 177-194, 2005. [14] E. N. Tsoy and N. Akhmediev, “Bifurcations from stationary to pulsating solitons in the cubic-quintic complex Ginzburg-Landau equation,” Phys. Lett. A, vol. 343, pp. 417-422, 2005. [15] W. Chang, A. Ankiewicz, N. Akhmediev and J. M. Soto-Crespo, “Creeping solitons in dissipative systems and their bifurcations,” Phys. Rev. E, vol. 76, 016607, 2007. [16] A. M. Weiner, Ultrafast Optics, John Wiley, 2009. [17] G. P. Agrawal, Nonlinear Fiber Optics, Academic Press, 2012. [18] J. M. Soto-Crespo, N. Akhmediev and G. Town, “Continuous-wave versus pulse regime in a passively mode-locked laser with a fast saturable absorber,” J. Opt. Soc. Am. B, vol. 1, pp. 234-242, 2002. | |
| dc.identifier.uri | http://tdr.lib.ntu.edu.tw/jspui/handle/123456789/60095 | - |
| dc.description.abstract | Soliton solutions of a cubic-quintic Ginzburg-Landau equation (CQGLE) are computed and analyzed on a parametric plane, specifically across the transitional zones that separate regions associated with different types of solitons. The transformation of behaviors in these transitional zones between stationary and pulsating regions are characterized by the total pulse energy and its maximum value. It is also found that the initial pulse waveform has little effect on bifurcation and the valid range of initial amplitude. | en |
| dc.description.provenance | Made available in DSpace on 2021-06-16T09:55:43Z (GMT). No. of bitstreams: 1 ntu-105-R01942024-1.pdf: 5045483 bytes, checksum: e91bc593dd40fba368096c2522ab9610 (MD5) Previous issue date: 2016 | en |
| dc.description.tableofcontents | Abstract i
Table of Contents ii List of Figures iv Acknowledgment v 1 Introduction 1 2 Brief Review of Theoretical Model and Simulation Setup 3 3 Transition between Pulsating and No-Solution Regions 5 4 Transition between Stationary and Pulsating Regions 14 5 Effects of Initial Waveform and Amplitude 17 6 Conclusion 28 Appendix: Split-step Fourier Method 29 Bibliography 31 | |
| dc.language.iso | en | |
| dc.subject | 相位平面 | zh_TW |
| dc.subject | 金茲堡朗道方程式 | zh_TW |
| dc.subject | 分岔現象 | zh_TW |
| dc.subject | 孤波 | zh_TW |
| dc.subject | Soliton | en |
| dc.subject | cubic-quintic Ginzburg-Landau equation (CQGLE) | en |
| dc.subject | bifurcation | en |
| dc.subject | phase plane | en |
| dc.title | 三五次金茲堡朗道方程式孤波解在相位面上跨邊界漸變模式 | zh_TW |
| dc.title | Transitional Behaviors of CQGLE Solitons across Boundaries on a Phase Plane | en |
| dc.type | Thesis | |
| dc.date.schoolyear | 105-1 | |
| dc.description.degree | 碩士 | |
| dc.contributor.oralexamcommittee | 江衍偉(Yean-Woei Kiang),曹恆偉(Hen-Wai Tsao) | |
| dc.subject.keyword | 孤波,金茲堡朗道方程式,分岔現象,相位平面, | zh_TW |
| dc.subject.keyword | Soliton,cubic-quintic Ginzburg-Landau equation (CQGLE),bifurcation,phase plane, | en |
| dc.relation.page | 32 | |
| dc.identifier.doi | 10.6342/NTU201603850 | |
| dc.rights.note | 有償授權 | |
| dc.date.accepted | 2016-12-29 | |
| dc.contributor.author-college | 電機資訊學院 | zh_TW |
| dc.contributor.author-dept | 電信工程學研究所 | zh_TW |
| 顯示於系所單位: | 電信工程學研究所 | |
文件中的檔案:
| 檔案 | 大小 | 格式 | |
|---|---|---|---|
| ntu-105-1.pdf 未授權公開取用 | 4.93 MB | Adobe PDF |
系統中的文件,除了特別指名其著作權條款之外,均受到著作權保護,並且保留所有的權利。
