請用此 Handle URI 來引用此文件:
http://tdr.lib.ntu.edu.tw/jspui/handle/123456789/60086完整後設資料紀錄
| DC 欄位 | 值 | 語言 |
|---|---|---|
| dc.contributor.advisor | 趙挺偉(Ting Wai Chiu) | |
| dc.contributor.author | Li-Iang Huang | en |
| dc.contributor.author | 黃立仰 | zh_TW |
| dc.date.accessioned | 2021-06-16T09:55:10Z | - |
| dc.date.available | 2020-02-08 | |
| dc.date.copyright | 2017-02-08 | |
| dc.date.issued | 2016 | |
| dc.date.submitted | 2016-12-30 | |
| dc.identifier.citation | [1] T. W. Chiu, Phys. Rev. Lett. 90, 071601 (2003) [hep-lat/0209153].
[2] T. W. Chiu, Phys. Lett. B 716, 461 (2012) [hep-lat/0303008]. [3] C. Gattringer and C. B. Lang, Quantum chromodynamics on the lattice: an introductory presentation, (Springer, 2009) [4] H. B. Nielsen and M. Ninomiya, Phys. Lett. B 105, 219 (1981). [5] P. H. Ginsparg and K. G. Wilson, Phys. Rev. D 25, 2649 (1982). [6] M. F. Atiyah and I. M. Singer, Annals Math. 87, 484 (1968) ; ibid, 93, 119 (1971). [7] D. B. Kaplan, Phys. Lett. B 288, 342 (1992) [arXiv:hep-lat/9206013]. [8] T. W. Chiu, T. H. Hsieh, C. H. Huang and T. R. Huang, Phys. Rev. D 66, 114502 (2002) [hep-lat/0206007]. [9] H. Neuberger, Phys. Lett. B 417, 141 (1998) [hep-lat/9707022]. [10] R. Narayanan and H. Neuberger, Nucl. Phys. B 443, 305 (1995) [hep- th/9411108]. [11] W. H. Press, S. A. Teukolsky, W. T. Veterrling, B. P. Flannery Numerical Recipes in C The Art of Scientific Computing Second Edition, (Cambridge Uni- versity Press, 1992) [12] K. A. Olive et al. [Particle Data Group Collaboration], Chin. Phys. C 38, 090001 (2014). [13] W. P. Chen et al. [TWQCD Collaboration], Phys. Lett. B 736, 231 (2014) [arXiv:1404.3648 [hep-lat]]. [14] T. W. Chiu and T. H. Hsieh, Nucl. Phys. A 755, 471 (2005) [hep-lat/0501021]. | |
| dc.identifier.uri | http://tdr.lib.ntu.edu.tw/jspui/handle/123456789/60086 | - |
| dc.description.abstract | 量子色動力學(Quantum Chromodynamics)是研究強作用力的基礎理論,而晶格 點量子色動力學(Lattice QCD)——將時空視為不連續的晶格來研究量子色動力學 ——是由第一原理出發,用非微擾方式解QCD的最可靠方法。 在這篇論文中,我 們使用趙挺偉教授所計算的夸克傳播子來研究強子的質譜。 即使π介子(pion)的質 量在這些系統比實驗值重,我們仍然可以在晶格大小為243 × 48下,計算出由魅夸 克(charm quark)和奇夸克(strange quark)組成的介子和重子質量。這些質量也與 高能實驗結果符合。 | zh_TW |
| dc.description.abstract | Quantum Chromodynamics (QCD) is the fundamental theory for the strong interaction inside the nucleus, and lattice QCD (formulating QCD on a discrete space-time lattice) is the most viable way to solve QCD nonperturbatively from the first principles. In this thesis, using the quark propagators computed by Professor Ting-Wai Chiu, we perform an exploratory study of the hadron mass spectrum in lattice QCD with optimal domain-wall fermion, in 2-flavors QCD on the 243 × 48 lattice. Even the pion masses of these gauge ensembles are unphysically heavy, after extrapolation to Mπ = 140 MeV, the mass spectra of the mesons and baryons containing charm and strange quarks are in good agreement with the high energy experimental results. | en |
| dc.description.provenance | Made available in DSpace on 2021-06-16T09:55:10Z (GMT). No. of bitstreams: 1 ntu-105-R03245009-1.pdf: 2462311 bytes, checksum: c1779e63986f85409c441198bee7a705 (MD5) Previous issue date: 2016 | en |
| dc.description.tableofcontents | Abstract ii
List of Figures viii List of Tables xix Chapter 1 Introduction 1 1.1 ContinuumQCD ............................. 2 1.2 BasicsoflatticeQCD........................... 3 1.2.1 Fermionfieldsonthelattice ................... 3 1.2.2 Wilsonfermion .......................... 5 Chapter 2 Lattice QCD with domain-wall fermion 7 2.1 Chiralsymmetry ............................. 7 2.1.1 Nielson-Ninomiyatheorem.................... 8 2.2 Conventionaldomain-wallFermion ................... 9 2.3 Optimaldomain-wallfermion ...................... 12 Chapter 3 Hadron interpolator and the time-correlation function 15 3.1 Mesons................................... 16 3.2 Baryonswithu,d,squarks ....................... 17 3.3 Charmedbaryons............................. 22 3.4 Momentumprojection .......................... 25 3.5 Hadron mass extraction from the time-correlation function . . . . . . 25 Chapter 4 Data analysis and results 27 4.1 Mesonsmassspectra ........................... 28 4.1.1 u ̄Γu ................................ 28 4.1.2 c ̄Γc................................. 29 4.1.3 c ̄Γs................................. 30 4.1.4 s ̄Γs................................. 34 4.1.5 c ̄Γu................................. 35 4.2 Baryonsmassspectra........................... 36 4.2.1 Lightbaryons(u,d,squarks) ................... 36 4.2.2 Charmedbaryons......................... 44 4.3 Summarytablesforbaryons ....................... 60 4.4 Dispersionrelationsforhadrons ..................... 63 Chapter 5 Discussion and summary 68 Bibliography 70 Chapter A Appendix 72 A.1 γ-matrices................................. 72 A.2 The time-correlation functions and effective masses of hadrons . . . . 73 A.2.1 Meson time-correlation functions and effective masses . . . . . 73 A.2.2 Baryon the time-correlation functions and effective masses . . 88 | |
| dc.language.iso | en | |
| dc.subject | 數值分析 | zh_TW |
| dc.subject | 量子場論 | zh_TW |
| dc.subject | 強子質譜 | zh_TW |
| dc.subject | 晶格點量子色動力學 | zh_TW |
| dc.subject | Quantum field theory | en |
| dc.subject | Lattice QCD | en |
| dc.subject | Numerical Analysis | en |
| dc.subject | Hadron Spectra | en |
| dc.title | 用Domain Wall費米子探討晶格點量子色動力學裡的強 子質譜 | zh_TW |
| dc.title | Hadron Spectrum in Lattice QCD with Two Flavors Domain Wall Fermion | en |
| dc.type | Thesis | |
| dc.date.schoolyear | 105-1 | |
| dc.description.degree | 碩士 | |
| dc.contributor.oralexamcommittee | 高涌泉(Yeong-Chuan Kao),賀培銘(Pei-Ming Ho) | |
| dc.subject.keyword | 量子場論,強子質譜,晶格點量子色動力學,數值分析, | zh_TW |
| dc.subject.keyword | Quantum field theory,Hadron Spectra,Lattice QCD,Numerical Analysis, | en |
| dc.relation.page | 101 | |
| dc.identifier.doi | 10.6342/NTU201603865 | |
| dc.rights.note | 有償授權 | |
| dc.date.accepted | 2016-12-30 | |
| dc.contributor.author-college | 理學院 | zh_TW |
| dc.contributor.author-dept | 應用物理研究所 | zh_TW |
| 顯示於系所單位: | 應用物理研究所 | |
文件中的檔案:
| 檔案 | 大小 | 格式 | |
|---|---|---|---|
| ntu-105-1.pdf 未授權公開取用 | 2.4 MB | Adobe PDF |
系統中的文件,除了特別指名其著作權條款之外,均受到著作權保護,並且保留所有的權利。
