請用此 Handle URI 來引用此文件:
http://tdr.lib.ntu.edu.tw/jspui/handle/123456789/60085完整後設資料紀錄
| DC 欄位 | 值 | 語言 |
|---|---|---|
| dc.contributor.advisor | 趙本秀 | |
| dc.contributor.author | Hung-Yu Chang | en |
| dc.contributor.author | 張宏宇 | zh_TW |
| dc.date.accessioned | 2021-06-16T09:55:06Z | - |
| dc.date.available | 2019-02-08 | |
| dc.date.copyright | 2017-02-08 | |
| dc.date.issued | 2016 | |
| dc.date.submitted | 2016-12-30 | |
| dc.identifier.citation | [1] Humphrey JD, Dufresne ER, Schwartz MA. Mechanotransduction and extracellular matrix homeostasis. Nat Rev Mol Cell Biol. 2014;15:802-12.
[2] Jaalouk DE, Lammerding J. Mechanotransduction gone awry. Nat Rev Mol Cell Biol. 2009;10:63-73. [3] Campbell ID, Humphries MJ. Integrin Structure, Activation, and Interactions. Csh Perspect Biol. 2011;3. [4] Sawada Y, Tamada M, Dubin-Thaler BJ, Cherniavskaya O, Sakai R, Tanaka S, et al. Force sensing by mechanical extension of the Src family kinase substrate p130Cas. Cell. 2006;127:1015-26. [5] del Rio A, Perez-Jimenez R, Liu R, Roca-Cusachs P, Fernandez JM, Sheetz MP. Stretching single talin rod molecules activates vinculin binding. Science. 2009;323:638-41. [6] Wu JC, Chen YC, Kuo CT, Wenshin Yu H, Chen YQ, Chiou A, et al. Focal adhesion kinase-dependent focal adhesion recruitment of SH2 domains directs SRC into focal adhesions to regulate cell adhesion and migration. Sci Rep. 2015;5:18476. [7] Riveline D, Zamir E, Balaban NQ, Schwarz US, Ishizaki T, Narumiya S, et al. Focal contacts as mechanosensors: externally applied local mechanical force induces growth of focal contacts by an mDia1-dependent and ROCK-independent mechanism. J Cell Biol. 2001;153:1175-86. [8] Chen Y, Pasapera AM, Koretsky AP, Waterman CM. Orientation-specific responses to sustained uniaxial stretching in focal adhesion growth and turnover. Proc Natl Acad Sci U S A. 2013;110:E2352-61. [9] Kuo JC, Han X, Hsiao CT, Yates JR, 3rd, Waterman CM. Analysis of the myosin-II-responsive focal adhesion proteome reveals a role for beta-Pix in negative regulation of focal adhesion maturation. Nat Cell Biol. 2011;13:383-93. [10] Frank PG, Woodman SE, Park DS, Lisanti MP. Caveolin, caveolae, and endothelial cell function. Arterioscler Thromb Vasc Biol. 2003;23:1161-8. [11] Cheng JP, Mendoza-Topaz C, Howard G, Chadwick J, Shvets E, Cowburn AS, et al. Caveolae protect endothelial cells from membrane rupture during increased cardiac output. J Cell Biol. 2015;211:53-61. [12] Sinha B, Koster D, Ruez R, Gonnord P, Bastiani M, Abankwa D, et al. Cells respond to mechanical stress by rapid disassembly of caveolae. Cell. 2011;144:402-13. [13] Yang B, Radel C, Hughes D, Kelemen S, Rizzo V. p190 RhoGTPase-activating protein links the beta1 integrin/caveolin-1 mechanosignaling complex to RhoA and actin remodeling. Arterioscler Thromb Vasc Biol. 2011;31:376-83. [14] Grande-Garcia A, Echarri A, de Rooij J, Alderson NB, Waterman-Storer CM, Valdivielso JM, et al. Caveolin-1 regulates cell polarization and directional migration through Src kinase and Rho GTPases. J Cell Biol. 2007;177:683-94. [15] Sargiacomo M, Scherer PE, Tang Z, Kubler E, Song KS, Sanders MC, et al. Oligomeric structure of caveolin: implications for caveolae membrane organization. Proc Natl Acad Sci U S A. 1995;92:9407-11. [16] Bakhshi FR, Mao M, Shajahan AN, Piegeler T, Chen Z, Chernaya O, et al. Nitrosation-dependent caveolin 1 phosphorylation, ubiquitination, and degradation and its association with idiopathic pulmonary arterial hypertension. Pulm Circ. 2013;3:816-30. [17] Horzum U, Ozdil B, Pesen-Okvur D. Step-by-step quantitative analysis of focal adhesions. MethodsX. 2014;1:56-9. [18] Dunn KW, Kamocka MM, McDonald JH. A practical guide to evaluating colocalization in biological microscopy. Am J Physiol Cell Physiol. 2011;300:C723-42. [19] Shi F, Sottile J. Caveolin-1-dependent beta1 integrin endocytosis is a critical regulator of fibronectin turnover. Journal of cell science. 2008;121:2360-71. [20] Du J, Chen XF, Liang XD, Zhang GY, Xu J, He LR, et al. Integrin activation and internalization on soft ECM as a mechanism of induction of stem cell differentiation by ECM elasticity. P Natl Acad Sci USA. 2011;108:9466-71. [21] Chao WT, Kunz J. Focal adhesion disassembly requires clathrin-dependent endocytosis of integrins. FEBS Lett. 2009;583:1337-43. [22] del Pozo MA, Balasubramanian N, Alderson NB, Kiosses WB, Grande-Garcia A, Anderson RG, et al. Phospho-caveolin-1 mediates integrin-regulated membrane domain internalization. Nat Cell Biol. 2005;7:901-8. [23] Hill MM, Scherbakov N, Schiefermeier N, Baran J, Hancock JF, Huber LA, et al. Reassessing the role of phosphocaveolin-1 in cell adhesion and migration. Traffic. 2007;8:1695-705. [24] Oneyama C, Iino T, Saito K, Suzuki K, Ogawa A, Okada M. Transforming potential of Src family kinases is limited by the cholesterol-enriched membrane microdomain. Mol Cell Biol. 2009;29:6462-72. [25] Li L, Okura M, Imamoto A. Focal adhesions require catalytic activity of Src family kinases to mediate integrin-matrix adhesion. Mol Cell Biol. 2002;22:1203-17. [26] Gervasio OL, Phillips WD, Cole L, Allen DG. Caveolae respond to cell stretch and contribute to stretch-induced signaling. Journal of cell science. 2011;124:3581-90. [27] Shu L, Shayman JA. Glycosphingolipid Mediated Caveolin-1 Oligomerization. J Glycomics Lipidomics. 2012;Suppl 2:1-6. [28] Kawamura S, Miyamoto S, Brown JH. Initiation and transduction of stretch-induced RhoA and Rac1 activation through caveolae: cytoskeletal regulation of ERK translocation. J Biol Chem. 2003;278:31111-7. [29] Li S, Seitz R, Lisanti MP. Phosphorylation of caveolin by src tyrosine kinases. The alpha-isoform of caveolin is selectively phosphorylated by v-Src in vivo. J Biol Chem. 1996;271:3863-8. [30] Cao H, Courchesne WE, Mastick CC. A phosphotyrosine-dependent protein interaction screen reveals a role for phosphorylation of caveolin-1 on tyrosine 14: recruitment of C-terminal Src kinase. J Biol Chem. 2002;277:8771-4. [31] Hayer A, Stoeber M, Bissig C, Helenius A. Biogenesis of caveolae: stepwise assembly of large caveolin and cavin complexes. Traffic. 2010;11:361-82. [32] Gottlieb-Abraham E, Shvartsman DE, Donaldson JC, Ehrlich M, Gutman O, Martin GS, et al. Src-mediated caveolin-1 phosphorylation affects the targeting of active Src to specific membrane sites. Mol Biol Cell. 2013;24:3881-95. [33] Hanson CA, Drake KR, Baird MA, Han B, Kraft LJ, Davidson MW, et al. Overexpression of caveolin-1 is sufficient to phenocopy the behavior of a disease-associated mutant. Traffic. 2013;14:663-77. [34] Fielding CJ. Lipid rafts and caveolae from membrane biophysics to cell biology. Weinheim: Wiley-VCH,; 2006. p. 1 online resource (xvi, 278 pages). [35] Macdonald JL, Pike LJ. A simplified method for the preparation of detergent-free lipid rafts. J Lipid Res. 2005;46:1061-7. [36] Sato I, Obata Y, Kasahara K, Nakayama Y, Fukumoto Y, Yamasaki T, et al. Differential trafficking of Src, Lyn, Yes and Fyn is specified by the state of palmitoylation in the SH4 domain. Journal of cell science. 2009;122:965-75. [37] Han J, Zhang G, Welch EJ, Liang Y, Fu J, Vogel SM, et al. A critical role for Lyn kinase in strengthening endothelial integrity and barrier function. Blood. 2013;122:4140-9. [38] Hill MM, Bastiani M, Luetterforst R, Kirkham M, Kirkham A, Nixon SJ, et al. PTRF-Cavin, a conserved cytoplasmic protein required for caveola formation and function. Cell. 2008;132:113-24. | |
| dc.identifier.uri | http://tdr.lib.ntu.edu.tw/jspui/handle/123456789/60085 | - |
| dc.description.abstract | 在運動狀態下肌肉及韌帶等組織會受到力學刺激,這些刺激能夠促使組織中的細胞增長、分化或改變其行為。經由生物反應器施加各種力學刺激,我們可以觀察到細胞focal adhesion的消長,其中由caveolin所組成的微結構caveolae似乎扮演了重要的角色。前人研究指出細胞遷移的過程中,caveolae參與了focal adhesion的重組。另一方面,剪應力所調控的細胞骨架排列也和caveolin有關。然而拉伸刺激造成的focal adhesion重組,是否亦由caveolae來掌控,未曾有詳細的探討。在本研究中,我們透過單軸向的力學刺激及抑制caveolae的形成,試圖找尋拉伸刺激下caveolae在focal adhesion消長中扮演的角色。結果指出Caveolae受到拉伸釋放出Src,進而影響細胞focal adhesion的大小及數量,可能是拉伸造成focal adhesion消長的原因之一。 | zh_TW |
| dc.description.abstract | When exercising, our muscles and ligaments will be subjected to mechanical stimulation. These stimuli can promote cell proliferation, differentiation or even change their behavior. Using bioreactors, we can observe changes in focal adhesion dynamics upon mechanical loading. Caveolae, a membrane microdomain composed of caveolin, may play an important role in the regulation of focal adhesion dynamics. Previous studies have shown that caveolae are involved in the reorganization of focal adhesion during cell migration. On the other hand, the shear stress-induced cytoskeletal rearrangement is also related to caveolin. However, whether the stretch-induced focal adhesion reorganization is also controlled by caveolae has not been explored in detail. In this study, we tried to find out the role of caveolae under mechanical loading by uniaxial stretch and inhibiting the function of caveolae. Results indicated that stretching released Src from caveolae, which affect the size and number of focal adhesions, may be one of the regulators of focal adhesion dynamics upon mechanical loading. | en |
| dc.description.provenance | Made available in DSpace on 2021-06-16T09:55:06Z (GMT). No. of bitstreams: 1 ntu-105-R03548006-1.pdf: 1938652 bytes, checksum: 0ceb46479cfe32b20f0f308208dbd5a5 (MD5) Previous issue date: 2016 | en |
| dc.description.tableofcontents | Content
序言 II 中文摘要 1 Abstract 2 Chapter 1 Introduction 3 Chapter 2 Materials and Methods 6 2.1 Cell Culture 6 2.1.1 Human Mesenchymal Stem Cells Culture 6 2.1.2 Dynamic Loading Studies 6 2.2 RNA interference 7 2.3 Pharmacological Treatment 8 2.3.1 Cholesterol Depletion 8 2.3.2 Src inhibition 8 2.4 SDS-PAGE and Western Blotting 8 2.5 Caveoloin oligomerization test 10 2.6 Immunofluorescence staining 10 2.7 Fluorescent Image Analysis 11 2.7.1 Focal adhesion 11 2.7.1 Colocalization 11 2.8 Integrin endocytosis 12 2.9 Statistics 12 Chapter 3 Results 13 3.1 Uniaxial stretch can induce focal adhesion dynamics 13 3.2 Phospho-caveolin-1 in FA and endocytosis experiment 14 3.3 Caveolae disruption after 15 minutes loading 15 3.4 Src activity and caveolin-1 phosphorylation upon mechanical loading 16 3.5 Lipid rafts/caveolae disruption increase Src recruitment to FA and FA size 17 3.6 Caveolin-1 knockdown reduced the FA size 18 Chapter 4 Discussion 19 References 40 | |
| dc.language.iso | en | |
| dc.subject | 細胞力學傳導 | zh_TW |
| dc.subject | Src | en |
| dc.subject | mechanotransduction | en |
| dc.subject | focal adhesion | en |
| dc.subject | caveolin | en |
| dc.subject | caveolae | en |
| dc.subject | mechanical loading | en |
| dc.title | Caveolin在拉伸造成的Focal Adhesion消長中的角色 | zh_TW |
| dc.title | Role of Caveolin in Stretch-induced Focal Adhesion Dynamics | en |
| dc.type | Thesis | |
| dc.date.schoolyear | 105-1 | |
| dc.description.degree | 碩士 | |
| dc.contributor.oralexamcommittee | 郭柏齡,沈湯龍,許聿翔 | |
| dc.subject.keyword | 細胞力學傳導, | zh_TW |
| dc.subject.keyword | mechanotransduction,focal adhesion,caveolin,caveolae,Src,mechanical loading, | en |
| dc.relation.page | 44 | |
| dc.identifier.doi | 10.6342/NTU201603835 | |
| dc.rights.note | 有償授權 | |
| dc.date.accepted | 2016-12-30 | |
| dc.contributor.author-college | 工學院 | zh_TW |
| dc.contributor.author-dept | 醫學工程學研究所 | zh_TW |
| 顯示於系所單位: | 醫學工程學研究所 | |
文件中的檔案:
| 檔案 | 大小 | 格式 | |
|---|---|---|---|
| ntu-105-1.pdf 未授權公開取用 | 1.89 MB | Adobe PDF |
系統中的文件,除了特別指名其著作權條款之外,均受到著作權保護,並且保留所有的權利。
