Skip navigation

DSpace

機構典藏 DSpace 系統致力於保存各式數位資料(如:文字、圖片、PDF)並使其易於取用。

點此認識 DSpace
DSpace logo
English
中文
  • 瀏覽論文
    • 校院系所
    • 出版年
    • 作者
    • 標題
    • 關鍵字
    • 指導教授
  • 搜尋 TDR
  • 授權 Q&A
    • 我的頁面
    • 接受 E-mail 通知
    • 編輯個人資料
  1. NTU Theses and Dissertations Repository
  2. 生命科學院
  3. 生命科學系
請用此 Handle URI 來引用此文件: http://tdr.lib.ntu.edu.tw/jspui/handle/123456789/60067
完整後設資料紀錄
DC 欄位值語言
dc.contributor.advisor陳示國
dc.contributor.authorChi-Chan Leeen
dc.contributor.author李奇展zh_TW
dc.date.accessioned2021-06-16T09:53:59Z-
dc.date.available2019-02-08
dc.date.copyright2017-02-08
dc.date.issued2017
dc.date.submitted2017-01-09
dc.identifier.urihttp://tdr.lib.ntu.edu.tw/jspui/handle/123456789/60067-
dc.description.abstract環境光線可以透過自主感光視神經細胞 (intrinsically photosensitive retina ganglion cells) 傳遞光線訊息來影響哺乳動物的生理功能。電燈的發明不只影響了人類的生活作息,它更影響了人類的健康狀態。夜晚光線的照射增加了肥胖以及相關代謝疾病的風險。然而,我們對於光線如何引發這些症狀仍的機制仍然不是非常了解。故我們想要利用不同自主感光視神經細胞操弄的小鼠模型搭配上總體基因體學 (metagenomics) 的研究來回答這個問題。我們的研究發現,夜晚光線可以透過視黑質 (melanopsin) 以及自主感光視神經細胞與交感神經之間的迴路來造成老鼠的肥胖、血糖耐受性降低的症狀。同時,也改變了腸道菌的菌落組成、數量以及節律。我們的研究也指出控制腸道節律最重要的原因不是宿主本身的生理時鐘,而是由自主感光視神經細胞所傳遞的光線訊息。綜上所述,本研究顯示光線能夠改變腸道菌的組成,並為夜晚光線如何調控身體代謝提供了一個新的解釋觀點。zh_TW
dc.description.abstractAmbient light signal could influence physiological function of mammals through intrinsically photosensitive retina ganglion cells (ipRGCs). The invention of artificial light source not only changes the living style of human but causes serious health problem. Aberrant light information, such as dim light at night (dLAN), enhance the risk of obesity and related metabolic disorders. However, the detailed mechanism of dLAN induced metabolic disorders remains poorly understood. Here, in combination of different ipRGC manipulation mice models and metagenomic analysis, we show that dLAN can induce obesity, hyperglycemia, as well as shift in microbial composition, abundance and oscillations through melanopsin and ipRGC-sympathetic nerve circuit. Furthermore, our data suggest that the zeitgeber information that influence microbial rhythmicity is the photic input from ipRGC but not the circadian rhythm of the host. Together, our results suggest that light could shape the architecture of gut microbiota, which provides a novel mechanism for dLAN-induced metabolic disorders.en
dc.description.provenanceMade available in DSpace on 2021-06-16T09:53:59Z (GMT). No. of bitstreams: 1
ntu-106-R03b21002-1.pdf: 5269990 bytes, checksum: 0ef626b58c91dcf5371582548672eeec (MD5)
Previous issue date: 2017
en
dc.description.tableofcontents口試委員審定書 i
謝 誌 ii
摘 要 iv
Abstract v
Contents vi
Chapter I Introduction 1
1.1 Impact of artificial light at night on physiological function 1
1.2 Circadian rhythm 2
1.2.1 Molecular clock of circadian rhythm 3
1.2.2 Central and peripheral clock 5
1.2.3 Circadian and metabolism 6
1.3 Intrinsically photo sensitive retina ganglion cells (ipRGCs) 8
1.3.2 Central projections of ipRGCs 10
1.3.3 Subtypes of ipRGCs 11
1.4 Gut microbiota 12
1.4.1 General description of gut microbiota 12
1.4.2 The composition of gut microbiota 14
1.4.3 Gut microbiota in health and disease 14
1.4.4 Gut microbiota and obesity related problems 16
1.4.5 Circadian rhythm and gut microbiota 18
Statement of Purpose 19
Chapter II Materials and Methods 21
2.1 Animals 21
2.2 Genotyping 21
2.2.1 DNA extraction 22
2.2.2 Polymerase chain reaction (PCR) 22
2.3 Experimental design 22
2.4 Metabolism test 24
2.5 Magnetic Resonance Imaging (MRI) fat quantification 24
2.6 Metagenomic library preparation for Illumina sequencing 25
2.6.1 Gut microbe DNA extraction 25
2.6.2 16S metagenomic library preparation 27
2.6.3 Library quality check and pooling 28
2.6.4 Next generation sequencing (NGS) 29
2.7 Microbiota sequence analysis 29
2.7.1 Sequence assembling and classification 29
2.7.2 Composition analysis 31
2.7.3 Diversity analysis 32
2.7.4 Microbe abundance analysis 32
2.7.5 Circadian analysis of microbial oscillations 33
2.8 Quantification of circadian gene expression 34
2.9 Statistical analysis 34
Chapter III Results 35
3.1 Dim light at night induced body weight gain and metabolic disorder in mice 35
3.2 Melanopsin signal and ipRGC circuitry are essential for dLAN induced obesity 36
3.3 Microbiota plays a role in regulation of light-induced metabolic disorders 38
3.4 dLAN influences the gut microbe composition 39
3.5 Melanopsin modulates the effect of dLAN on gut microbiota 41
3.6 ipRGC circuit is necessary for microbial oscillation 43
3.7 Sympathetic nerve system transmit the light information to control metabolic status and gut microbiota 45
3.8 Metabolites may be a potential microbiota-derived signal that influence dLAN-induced symptoms 46
Chapter IV Discussion 49
4.1 Light can directly modulate metabolism independent of circadian and activity shift 49
4.2 Melanopsin through ipRGCs have important functions in regulation of metabolism and microbiota 50
4.3 Light seems to influence obesity and hyperglycemia through distinct pathway 52
4.4 Shift in microbial composition in DTA mice may be caused by desynchronization 53
4.5 Sympathetic nerve may have multiple function in dLAN induced metabolic disorders 54
Significance of the work 57
References 58
Figures 75
Figure 1. Genetic background of the mice used in the study. 75
Figure 2. Experimental scheme and design. 76
Figure 3. Metabolic status of control mice. 77
Figure 4. Glucose metabolism of control mice. 79
Figure 5. Circadian clock gene expression in control mice. 80
Figure 6. Activity patterns of control mice. 81
Figure 7. Metabolic status of melanopsin knockout (MKO) mice. 83
Figure 8. Glucose metabolism of MKO mice. 85
Figure 9. Activity patterns of MKO mice. 86
Figure 10. Metabolic status of ipRGC elimination (DTA) mice. 87
Figure 11. Glucose metabolism of DTA mice. 88
Figure 12. Actogram of DTA mice after two weeks of LD and dLAN. 89
Figure 13. Metabolic status of Opn4Cre/+ ; Brn3bDTA/+ (3bDTA) mice. 91
Figure 14. Glucose metabolism of 3bDTA mice. 92
Figure 15. Summary of metabolic phenotypes of different melanopsin manipulation mice. 93
Figure 16. Quantification of 16S copy number in control mice and antibiotics-treated mice. 94
Figure 17. Metabolic status of antibiotics-treated mice. 95
Figure 18. Glucose metabolism of antibiotics-treated mice. 96
Figure 19. The phylum level relative abundance of gut microbiota from control, MKO, DTA mice. 97
Figure 20. The composition and beta diversity of control mice. 98
Figure 21. Alpha diversity of control mice. 99
Figure 22. Abundance analysis of gut microbiota in control mice. 100
Figure 23. Circadian rhythmicity profile of control mice. 101
Figure 24. Heatmap of the oscillating OTUs in control mice. 102
Figure 25. The composition and beta diversity of MKO mice. 103
Figure 26. Circadian rhythmicity profile of MKO mice. 104
Figure 27. Heatmap of the oscillating OTUs in MKO mice. 105
Figure 28. The composition and beta diversity of control and MKO mice in LD condition. 106
Figure 29. The composition and beta diversity of DTA mice. 107
Figure 30. Circadian rhythmicity profile of DTA mice. 108
Figure 31. Body weight decrease after 6-OHDA injection. 109
Figure 32. Metabolic status of 6-OHDA treated mice. 110
Figure 33. Glucose metabolism of 6-OHDA-treated mice. 111
Figure 34. The composition and beta diversity of 6-OHDA treated mice. 112
Figure 35. Circadian rhythmicity profile of 6-OHDA treated mice. 113
Figure 36. Body weight of propionate-supplement fed mice. 114
Figure 37. Current model of the pathway about dLAN-induced metabolic disorders 115
Tables 116
Table 1. List of primers used in genotyping 116
Table 2. List of primers used in metagenomics sample preparation 116
Table 3. List of primers of Nextera® Index 117
Table 4. Number of sequences after each step of processing 118
Table 5. List of primers of circadian gene quantification 119
Table 6. Serum metabolites of control mice under LD and dLAN condition 120
Appendix Abstract and Poster 123
dc.language.isoen
dc.subject腸道菌zh_TW
dc.subject總體基因學zh_TW
dc.subject視黑質zh_TW
dc.subject夜晚光線zh_TW
dc.subject生理時鐘zh_TW
dc.subject代謝紊亂zh_TW
dc.subjectmetagenomic sequencingen
dc.subjectmelanopsinen
dc.subjectcircadian rhythmen
dc.subjectlight at nighten
dc.subjectmetabolic disordersen
dc.subjectgut microbiotaen
dc.title夜晚光線透過視黑質影響腸道菌相以及身體代謝zh_TW
dc.titleDim light at night influence gut microbiota and metabolic status through melanopsin photo detection systemen
dc.typeThesis
dc.date.schoolyear105-1
dc.description.degree碩士
dc.contributor.oralexamcommittee于宏燦,陳儀莊,徐志文,廖本揚
dc.subject.keyword腸道菌,視黑質,生理時鐘,夜晚光線,代謝紊亂,總體基因學,zh_TW
dc.subject.keywordgut microbiota,melanopsin,circadian rhythm,light at night,metabolic disorders,metagenomic sequencing,en
dc.relation.page128
dc.identifier.doi10.6342/NTU201700026
dc.rights.note有償授權
dc.date.accepted2017-01-10
dc.contributor.author-college生命科學院zh_TW
dc.contributor.author-dept生命科學系zh_TW
顯示於系所單位:生命科學系

文件中的檔案:
檔案 大小格式 
ntu-106-1.pdf
  未授權公開取用
5.15 MBAdobe PDF
顯示文件簡單紀錄


系統中的文件,除了特別指名其著作權條款之外,均受到著作權保護,並且保留所有的權利。

社群連結
聯絡資訊
10617臺北市大安區羅斯福路四段1號
No.1 Sec.4, Roosevelt Rd., Taipei, Taiwan, R.O.C. 106
Tel: (02)33662353
Email: ntuetds@ntu.edu.tw
意見箱
相關連結
館藏目錄
國內圖書館整合查詢 MetaCat
臺大學術典藏 NTU Scholars
臺大圖書館數位典藏館
本站聲明
© NTU Library All Rights Reserved