Skip navigation

DSpace

機構典藏 DSpace 系統致力於保存各式數位資料(如:文字、圖片、PDF)並使其易於取用。

點此認識 DSpace
DSpace logo
English
中文
  • 瀏覽論文
    • 校院系所
    • 出版年
    • 作者
    • 標題
    • 關鍵字
  • 搜尋 TDR
  • 授權 Q&A
    • 我的頁面
    • 接受 E-mail 通知
    • 編輯個人資料
  1. NTU Theses and Dissertations Repository
  2. 生命科學院
  3. 植物科學研究所
請用此 Handle URI 來引用此文件: http://tdr.lib.ntu.edu.tw/jspui/handle/123456789/60026
完整後設資料紀錄
DC 欄位值語言
dc.contributor.advisor葉開溫
dc.contributor.authorShi-Peng Chenen
dc.contributor.author陳仕朋zh_TW
dc.date.accessioned2021-06-16T09:51:24Z-
dc.date.available2022-02-16
dc.date.copyright2017-02-16
dc.date.issued2017
dc.date.submitted2017-01-16
dc.identifier.citationAleman, F., Yazaki, J., Lee, M., Takahashi, Y., Kim, A.Y., Li, Z., Kinoshita, T., Ecker, J.R., and Schroeder, J.I. (2016). An ABA-increased interaction of the PYL6 ABA receptor with MYC2 transcription factor: A putative link of ABA and JA signaling. Sci Rep 6: 28941.
Alfonso-Rubí, J., Ortego, F., Castañera, P., Carbonero, P., and Díaz, I. (2003). Transgenic expression of trypsin inhibitor CMe from barley in indica and japonica rice, confers resistance to the rice weevil Sitophilus oryzae. Transgenic Res. 12: 23-31.
Amoutzias, G.D., Robertson, D.L., Van de Peer, Y., and Oliver, S.G. (2008). Choose your partners: dimerization in eukaryotic transcription factors. Trends Biochem. Sci. 33: 220-229.
Bandani, A. (2004). Effect of plant a-amylase inhibitors on sunn pest, Eurygaster integriceps Puton (Hemiptera: Scutelleridae), alpha-amylase activity. Comm Agr Appl Biol Sci 70: 869-873.
Benfey, P.N., Ren, L., and Chua, N.H. (1990). Tissue-specific expression from CaMV 35S enhancer subdomains in early stages of plant development. Embo J. 9: 1677.
Berger, S., Bell, E., and Mullet, J.E. (1996). Two methyl jasmonate-insensitive mutants show altered expression of AtVsp in response to methyl jasmonate and wounding. Plant Physiol. 111: 525-531.
Bertin, J., Armstrong, R.C., Ottilie, S., Martin, D.A., Wang, Y., Banks, S., Wang, G.-H., Senkevich, T.G., Alnemri, E.S., and Moss, B. (1997). Death effector domain-containing herpesvirus and poxvirus proteins inhibit both Fas- and TNFR1-induced apoptosis. Proc. Natl. Acad. Sci. U. S. A. 94: 1172-1176.
Bradford, M.M. (1976). A rapid and sensitive method for the quantitation of microgram quantities of protein utilizing the principle of protein-dye binding. Anal. Biochem. 72: 248-254.
Baldwin, I.T., Zhang, Z.-P., Diab, N., Ohnmeiss, T.E., McCloud, E.S., Lynds, G.Y., and Schmelz, E.A. (1997). Quantification, correlations and manipulations of wound-induced changes in jasmonic acid and nicotine in Nicotiana sylvestris. Planta 201: 397-404.
Bu, Q., Jiang, H., Li, C.-B., Zhai, Q., Zhang, J., Wu, X., Sun, J., Xie, Q., and Li, C. (2008). Role of the Arabidopsis thaliana NAC transcription factors ANAC019 and ANAC055 in regulating jasmonic acid-signaled defense responses. Cell Res. 18: 756-767.
Cai, D., Thurau, T., Tian, Y., Lange, T., Yeh, K.W., and Jung, C. (2003). Sporamin-mediated resistance to beet cyst nematodes (Heterodera schachtii Schm.) is dependent on trypsin inhibitory activity in sugar beet (Beta vulgaris L.) hairy roots. Plant Mol. Biol. 51: 839-849.
Campos, M.L., Yoshida, Y., Major, I.T., de Oliveira Ferreira, D., Weraduwage, S.M., Froehlich, J.E., Johnson, B.F., Kramer, D.M., Jander, G., and Sharkey, T.D. (2016). Rewiring of jasmonate and phytochrome B signalling uncouples plant growth-defense tradeoffs. Nat. Commun. 7: 12570.
Chang, S., Puryear, J., and Cairney, J. (1993). A simple and efficient method for isolating RNA from pine trees. Plant Mol. Biol. Rep. 11: 113-116.
Chen, H.J., Wang, S.J., Chen, C.C., and Yeh, K.W. (2006). New gene construction strategy in T-DNA vector to enhance expression level of sweet potato sporamin and insect resistance in transgenic Brassica oleracea. Plant Sci. 171: 367-374.
Chen, P.J., Senthilkumar, R., Jane, W.N., He, Y., Tian, Z., and Yeh, K.W. (2014). Transplastomic Nicotiana benthamiana plants expressing multiple defence genes encoding protease inhibitors and chitinase display broad‐spectrum resistance against insects, pathogens and abiotic stresses. Plant Biotechnol. J. 12: 503-515.
Chen, R., Jiang, H., Li, L., Zhai, Q., Qi, L., Zhou, W., Liu, X., Li, H., Zheng, W., and Sun, J. (2012). The Arabidopsis mediator subunit MED25 differentially regulates jasmonate and abscisic acid signaling through interacting with the MYC2 and ABI5 transcription factors. Plant Cell 24: 2898-2916.
Chen, S.P., Kuo, C.H., Lu, H.H., Lo, H.S., and Yeh, K.W. (2016). The Sweet Potato NAC-Domain Transcription Factor IbNAC1 Is Dynamically Coordinated by the Activator IbbHLH3 and the Repressor IbbHLH4 to Reprogram the Defense Mechanism against Wounding. PLoS Genet 12: e1006397.
Chen, S.P., Lin, I.W., Chen, X., Huang, Y.H., Chang, S.C., Lo, H.S., Lu, H.H., and Yeh, K.W. (2016). Sweet potato NAC transcription factor, IbNAC1, upregulates sporamin gene expression by binding the SWRE motif against mechanical wounding and herbivore attack. Plant J. 86: 234-248.
Chen, Y.C., Lin, H.H., and Jeng, S.T. (2008a). Calcium influxes and mitogen‐activated protein kinase kinase activation mediate ethylene inducing ipomoelin gene expression in sweet potato. Plant Cell Environ. 31: 62-72.
Chen, Y.C., Siems, W.F., Pearce, G., and Ryan, C.A. (2008b). Six peptide wound signals derived from a single precursor protein in Ipomoea batatas leaves activate the expression of the defense gene sporamin. J. Biol. Chem. 283: 11469-11476.
Chini, A., Gimenez-Ibanez, S., Goossens, A., and Solano, R. (2016). Redundancy and specificity in jasmonate signalling. Curr. Opin. Plant Biol. 33: 147-156.
Citovsky, V., Lee, L.Y., Vyas, S., Glick, E., Chen, M.H., Vainstein, A., Gafni, Y., Gelvin, S.B., and Tzfira, T. (2006). Subcellular localization of interacting proteins by bimolecular fluorescence complementation in planta. J. Mol. Biol. 362: 1120-1131.
Clough, S.J., and Bent, A.F. (1998). Floral dip: a simplified method for Agrobacterium‐mediated transformation of Arabidopsis thaliana. Plant J. 16: 735-743.
Collinge, M., and Boller, T. (2001). Differential induction of two potato genes, Stprx2 and StNAC, in response to infection by Phytophthora infestans and to wounding. Plant Mol. Biol. 46: 521-529.
Creelman, R.A., and Mullet, J.E. (1997). Biosynthesis and action of jasmonates in plants. Annu. Rev. Plant Biol. 48: 355-381.
Cui, J., You, C., Zhu, E., Huang, Q., Ma, H., and Chang, F. (2016). Feedback regulation of DYT1 by interactions with downstream bHLH factors promotes DYT1 nuclear localization and anther development. Plant Cell 28: 1078-1093.
De Bruxelles, G.L., and Roberts, M.R. (2001). Signals regulating multiple responses to wounding and herbivores. Crit. Rev. Plant Sci. 20: 487-521.
Delessert, C., Kazan, K., Wilson, I.W., Straeten, D.V.D., Manners, J., Dennis, E.S., and Dolferus, R. (2005). The transcription factor ATAF2 represses the expression of pathogenesis‐related genes in Arabidopsis. Plant J. 43: 745-757.
Dombrecht, B., Xue, G.P., Sprague, S.J., Kirkegaard, J.A., Ross, J.J., Reid, J.B., Fitt, G.P., Sewelam, N., Schenk, P.M., and Manners, J.M. (2007). MYC2 differentially modulates diverse jasmonate-dependent functions in Arabidopsis. Plant Cell 19: 2225-2245.
Donald, R., and Cashmore, A.R. (1990). Mutation of either G box or I box sequences profoundly affects expression from the Arabidopsis rbcS-1A promoter. Embo J. 9: 1717.
Donnell, P., Calvert, C., Atzorn, R., and Wasternack, C. (1996). Ethylene as a signal mediating the wound response of tomato plants. Science 274: 1914.
Du, M., Zhai, Q., Deng, L., Li, S., Li, H., Yan, L., Huang, Z., Wang, B., Jiang, H., and Huang, T. (2014). Closely related NAC transcription factors of tomato differentially regulate stomatal closure and reopening during pathogen attack. Plant Cell 26: 3167-3184.
Eulgem, T., Rushton, P.J., Robatzek, S., and Somssich, I.E. (2000). The WRKY superfamily of plant transcription factors. Trends Plant Sci. 5: 199-206.
Fan, S.-G., and Guo-Jiang, W. (2005). Characteristics of plant proteinase inhibitors and their applications in combating phytophagous insects. Botanical Bulletin of Academia Sinica 46.
Farmer, E.E., and Ryan, C.A. (1990). Interplant communication: airborne methyl jasmonate induces synthesis of proteinase inhibitors in plant leaves. Proc. Natl. Acad. Sci. U. S. A. 87: 7713-7716.
Feller, A., Machemer, K., Braun, E.L., and Grotewold, E. (2011). Evolutionary and comparative analysis of MYB and bHLH plant transcription factors. Plant J. 66: 94-116.
Fernández-Calvo, P., Chini, A., Fernández-Barbero, G., Chico, J.-M., Gimenez-Ibanez, S., Geerinck, J., Eeckhout, D., Schweizer, F., Godoy, M., and Franco-Zorrilla, J.M. (2011). The Arabidopsis bHLH transcription factors MYC3 and MYC4 are targets of JAZ repressors and act additively with MYC2 in the activation of jasmonate responses. Plant Cell 23: 701-715.
Garapati, P., Xue, G.-P., Munné-Bosch, S., and Balazadeh, S. (2015). Transcription factor ATAF1 in Arabidopsis promotes senescence by direct regulation of key chloroplast maintenance and senescence transcriptional cascades. Plant Physiol. 168: 1122-1139.
Gatehouse, A.M., Hoe, D.S., Flemming, J.E., Hilder, V.A., and Gatehouse, J.A. (1991). Biochemical basis of insect resistance in inged bean (Psophocarpus tetragonolobus) seeds. J. Sci. Food Agric. 55: 63-74.
Grove, C.A., De Masi, F., Barrasa, M.I., Newburger, D.E., Alkema, M.J., Bulyk, M.L., and Walhout, A.J. (2009). A multiparameter network reveals extensive divergence between C. elegans bHLH transcription factors. Cell 138: 314-327.
Guan, Q., Yue, X., Zeng, H., and Zhu, J. (2014). The protein phosphatase RCF2 and its interacting partner NAC019 are critical for heat stress–responsive gene regulation and thermotolerance in Arabidopsis. Plant Cell 26: 438-453.
Gupta, G., Birah, A., and Rani, S. (2005). Effect of plant lectins on growth and development of American bollworm (Helicoverpa armigera). Indian J. Agric. Sci. 75: 207-212.
Hao, Y.J., Song, Q.X., Chen, H.W., Zou, H.F., Wei, W., Kang, X.S., Ma, B., Zhang, W.K., Zhang, J.S., and Chen, S.Y. (2010). Plant NAC-type transcription factor proteins contain a NARD domain for repression of transcriptional activation. Planta 232: 1033-1043.
Hao, Y.J., Wei, W., Song, Q.X., Chen, H.W., Zhang, Y.Q., Wang, F., Zou, H.F., Lei, G., Tian, A.G., and Zhang, W.K. (2011). Soybean NAC transcription factors promote abiotic stress tolerance and lateral root formation in transgenic plants. Plant J. 68: 302-313.
Hattori, T., Yoshida, N., and Nakamura, K. (1989). Structural relationship among the members of a multigene family coding for the sweet potato tuberous root storage protein. Plant Mol. Biol. 13: 563-572.
Hegedus, D., Yu, M., Baldwin, D., Gruber, M., Sharpe, A., Parkin, I., Whitwill, S., and Lydiate, D. (2003). Molecular characterization of Brassica napus NAC domain transcriptional activators induced in response to biotic and abiotic stress. Plant Mol. Biol. 53: 383-397.
Heim, M.A., Jakoby, M., Werber, M., Martin, C., Weisshaar, B., and Bailey, P.C. (2003). The basic helix–loop–helix transcription factor family in plants: a genome-wide study of protein structure and functional diversity. Mol. Biol. Evol. 20: 735-747.
Hickman, R., Hill, C., Penfold, C.A., Breeze, E., Bowden, L., Moore, J.D., Zhang, P., Jackson, A., Cooke, E., and Bewicke‐Copley, F. (2013). A local regulatory network around three NAC transcription factors in stress responses and senescence in Arabidopsis leaves. Plant J. 75: 26-39.
Higo, K., Ugawa, Y., Iwamoto, M., and Korenaga, T. (1999). Plant cis-acting regulatory DNA elements (PLACE) database: 1999. Nucleic Acids Res. 27: 297-300.
Hilder, V.A., Gatehouse, A.M., Sheerman, S.E., Barker, R.F., and Boulter, D. (1987). A novel mechanism of insect resistance engineered into tobacco. Nature 330: 160-163.
Hiraga, S., Ito, H., Sasaki, K., Yamakawa, H., Mitsuhara, I., Toshima, H., Matsui, H., Honma, M., and Ohashi, Y. (2000). Wound-induced expression of a tobacco peroxidase is not enhanced by ethephon and suppressed by methyl jasmonate and coronatine. Plant Cell Physiol. 41: 165-170.
Hoffmann, M.P., Zalom, F.G., Wilson, L.T., Smilanick, J.M., Malyj, L.D., Kiser, J., Hilder, V.A., and Barnes, W.M. (1992). Field evaluation of transgenic tobacco containing genes encoding Bacillus thuringiensis-endotoxin or cowpea trypsin inhibitor: efficacy against Helicoverpa zea (Lepidoptera: Noctuidae). J. Econ. Entomol. 85: 2516-2522.
Huesing, J.E., Murdock, L.L., and Shade, R.E. (1991). Effect of wheat germ isolectins on development of cowpea weevil. Phytochemistry 30: 785-788.
Ikeda, M., and Ohme-Takagi, M. (2009). A novel group of transcriptional repressors in Arabidopsis. Plant Cell Physiol. 50: 970-975.
Jensen, M.K., Lindemose, S., De Masi, F., Reimer, J.J., Nielsen, M., Perera, V., Workman, C.T., Turck, F., Grant, M.R., and Mundy, J. (2013). ATAF1 transcription factor directly regulates abscisic acid biosynthetic gene NCED3 in Arabidopsis thaliana. FEBS Open Bio 3: 321-327.
Johnson, R., Narvaez, J., An, G., and Ryan, C. (1989). Expression of proteinase inhibitors I and II in transgenic tobacco plants: effects on natural defense against Manduca sexta larvae. Proc. Natl. Acad. Sci. U. S. A. 86: 9871-9875.
Karimi, M., Depicker, A., and Hilson, P. (2007). Recombinational cloning with plant gateway vectors. Plant physiol. 145: 1144-1154.
Kawaoka, A., Kawamoto, T., Sekine, M., Yoshida, K., Takano, M., and Shinmyo, A. (1994). A cis‐acting element and a trans‐acting factor involved in the wound‐induced expression of a horseradish peroxidase gene. Plant J. 6: 87-97.
Kazan, K., and Manners, J.M. (2013). MYC2: the master in action. Mol. Plant. 6: 686-703.
Kende, H. (1993). Ethylene biosynthesis. Annu. Rev. Plant Biol. 44: 283-307.
Kim, S.G., Kim, S.Y., and Park, C.M. (2007). A membrane-associated NAC transcription factor regulates salt-responsive flowering via FLOWERING LOCUS T in Arabidopsis. Planta 226: 647-654.
Lescot, M., Déhais, P., Thijs, G., Marchal, K., Moreau, Y., Van de Peer, Y., Rouzé, P., and Rombauts, S. (2002). PlantCARE, a database of plant cis-acting regulatory elements and a portal to tools for in silico analysis of promoter sequences. Nucleic Acids Res. 30: 325-327.
Li, P.G., Mu, T.H., and Deng, L. (2013). Anticancer effects of sweet potato protein on human colorectal cancer cells. World J. Gastroenterol. 19: 3300.
Li, Y.C., Wan, W.L., Lin, J.S., Kuo, Y.W., King, Y.C., Chen, Y.C., and Jeng, S.T. (2016). Signal transduction and regulation of IbpreproHypSys in sweet potato. Plant Cell Environ. 39: 1576-1587.
Lin, J.-S., Lin, H.-H., Li, Y.-C., King, Y.-C., Sung, R.-J., Kuo, Y.-W., Lin, C.-C., Shen, Y.-H., and Jeng, S.-T. (2014). Carbon monoxide regulates the expression of the wound-inducible gene ipomoelin through antioxidation and MAPK phosphorylation in sweet potato. J. Exp. Bot. 65: 5279-5290.
Liu, L., Xu, W., Hu, X., Liu, H., and Lin, Y. (2016). W-box and G-box elements play important roles in early senescence of rice flag leaf. Sci Rep 6: 20881.
Lo, H.S. (2014) Functional characterization of IbWIPK and IbMEK1 involved in biotic stress tolerance in sweet potato. Master thesis, National Taiwan University.
Lu, P.L., Chen, N.Z., An, R., Su, Z., Qi, B.S., Ren, F., Chen, J., and Wang, X.C. (2007). A novel drought-inducible gene, ATAF1, encodes a NAC family protein that negatively regulates the expression of stress-responsive genes in Arabidopsis. Plant Mol.Biol. 63: 289-305.
Lüthi, C., Álvarez‐Alfageme, F., Li, Y., Naranjo, S., Higgins, T., and Romeis, J. (2015). Potential of the bean α‐amylase inhibitor αAI‐1 to inhibit α‐amylase activity in true bugs (Hemiptera). J. Appl. Entomol. 139: 192-200.
Maruta, T., Inoue, T., Tamoi, M., Yabuta, Y., Yoshimura, K., Ishikawa, T., and Shigeoka, S. (2011). Arabidopsis NADPH oxidases, AtrbohD and AtrbohF, are essential for jasmonic acid-induced expression of genes regulated by MYC2 transcription factor. Plant Sci. 180: 655-660.
Maruyama, Y., Yamoto, N., Suzuki, Y., Chiba, Y., Yamazaki, K.-i., Sato, T., and Yamaguchi, J. (2013). The Arabidopsis transcriptional repressor ERF9 participates in resistance against necrotrophic fungi. Plant Sci. 213: 79-87.
Maurya, J.P., Sethi, V., Gangappa, S.N., Gupta, N., and Chattopadhyay, S. (2015). Interaction of MYC2 and GBF1 results in functional antagonism in blue light‐mediated Arabidopsis seedling development. Plant J. 83: 439-450.
Menkens, A.E., Schindler, U., and Cashmore, A.R. (1995). The G-box: a ubiquitous regulatory DNA element in plants bound by the GBF family of bZIP proteins. Trends Biochem.Sci. 20: 506-510.
Murdock, L.L., Huesing, J.E., Nielsen, S.S., Pratt, R.C., and Shade, R.E. (1990). Biological effects of plant lectins on the cowpea weevil. Phytochemistry 29: 85-89.
Nakata, M., Mitsuda, N., Herde, M., Koo, A.J., Moreno, J.E., Suzuki, K., Howe, G.A., and Ohme-Takagi, M. (2013). A bHLH-type transcription factor, ABA-INDUCIBLE BHLH-TYPE TRANSCRIPTION FACTOR/JA-ASSOCIATED MYC2-LIKE1, acts as a repressor to negatively regulate jasmonate signaling in Arabidopsis. Plant Cell 25: 1641-1656.
Niu, Y., and Figueroa, P. (2011). Characterization of JAZ-interacting bHLH transcription factors that regulate jasmonate responses in Arabidopsis. J. Exp. Bot. 62: 2143-2154.
Nogueira, F.T., Schlögl, P.S., Camargo, S.R., Fernandez, J.H., De Rosa, V.E., Pompermayer, P., and Arruda, P. (2005). SsNAC23, a member of the NAC domain protein family, is associated with cold, herbivory and water stress in sugarcane. Plant Sci. 169: 93-106.
Nuruzzaman, M., Sharoni, A.M., and Kikuchi, S. (2013). Roles of NAC transcription factors in the regulation of biotic and abiotic stress responses in plants. Front. Microbiol. 4: 248.
Oh, Y., Baldwin, I.T., and Gális, I. (2012). NaJAZh regulates a subset of defense responses against herbivores and spontaneous leaf necrosis in Nicotiana attenuata plants. Plant Physiol. 159: 769–788..
Olsen, A.N., Ernst, H.A., Leggio, L.L., and Skriver, K. (2005). DNA-binding specificity and molecular functions of NAC transcription factors. Plant Sci. 169: 785-797.
Ooka, H., Satoh, K., Doi, K., Nagata, T., Otomo, Y., Murakami, K., Matsubara, K., Osato, N., Kawai, J., and Carninci, P. (2003). Comprehensive analysis of NAC family genes in Oryza sativa and Arabidopsis thaliana. DNA Res. 10: 239-247.
Palm, C.J., Costa, M.A., An, G., and Ryan, C.A. (1990). Wound-inducible nuclear protein binds DNA fragments that regulate a proteinase inhibitor II gene from potato. Proc. Natl. Acad. Sci. U. S. A. 87: 603-607
Plesch, G., Ehrhardt, T., and Mueller‐Roeber, B. (2001). Involvement of TAAAG elements suggests a role for Dof transcription factors in guard cell‐specific gene expression. Plant J. 28: 455-464.
Qi, T., Huang, H., Song, S., and Xie, D. (2015a). Regulation of jasmonate-mediated stamen development and seed production by a bHLH-MYB complex in Arabidopsis. Plant Cell 27: 1620-1633.
Qi, T., Wang, J., Huang, H., Liu, B., Gao, H., Liu, Y., Song, S., and Xie, D. (2015b). Regulation of jasmonate-induced leaf senescence by antagonism between bHLH subgroup IIIe and IIId factors in Arabidopsis. Plant Cell 27: 1634-1649.
Rahbé, Y., Ferrasson, E., Rabesona, H., and Quillien, L. (2003). Toxicity to the pea aphid Acyrthosiphon pisum of anti-chymotrypsin isoforms and fragments of Bowman–Birk protease inhibitors from pea seeds. Insect Biochem. Mol. Biol. 33: 299-306.
Rajendran, S., Lin, I.-W., Chen, M.-J., Chen, C.-Y., and Yeh, K.-W. (2014). Differential activation of sporamin expression in response to abiotic mechanical wounding and biotic herbivore attack in the sweet potato. BMC Plant Biol. 14: 1.
Reinbothe, C., Springer, A., Samol, I., and Reinbothe, S. (2009). Plant oxylipins: role of jasmonic acid during programmed cell death, defence and leaf senescence. FEBS J. 276: 4666-4681.
Reymond, P., Weber, H., Damond, M., and Farmer, E.E. (2000). Differential gene expression in response to mechanical wounding and insect feeding in Arabidopsis. Plant Cell 12: 707-719.
Rojo, E., León, J., and Sánchez‐Serrano, J.J. (1999). Cross‐talk between wound signalling pathways determines local versus systemic gene expression in Arabidopsis thaliana. Plant J. 20: 135-142.
Ryan, C.A. (2000). The systemin signaling pathway: differential activation of plant defensive genes. BBA-Proteins Proteomics 1477: 112-121.
Ryan, C.A., and Pearce, G. (2003). Systemins: a functionally defined family of peptide signals that regulate defensive genes in Solanaceae species. Proc. Natl. Acad. Sci. U. S. A. 100: 14577-14580.
Sakuraba, Y., Kim, Y.-S., Han, S.-H., Lee, B.-D., and Paek, N.-C. (2015). The Arabidopsis transcription factor NAC016 promotes drought stress responses by repressing AREB1 transcription through a trifurcate feed-forward regulatory loop involving NAP. Plant Cell 27: 1771-1787.
Saracco, S.A., Hansson, M., Scalf, M., Walker, J.M., Smith, L.M., and Vierstra, R.D. (2009). Tandem affinity purification and mass spectrometric analysis of ubiquitylated proteins in Arabidopsis. Plant J. 59: 344-358.
Sasaki-Sekimoto, Y., Jikumaru, Y., Obayashi, T., Saito, H., Masuda, S., Kamiya, Y., Ohta, H., and Shirasu, K. (2013). bHLH transcription factors JA-ASSOCIATED MYC2-LIKE 1, JAM2 and JAM3 are negative regulators of jasmonate responses in Arabidopsis. Plant Physiol. pp. 113.220129.
Schindler, U., and Cashmore, A.R. (1990). Photoregulated gene expression may involve ubiquitous DNA binding proteins. Embo J. 9: 3415.
Schmiesing, A., Emonet, A., Gouhier-Darimont, C., and Reymond, P. (2016). Arabidopsis MYC transcription factors are the target of hormonal salicylic acid/jasmonic acid cross talk in response to Pieris brassicae egg extract. Plant Physiol. 170: 2432-2443.
Schweizer, F., Bodenhausen, N., Lassueur, S., Masclaux, F.G., and Reymond, P. (2014). Differential contribution of transcription factors to Arabidopsis thaliana defense against Spodoptera littoralis. Front. Plant Sci. 4: 13.
Senthilkumar, R., Cheng, C.P., and Yeh, K.W. (2010). Genetically pyramiding protease‐inhibitor genes for dual broad‐spectrum resistance against insect and phytopathogens in transgenic tobacco. Plant Biotechnol. J. 8: 65-75.
Senthilkumar, R., and Yeh, K.W. (2012). Multiple biological functions of sporamin related to stress tolerance in sweet potato (Ipomoea batatas Lam). Biotechnol. Adv. 30: 1309-1317.
Seo, S., Okamoto, M., Seto, H., and Ishizuka, K. (1995). Tobacco MAP kinase: a possible mediator in wound signal transduction pathways. Science 270: 1988.
Sethi, V., Raghuram, B., Sinha, A.K., and Chattopadhyay, S. (2014). A mitogen-activated protein kinase cascade module, MKK3-MPK6 and MYC2, is involved in blue light-mediated seedling development in Arabidopsis. Plant Cell 26: 3343-3357.
Shan, W., Kuang, J.F., Lu, W.J., and Chen, J.Y. (2014). Banana fruit NAC transcription factor MaNAC1 is a direct target of MaICE1 and involved in cold stress through interacting with MaCBF1. Plant Cell Environ. 37: 2116-2127.
Shan, W., Kuang, J.-f., Chen, L., Xie, H., Peng, H.-h., Xiao, Y.-y., Li, X.-p., Chen, W.-x., He, Q.-g., and Chen, J.-y. (2012). Molecular characterization of banana NAC transcription factors and their interactions with ethylene signalling component EIL during fruit ripening. J. Exp. Bot. 63: 5171-5187.
Shan, X., Zhang, Y., Peng, W., Wang, Z., and Xie, D. (2009). Molecular mechanism for jasmonate-induction of anthocyanin accumulation in Arabidopsis. J. Exp. Bot. 60: 3849-3860.
Sheard, L.B., Tan, X., Mao, H., Withers, J., Ben-Nissan, G., Hinds, T.R., Kobayashi, Y., Hsu, F.F., Sharon, M., and Browse, J. (2010). Jasmonate perception by inositol-phosphate-potentiated COI1-JAZ co-receptor. Nature 468: 400-405.
Song, S., Qi, T., Fan, M., Zhang, X., Gao, H., Huang, H., Wu, D., Guo, H., and Xie, D. (2013). The bHLH subgroup IIId factors negatively regulate jasmonate-mediated plant defense and development. PLoS Genet. 9: e1003653.
Song, S., Huang, H., Gao, H., Wang, J., Wu, D., Liu, X., Yang, S., Zhai, Q., Li, C., and Qi, T. (2014). Interaction between MYC2 and ETHYLENE INSENSITIVE3 modulates antagonism between jasmonate and ethylene signaling in Arabidopsis. Plant Cell 26: 263-279.
Soni, R., Carmichael, J.P., and Murray, J.A. (1993). Parameters affecting lithium acetate-mediated transformation of Saccharomyces cerevisiae and development of a rapid and simplified procedure. Curr. Genet. 24: 455-459.
Stout, M.J., Workman, K.V., Bostock, R.M., and Duffey, S.S. (1997). Specificity of induced resistance in the tomato, Lycopersicon esculentum. Oecologia 113: 74-81.
Sugiyama, N., Nakagami, H., Mochida, K., Daudi, A., Tomita, M., Shirasu, K., and Ishihama, Y. (2008). Large‐scale phosphorylation mapping reveals the extent of tyrosine phosphorylation in Arabidopsis. Mol. Syst. Biol. 4: 193.
Tian, D., Peiffer, M., De Moraes, C.M., and Felton, G.W. (2014). Roles of ethylene and jasmonic acid in systemic induced defense in tomato (Solanum lycopersicum) against Helicoverpa zea. Planta 239: 577-589.
Toledo-Ortiz, G., Huq, E., and Quail, P.H. (2003). The Arabidopsis basic/helix-loop-helix transcription factor family. Plant Cell 15: 1749-1770.
Tran, L.-S.P., Nakashima, K., Sakuma, Y., Simpson, S.D., Fujita, Y., Maruyama, K., Fujita, M., Seki, M., Shinozaki, K., and Yamaguchi-Shinozaki, K. (2004). Isolation and functional analysis of Arabidopsis stress-inducible NAC transcription factors that bind to a drought-responsive cis-element in the early responsive to dehydration stress 1 promoter. Plant Cell 16: 2481-2498.
Traven, A., Jelicic, B., and Sopta, M. (2006). Yeast Gal4: a transcriptional paradigm revisited. EMBO Rep. 7: 496-499.
Wang, F., Lin, R., Feng, J., Chen, W., Qiu, D., and Xu, S. (2015). TaNAC1 acts as a negative regulator of stripe rust resistance in wheat, enhances susceptibility to Pseudomonas syringae, and promotes lateral root development in transgenic Arabidopsis thaliana. Front. Plant Sci. 6.
Wang, H.-Y., Huang, Y.-C., Chen, S.-F., and Yeh, K.-W. (2003). Molecular cloning, characterization and gene expression of a water deficiency and chilling induced proteinase inhibitor I gene family from sweet potato (Ipomoea batatas Lam.) leaves. Plant Sci. 165: 191-203.
Wang, S.-J., Lan, Y.-C., Chen, S.-F., Chen, Y.-M., and Yeh, K.-W. (2002). Wound-response regulation of the sweet potato sporamin gene promoter region. Plant Mol. Biol. 48: 223-231.
Wang, X., Goregaoker, S.P., and Culver, J.N. (2009a). Interaction of the Tobacco mosaic virus replicase protein with a NAC domain transcription factor is associated with the suppression of systemic host defenses. J. Virol. 83: 9720-9730.
Wang, X.e., Basnayake, B.V.S., Zhang, H., Li, G., Li, W., Virk, N., Mengiste, T., and Song, F. (2009b). The Arabidopsis ATAF1, a NAC transcription factor, is a negative regulator of defense responses against necrotrophic fungal and bacterial pathogens. Mol. Plant-Microbe Interact. 22: 1227-1238.
Whitaker, J. (1980). Naturally occurring peptide and protein inhibitors of enzymes. Impact of toxicology on food processing.
Williams, M.E., Foster, R., and Chua, N.-H. (1992). Sequences flanking the hexameric G-box core CACGTG affect the specificity of protein binding. Plant Cell 4: 485-496.
Woolfe, J.A. (1992). Sweet potato: an untapped food resource. (Cambridge University).
Wu, A., Allu, A.D., Garapati, P., Siddiqui, H., Dortay, H., Zanor, M.-I., Asensi-Fabado, M.A., Munné-Bosch, S., Antonio, C., and Tohge, T. (2012). JUNGBRUNNEN1, a reactive oxygen species–responsive NAC transcription factor, regulates longevity in Arabidopsis. Plant Cell 24: 482-506.
Yamaguchi-Shinozaki, K., and Shinozaki, K. (1994). A novel cis-acting element in an Arabidopsis gene is involved in responsiveness to drought, low-temperature, or high-salt stress. Plant Cell 6: 251-264.
Yang, J., Bi, H.-P., Fan, W.-J., Zhang, M., Wang, H.-X., and Zhang, P. (2011). Efficient embryogenic suspension culturing and rapid transformation of a range of elite genotypes of sweet potato (Ipomoea batatas [L.] Lam.). Plant Sci. 181: 701-711.
Yao, J., and Qian, C. (2011). Sporamin induce apoptosis in human tongue carcinoma cells by down‐regulating Akt/GSK‐3 signaling. Fundam. Clin. Pharmacol. 25: 229-236.
Yao, P.L., Hwang, M.J., Chen, Y.M., and Yeh, K.W. (2001). Site‐directed mutagenesis evidence for a negatively charged trypsin inhibitory loop in sweet potato sporamin. FEBS Lett. 496: 134-138.
Yeh, K.W., Chen, J.C., Lin, M.I., Chen, Y.M., and Lin, C.Y. (1997a). Functional activity of sporamin from sweet potato (Ipomoea batatas Lam.): a tuber storage protein with trypsin inhibitory activity. Plant Mol. Bio. 33: 565-570.
Yeh, K.-W., Lin, M.-I., Tuan, S.-J., Chen, Y.-M., Lin, C.-J., and Kao, S.-S. (1997b). Sweet potato (Ipomoea batatas) trypsin inhibitors expressed in transgenic tobacco plants confer resistance against Spodoptera litura. Plant Cell Reports 16: 696-699.
Yokotani, N., Sato, Y., Tanabe, S., Chujo, T., Shimizu, T., Okada, K., Yamane, H., Shimono, M., Sugano, S., and Takatsuji, H. (2013). WRKY76 is a rice transcriptional repressor playing opposite roles in blast disease resistance and cold stress tolerance. J. Exp. Bot. 64: 5085-5097.
Zhai, Q., Yan, L., Tan, D., Chen, R., Sun, J., Gao, L., Dong, M.-Q., Wang, Y., and Li, C. (2013). Phosphorylation-coupled proteolysis of the transcription factor MYC2 is important for jasmonate-signaled plant immunity. PLoS Genet. 9: e1003422.
Zhang, S., and Klessig, D.F. (2001). MAPK cascades in plant defense signaling. Trends Plant Sci. 6: 520-527.
Zheng, X.-y., Spivey, N.W., Zeng, W., Liu, P.-P., Fu, Z.Q., Klessig, D.F., He, S.Y., and Dong, X. (2012). Coronatine promotes Pseudomonas syringae virulence in plants by activating a signaling cascade that inhibits salicylic acid accumulation. Cell Host Microbe 11: 587-596.
Zhou, M., and Memelink, J. (2016). Jasmonate-responsive transcription factors regulating plant secondary metabolism. Biotechnol. Adv. 34: 441-449
Zhu, X., Chen, J., Xie, Z., Gao, J., Ren, G., Gao, S., Zhou, X., and Kuai, B. (2015). Jasmonic acid promotes degreening via MYC2/3/4‐and ANAC019/055/072‐mediated regulation of major chlorophyll catabolic genes. Plant J. 84: 597-610.
dc.identifier.urihttp://tdr.lib.ntu.edu.tw/jspui/handle/123456789/60026-
dc.description.abstract甘藷為世界上重要的糧食作物之一,易栽種且抗蟲能力強。過去的研究顯示,甘藷所特有的抗蟲基因sporamin會被受傷逆境誘導而大量表現於葉部。本研究之目的為探討甘藷sporamin的受傷訊息傳遞路徑以了解甘藷的抗蟲防禦機制。Sporamin啟動子中具有一段受傷活化的cis-acting element (SWRE),此DNA片段會被轉錄因子─IbNAC1結合並活化。在甘藷葉片中,IbNAC1轉錄因子會受到傷害逆境刺激而大量表現,IbNAC1大量表現的甘藷轉殖株其抗蟲能力也有明顯的提升。另一方面,IbNAC1也同時參與在茉莉酸反應中,持續性的表現IbNAC1也對植物造成許多負面影響,包括抑制根發育、加速植物老化、大量累積花青素與過氧化氫。大量表現IbNAC1可以提昇植物抗蟲能力,但過度持續表現則會對植物的生理造成負面影響,因此,控制IbNAC1表達的调控機制對於甘藷的受傷反應是相當重要的。進一步研究發現,甘藷中有兩個bHLH轉錄因子─IbbHLH3與IbbHLH4,這兩個轉錄因子會結合IbNAC1啟動子中的G-box cis-element進而調控IbNAC1基因表現。在甘藷葉受傷的初期反應中,IbbHLH3-IbbHLH3蛋白複合體會結合G-box並促進IbNAC1表達以增加植物的抗蟲能力。在受傷反應後期,IbbHLH4會大量表現在甘藷受傷葉片中,因此形成了IbbHLH4-IbbHLH3或IbbHLH4-IbbHLH4的結合形式,任一蛋白複合體若結合在G-box時即抑制IbNAC1表現。此外在受傷逆境中有其他的蛋白質,包括JAZ、EIL和MAPK也會分別與IbbHLH3結合並抑制了IbbHLH3的轉錄活化功能。此bHLH模組的受傷防禦調控機制,經由調控IbNAC1的基因表現,再進一步調控sporamin的表現,不僅提供植物抗蟲防禦能力,並適當地避免植物生長發育受到影響。本論文闡釋了植物在受傷防禦與生長平衡間最適當的調控機制。zh_TW
dc.description.abstractSweet potato is one of important food crops in the world. It grows well and has few herbivore enemies in the field. Previous studies have shown that sporamin, which is induced by wounding in leaves, is an unique anti-herbivore gene in sweet potato. In this study, we further investigated the wounding signaling transduction pathway in stimulation of sporamin expression to validate the defense mechanism against insect feeding in sweet potato. In the promoter region of sporamin, a wound-responsive cis-element promoter (SWRE) was characterized that was bound and activated by IbNAC1 transcription factor. IbNAC1 is a wound-inducible gene as well as sporamin in leaves. Overexpression of IbNAC1 enhanced tolerance against insect feeding in sweet potato. However, constitutive expression of IbNAC1 simultaneously and negatively affected the physiological changes, including inhibition of root formation, accelerated aging, as well as accumulation of anthocyanin and H2O2, by IbNAC1-induced JA responses in sweet potato. These results suggested that IbNAC1 effectively controls the resistance to insect feeding, but causing side-effects to plant physiological status. Thus, a delicate regulatory mechanism controlling IbNAC1 expression is essential for wounding response in sweet potato leaves. In detailed study, two bHLH transcription factors, IbbHLH3 and IbbHLH4, coordinately regulate the expression of IbNAC1 by binding the G-box cis-element in IbNAC1 promoter. In the early wound response, IbbHLH3-IbbHLH3 protein complex binds to and activates the G-box in IbNAC1 promoter to enhance the resistance against herbivory. Until the late wounding, IbbHLH4 is elicited in wounded leaves. Either IbbHLH4-IbbHLH3 or IbbHLH4-IbbHLH4 complex binds to the G-box, and repress the activation of IbNAC1 promoter to avoid hyper-activation of IbNAC1. Additionally, several proteins can also interact with IbbHLH3 to repress the transactivation function of IbbHLH3 during wound stress. The dynamic defense mechanism of wounding response mediated by bHLH modules coordinates the expression of IbNAC1 to confer the resistant ability against herbivory and prevent the injury to growth and development in sweet potato. This research demonstrates an appropriate regulatory mechanism that synergistically couples the tradeoffs between defense and physiology toward wounding response.en
dc.description.provenanceMade available in DSpace on 2021-06-16T09:51:24Z (GMT). No. of bitstreams: 1
ntu-106-D00b42009-1.pdf: 6845138 bytes, checksum: f325477b05f6a41604cdabbb2116af89 (MD5)
Previous issue date: 2017
en
dc.description.tableofcontents中文摘要-1
Abstract-2
Abbreviation-4
I. Chapter 1- General introduction-5
II. Chapter 2- Sweet potato NAC transcription factor, IbNAC1, upregulates sporamin gene expression by binding the SWRE motif against mechanical wounding and herbivore attack-14
Summary-15
Introduction-16
Materials and methods-19
Results-24
Discussion-32
Tables-37
Figures-44
III. Chapter 3- The sweet potato NAC-domain transcription factor IbNAC1 is dynamically coordinated by the activator IbbHLH3 and the repressor IbbHLH4 to reprogram the defense mechanism against wounding-61
Summary-62
Introduction-63
Materials and methods-67
Results-76
Discussion-88
Tables-93
Figures-94
IV. Conclusion-122
V. Prospect-126
VI. References-128
VII. Appendix-146
VIII. Maps of vectors used in the dissertation-151
dc.language.isoen
dc.title甘藷sporamin基因在葉片受傷誘導的表現調控網路zh_TW
dc.titleThe regulatory network of sporamin gene expression in wounding leaf of sweet potato (Ipomoea batatas)en
dc.typeThesis
dc.date.schoolyear105-1
dc.description.degree博士
dc.contributor.oralexamcommittee王淑珍,林冠宏,謝旭亮,林盈仲,葉國楨
dc.subject.keyword甘藷 受傷逆境 sporamin,zh_TW
dc.subject.keywordsweet potato wounding sporamin,en
dc.relation.page151
dc.identifier.doi10.6342/NTU201700018
dc.rights.note有償授權
dc.date.accepted2017-01-16
dc.contributor.author-college生命科學院zh_TW
dc.contributor.author-dept植物科學研究所zh_TW
顯示於系所單位:植物科學研究所

文件中的檔案:
檔案 大小格式 
ntu-106-1.pdf
  目前未授權公開取用
6.68 MBAdobe PDF
顯示文件簡單紀錄


系統中的文件,除了特別指名其著作權條款之外,均受到著作權保護,並且保留所有的權利。

社群連結
聯絡資訊
10617臺北市大安區羅斯福路四段1號
No.1 Sec.4, Roosevelt Rd., Taipei, Taiwan, R.O.C. 106
Tel: (02)33662353
Email: ntuetds@ntu.edu.tw
意見箱
相關連結
館藏目錄
國內圖書館整合查詢 MetaCat
臺大學術典藏 NTU Scholars
臺大圖書館數位典藏館
本站聲明
© NTU Library All Rights Reserved