Skip navigation

DSpace

機構典藏 DSpace 系統致力於保存各式數位資料(如:文字、圖片、PDF)並使其易於取用。

點此認識 DSpace
DSpace logo
English
中文
  • 瀏覽論文
    • 校院系所
    • 出版年
    • 作者
    • 標題
    • 關鍵字
    • 指導教授
  • 搜尋 TDR
  • 授權 Q&A
    • 我的頁面
    • 接受 E-mail 通知
    • 編輯個人資料
  1. NTU Theses and Dissertations Repository
  2. 理學院
  3. 地質科學系
請用此 Handle URI 來引用此文件: http://tdr.lib.ntu.edu.tw/jspui/handle/123456789/60017
完整後設資料紀錄
DC 欄位值語言
dc.contributor.advisor施路易(Ludvig Lowemark)
dc.contributor.authorWeng-Si Chaoen
dc.contributor.author周穎詩zh_TW
dc.date.accessioned2021-06-16T09:50:51Z-
dc.date.available2017-02-16
dc.date.copyright2017-02-16
dc.date.issued2017
dc.date.submitted2017-01-17
dc.identifier.citationAdler, R.E., Polyak, L., Ortiz, J.D., Kaufman, D.S., Channell, J.E.T., Xuan, C., Grottoli, A.G., Sellén, E. and Crawford, K.A., 2009. Sediment record from the western Arctic Ocean with an improved Late Quaternary age resolution: HOTRAX core HLY0503-8JPC, Mendeleev Ridge. Global and Planetary Change, 68(1–2): 18-29.
Axelsson, V., 1983. The use of X-ray radiographic methods in studying sedimentary properties and rates of sediment accumulation. Hydrobiologia, 103(1): 65-69.
Barber, D.C., Dyke, A., Hillaire-Marcel, C., Jennings, A.E., Andrews, J.T., Kerwin, M.W., Bilodeau, G., McNeely, R., Southon, J., Morehead, M.D. and Gagnon, J.M., 1999.
Forcing of the cold event of 8,200 years ago by catastrophic drainage of Laurentide lakes. Nature, 400(6742): 344-348.
Behrends, M., Hoops, E. and Peregovich, B., 1999. Distribution Patterns of Heavy Minerals in Siberian Rivers, the Laptev Sea and the Eastern Arctic Ocean: An Approach to Identify Sources, Transport and Pathways of Terrigenous Matter. In: H. Kassens, H.A. Bauch, I.A. Dmitrenko, H. Eicken, H.-W. Hubberten, M. Melles, J. Thiede and L.A. Timokhov (Editors), Land-Ocean Systems in the Siberian
Arctic: Dynamics and History. Springer Berlin Heidelberg, Berlin, Heidelberg, pp. 265-286.
Bischof, J.F. and Darby, D.A., 1997. Mid- to Late Pleistocene Ice Drift in the Western Arctic Ocean: Evidence for a Different Circulation in the Past. Science, 277(5322): 74-78.
Bouma, A.H., 1964. Notes on X-ray interpretation of marine sediments. Marine Geology, 2: 278-309.
Carver, R.E., 1971. Heavy-mineral separation. John Wiley.
Chiu, P.-Y., 2016. Radiocarbon dating of Mn patterns in Arctic cores to refine their usage as a stratigraphic tool, National Taiwan University, Taipei, Taiwan.
Clark, D.L., 1996. The Pliocene record in the central Arctic Ocean. Marine Micropaleontology, 27(1–4): 157-164.
Clark, D.L. and Hanson, A., 1983. Central Arctic Ocean Sediment Texture: A Key to Ice Transport Mechanisms. In: B.F. Molnia (Editor), Glacial-Marine Sedimentation.
Springer US, Boston, MA, pp. 301-330.
Clark, P.U., Marshall, S.J., Clarke, G.K.C., Hostetler, S.W., Licciardi, J.M. and Teller, J.T., 2001. Freshwater Forcing of Abrupt Climate Change During the Last Glaciation.
Science, 293(5528): 283-287.
Croudace, I.W., Rindby, A. and Rothwell, R.G., 2006. ITRAX: description and evaluation of a new multi-function X-ray core scanner. Geological Society, London, Special
Publications, 267(1): 51-63.
Darby, D.A., Bischof, J.F., Spielhagen, R.F., Marshall, S.A. and Herman, S.W., 2002. Arctic ice export events and their potential impact on global climate during the late
Pleistocene. Paleoceanography, 17(2): 15-1-15-17.
Füchtbauer, H., 1964. Sedimentpetrographische Untersuchungen in der älteren Molasse nördlich der Alpen. Birkhäuser.
Fisher, T.G., Smith, D.G. and Andrews, J.T., 2002. Preboreal oscillation caused by a glacial Lake Agassiz flood. Quaternary Science Reviews, 21(8–9): 873-878.
Galehouse, J.S., 1967. Provenance and paleocurrents of the Paso Robles formation, California. Geological Society of America Bulletin, 78(8): 951-978.
Goble, R.J. and Smith, D.G.W., 1988. MinIdent: an Application to the Identification and Classification of Amphiboles. Mineralogy and Petrology, 38: 213-227.
Gravenor, C., 1979. Mechanisms to explain the loss of heavy minerals from the Upper Palaeozoic tillites of South Africa and Australia and the late Precambrian tillites of Australia. Sedimentology, 26(5): 707-717.
Hanslik, D. and Hermelin, O., 2011. Late Quaternary benthic foraminiferal assemblages from the central Arctic Ocean.
Hesse, R., Khodabakhsh, S., Klaucke, I. and Ryan, W.B.F., 1997. Asymmetrical turbid surface-plume deposition near ice-outlets of the Pleistocene Laurentide ice sheet in the Labrador Sea. Geo-Marine Letters, 17(3): 179-187.
Jakobsson, M., Andreassen, K., Bjarnadóttir, L.R., Dove, D., Dowdeswell, J.A., England, J.H., Funder, S., Hogan, K., Ingólfsson, Ó ., Jennings, A., Krog Larsen, N., Kirchner,
N., Landvik, J.Y., Mayer, L., Mikkelsen, N., Möller, P., Niessen, F., Nilsson, J., O'Regan, M., Polyak, L., N?rgaard-Pedersen, N. and Stein, R., 2014. Arctic Ocean
glacial history. Quaternary Science Reviews, 92: 40-67.
Jakobsson, M., Björck, S., Alm, G., Andrén, T., Lindeberg, G. and Svensson, N.-O., 2007. Reconstructing the Younger Dryas ice dammed lake in the Baltic Basin: Bathymetry, area and volume. Global and Planetary Change, 57(3–4): 355-370.
Jakobsson, M., L?vlie, R., Al-Hanbali, H., Arnold, E., Backman, J. and Mörth, M., 2000. Manganese and color cycles in Arctic Ocean sediments constrain Pleistocene chronology. Geology, 28(1): 23-26.
Jakobsson, M., L?vlie, R., Arnold, E.M., Backman, J., Polyak, L., Knutsen, J.O. and Musatov, E., 2001. Pleistocene stratigraphy and paleoenvironmental variation
from Lomonosov Ridge sediments, central Arctic Ocean. Global and Planetary Change, 31(1–4): 1-22.
Jakobsson, M., Marcussen, C. and LOMROG Scientific Party, 2008. 2007 Cruise Report, Lomonosov Ridge off Greenland 2007 (LOMROG). Special Publication of the Geological Survey of Denmark and Greenland, Copenhagen, Denmark, 122 pp.
Jakobsson, M., Mayer, L., Coakley, B., Dowdeswell, J.A., Forbes, S., Fridman, B., Hodnesdal, H., Noormets, R., Pedersen, R., Rebesco, M., Schenke, H.W., Zarayskaya, Y., Accettella, D., Armstrong, A., Anderson, R.M., Bienhoff, P.,
Camerlenghi, A., Church, I., Edwards, M., Gardner, J.V., Hall, J.K., Hell, B., Hestvik, O., Kristoffersen, Y., Marcussen, C., Mohammad, R., Mosher, D., Nghiem, S.V., Pedrosa, M.T., Travaglini, P.G. and Weatherall, P., 2012. The International Bathymetric Chart of the Arctic Ocean (IBCAO) Version 3.0. Geophysical Research Letters, 39(12): n/a-n/a.
Jakobsson, M., Nilsson, J., O’Regan, M., Backman, J., Löwemark, L., Dowdeswell, J.A., Mayer, L., Polyak, L., Colleoni, F., Anderson, L.G., Björk, G., Darby, D., Eriksson, B., Hanslik, D., Hell, B., Marcussen, C., Sellén, E. and Wallin, Å., 2010. An Arctic Ocean ice shelf during MIS 6 constrained by new geophysical and geological data. Quaternary Science Reviews, 29(25–26): 3505-3517.
Kaparulina, E., Strand, K. and Lunkka, J.P., 2015. Provenance analysis of central Arctic Ocean sediments: Implications for circum-Arctic ice sheet dynamics and ocean
circulation during Late Pleistocene. Quaternary Science Reviews.
Komatsu, G., Baker, V.R., Arzhannikov, S.G., Gallagher, R., Arzhannikova, A.V., Murana, A. and Oguchi, T., 2015. Catastrophic flooding, palaeolakes, and late Quaternary
drainage reorganization in northern Eurasia. International Geology Review: 1-30.
Kristoffersen, Y., 1990. Eurasia basin. The Geology of North America, 50: 365-378.
Krylov, A.A., Andreeva, I.A., Vogt, C., Backman, J., Krupskaya, V.V., Grikurov, G.E., Moran, K. and Shoji, H., 2008. A shift in heavy and clay mineral provenance indicates a middle Miocene onset of a perennial sea ice cover in the Arctic Ocean. Paleoceanography, 23(1): PA1S06.
Löwemark, L., Chao, W.-S., Gyllencreutz, R., Hanebuth, T.J.J., Chiu, P.-Y., Yang, T.-N., Su, C.-C., Chuang, C.-K., León Dominguez, D.C. and Jakobsson, M., 2016. Variations
in glacial and interglacial marine conditions over the last two glacial cycles off northern Greenland. Quaternary Science Reviews.
Löwemark, L., Jakobsson, M., Mörth, M. and Backman, J., 2008. Arctic Ocean manganese contents and sediment colour cycles. Polar Research, 27(2): 105-113.
Löwemark, L., März, C., O'Regan, M. and Gyllencreutz, R., 2014. Arctic Ocean Mnstratigraphy: genesis, synthesis and inter-basin correlation. Quaternary Science Reviews, 92: 97-111.
Löwemark, L., O'Regan, M., Hanebuth, T.J.J. and Jakobsson, M., 2012. Late Quaternary spatial and temporal variability in Arctic deep-sea bioturbation and its relation to Mn cycles. Palaeogeography, Palaeoclimatology, Palaeoecology, 365–366: 192-208.
Lewis, B.L. and Landing, W.M., 1991. The biogeochemistry of manganese and iron in the Black Sea. Deep Sea Research Part A. Oceanographic Research Papers, 38:S773-S803.
März, C., Stratmann, A., Matthiessen, J., Meinhardt, A.K., Eckert, S., Schnetger, B., Vogt, C., Stein, R. and Brumsack, H.J., 2011. Manganese-rich brown layers in Arctic Ocean sediments: Composition, formation mechanisms, and diagenetic overprint. Geochimica et Cosmochimica Acta, 75(23): 7668-7687.
Macdonald, R.W. and Gobeil, C., 2012. Manganese Sources and Sinks in the Arctic Ocean with Reference to Periodic Enrichments in Basin Sediments. Aquatic Geochemistry, 18(6): 565-591.
Mange, M.A. and Mange, M.A., 1992. Heavy Minerals in Colour. Chapman & Hall, London, 147 pp.
Mangerud, J., Astakhov, V., Jakobsson, M. and Svendsen, J.I., 2001a. Huge Ice-age lakes in Russia. Journal of Quaternary Science, 16(8): 773-777.
Mangerud, J., Astakhov, V.I., Murray, A. and Svendsen, J.I., 2001b. The chronology of a large ice-dammed lake and the Barents–Kara Ice Sheet advances, Northern Russia. Global and Planetary Change, 31(1–4): 321-336.
Mangerud, J., Jakobsson, M., Alexanderson, H., Astakhov, V., Clarke, G.K.C., Henriksen, M., Hjort, C., Krinner, G., Lunkka, J.-P., Möller, P., Murray, A., Nikolskaya, O., Saarnisto, M. and Svendsen, J.I., 2004. Ice-dammed lakes and rerouting of the drainage of northern Eurasia during the Last Glaciation. Quaternary Science Reviews, 23(11–13): 1313-1332.
Marcussen, C. and LOMROG II Scientific Party, 2011. Lomonosov Ridge off Greenland 2009 (LOMROG II) - Cruise Report Danmarks og Gr?nlands geologiske undersgelse, K?benhavn.
Marcussen, C. and LOMROG III Scientific Party, 2013. Lomonosov Ridge off Greenland 2013 (LOMROG III) - Cruise Report Danmarks og Gr?nlands geologiske undersgelse, K?benhavn.
Meinhardt, A.K., März, C., Schuth, S., Lettmann, K.A., Schnetger, B., Wolff, J.O. and Brumsack, H.J., 2016. Diagenetic regimes in Arctic Ocean sediments: Implications for sediment geochemistry and core correlation. Geochimica et Cosmochimica Acta.
Morton, A.C., 1985. A new approach to provenance studies: electron microprobe analysis of detrital garnets from Middle Jurassic sandstones of the northern North Sea. Sedimentology, 32: 553-566.
N?rgaard-Pedersen, N., 1997. Late quaternary Arctic Ocean sediment records : surface ocean conditions and provenance of ice rafted debris. GEOMAR report 65: 1-115.
N?rgaard-Pedersen, N., Spielhagen, R.F., Thiede, J. and Kassens, H., 1998. Central Arctic surface ocean environment during the past 80,000 years. Paleoceanography, 13(2): 193-204.
Nicholl, J.A.L., Hodell, D.A., Naafs, B.D.A., Hillaire-Marcel, C., Channell, J.E.T. and Romero, O.E., 2012. A Laurentide outburst flooding event during the last interglacial period. Nature Geosci, 5(12): 901-904.
O'Regan, M., 2011. Late Cenozoic Paleoceanography of the Central Arctic Ocean. IOP Conference Series: Earth and Environmental Science, 14(012002).
Pagels, U., 1991. Sedimentologische Untersuchungen und Bestimmung der Karbonatlösung in spätquartären Sedimenten des östlichen arktischen Ozeans, GEOMAR Forschungszentrum für marine Geowissenschaften.
Phillips, R.L. and Grantz, A., 2001. Regional variations in provenance and abundance of ice-rafted clasts in Arctic Ocean sediments: implications for the configuration of late Quaternary oceanic and atmospheric circulation in the Arctic. Marine Geology, 172(1–2): 91-115.
Rice, J.R. and Cleary, M.P., 1976. Some Basic Stress Diffusion Solutions for FluidSaturated Elastic Porous Media With Compressible Constituents. Reviews of
Geophysics and Space Physics, 14(2): 227-241.
Rigor, I., 1992. Arctic Ocean buoy program. Argos Newsl, 44: 1-3.
Rind, D., Demenocal, P., Russell, G.L., Sheth, S., Collins, D., Schmidt, G.A. and Teller, J., 2001. Effects of glacial meltwater in the GISS coupled atmosphere-ocean model: Part I: North Atlantic Deep Water response. J. Geophys. Res, 106(27):335-27.
Shackleton, N.J., 1967. Oxygen isotope analyses and Pleistocene temperatures reassessed. Nature, 215(5096): 15-17.
Sindowsky, K., 1938. t'ber die Verwitterbarkeit der Schwermineralien.'. Zeitschrift d. Deutsch. Geol. Ges., XC, 10: 627-629.
Smith, D. and Leibovitz, D., 1986. Minldent-a mineral data base for earth scientists. U of A Computing Services Bulletin, 20(50): 1.
Spielhagen, R.F., Baumann, K.-H., Erlenkeuser, H., Nowaczyk, N.R., N?rgaard-Pedersen, N., Vogt, C. and Weiel, D., 2004. Arctic Ocean deep-sea record of northern Eurasian ice sheet history. Quaternary Science Reviews, 23(11–13): 1455-1483.
Spielhagen, R.F., Bonani, G., Eisenhauer, A., Frank, M., Frederichs, T., Kassens, H., Kubik, P.W., Mangini, A., N?gaard Pedersen, N., Nowaczyk, N.R., Schäper, S., Stein, R., Thiede, J., Tiedemann, R. and Wahsner, M., 1997. Arctic Ocean evidence for late Quaternary initiation of northern Eurasian ice sheets. Geology, 25(9): 783-786.
St-Onge, G., Mulder, T., Francus, P. and Long, B., 2007. Chapter Two Continuous Physical Properties of Cored Marine Sediments. In: H.M. Claude and V. Anne De(Editors), Developments in Marine Geology. Elsevier, pp. 63-98.
Stein, R., 2008. Arctic Ocean Sediments: Processes, Proxies, and Paleoenvironment: Processes, Proxies, and Paleoenvironment, 2. Elsevier.
Svendsen, J.I., Alexanderson, H., Astakhov, V.I., Demidov, I., Dowdeswell, J.A., Funder, S., Gataullin, V., Henriksen, M., Hjort, C., Houmark-Nielsen, M., Hubberten, H.W., Ingólfsson, Ó ., Jakobsson, M., Kjæ r, K.H., Larsen, E., Lokrantz, H., Lunkka, J.P., Lyså, A., Mangerud, J., Matiouchkov, A., Murray, A., Möller, P., Niessen, F.,
Nikolskaya, O., Polyak, L., Saarnisto, M., Siegert, C., Siegert, M.J., Spielhagen, R.F. and Stein, R., 2004. Late Quaternary ice sheet history of northern Eurasia. Quaternary Science Reviews, 23(11–13): 1229-1271.
Teller, J.T., Leverington, D.W. and Mann, J.D., 2002. Freshwater outbursts to the oceans from glacial Lake Agassiz and their role in climate change during the last
deglaciation. Quaternary Science Reviews, 21(8–9): 879-887.
Trettin, H.P., 1991. Geology of the Innuitian orogen and arctic platform of Canada and Greenland. Geological Society of America.
Van Andel, T.H., 1950. Provenance, transport and deposition of Rhine sediments: a heavy mineral study on river sands from the drainage area of the Rhine. H. Veenman.
Van Andel, T.H. and Poole, D.M., 1960. Sources of recent sediments in the northern Gulf of Mexico. Journal of Sedimentary Research, 30(1): 91-122.
Vogt, C. and Knies, J., 2008. Sediment dynamics in the Eurasian Arctic Ocean during the last deglaciation — The clay mineral group smectite perspective. Marine Geology, 250(3–4): 211-222.
Vogt, C., Knies, J., Spielhagen, R.F. and Stein, R., 2001. Detailed mineralogical evidence for two nearly identical glacial/deglacial cycles and Atlantic water advection to the Arctic Ocean during the last 90,000 years. Global and Planetary Change, 31(1–4): 23-44.
dc.identifier.urihttp://tdr.lib.ntu.edu.tw/jspui/handle/123456789/60017-
dc.description.abstractThe sediment deposited in the Arctic Ocean is transported by sea ice and icebergs, which are controlled by the Arctic surface circulations. Several cores from the central
Arctic, the Lomonosov Ridge north of Greenland and the Morris Jesup Rise contain a distinct grayish, ice rafted debris (IRD)-rich, layer with some specific features: a sharp lower boundary, relatively low content of manganese, and a lack of bioturbation.
Heavy minerals from these layers were analyzed primarily by Electron Probe X-Ray Microanalyzer (EPMA) and Scanning Electron Microscope-Energy Dispersive Spectrometer (SEM-EDS) to establish the prominent provenance areas. The provenance variations can show the paleo-distribution and transport pathways of sea ice and icebergs and even indicate the origin of some abrupt glacial events. Initial results suggest that the majority of the grains in the gray layer originated from a limited area near the Putorana Basalt Plateau. We therefore hypothesize that this gray layer is related to an abrupt ice dammed lake drainage from northern Siberia, tentatively dated to around the boundary between MIS 4 and 3 based on all available chronostratigraphic data points and the correlation of distinct geochemical and sedimentological features: variation in Mn, bulk density, bioturbation and abundance of planktonic and benthic foraminifera; including
published data and measured data in this study.
en
dc.description.provenanceMade available in DSpace on 2021-06-16T09:50:51Z (GMT). No. of bitstreams: 1
ntu-106-R03224215-1.pdf: 11687567 bytes, checksum: cb5ffae2f439b7d431cd9c7dda6f3909 (MD5)
Previous issue date: 2017
en
dc.description.tableofcontents致謝 ................................................................................................................................... I
中文摘要 .......................................................................................................................... II
Abstract............................................................................................................................ III
Contents............................................................................................................................ V
List of Figures................................................................................................................. VII
List of Tables ................................................................................................................... IX
CHAPTER 1 - Objectives ................................................................................................ 1
CHAPTER 2 - Background .............................................................................................. 4
2.1 Geography .......................................................................................................... 4
2.2 Hydrology and sedimentary processes ............................................................... 6
2.3 Geology of Arctic surrounding landmasses........................................................ 7
2.4 Rivers input and manganese cycle...................................................................... 9
2.5 Ice sheet history................................................................................................ 10
2.6 Gray IRD-rich layer.......................................................................................... 12
2.7 Ice dammed lakes and outbursts....................................................................... 13
CHAPTER 3 – Materials and methods........................................................................... 15
3.1 Core material .................................................................................................... 15
3.2 X-ray radiographs ............................................................................................. 18
3.3 XRF analysis - ITRAX core scanner................................................................ 20
3.4 Heavy mineral analysis..................................................................................... 21
3.4.1 Heavy mineral study.............................................................................. 21
3.4.2 Sample selection and preparation .......................................................... 23
3.4.3 Heavy mineral separation ...................................................................... 25
3.4.4 Electron microprobe analysis ................................................................ 29VI
3.5 Data processing ................................................................................................ 33
3.5.1 Sorting in Excel ..................................................................................... 33
3.5.2 MinIdent-Win 4.0 software ................................................................... 35
CHAPTER 4 – Result..................................................................................................... 36
4.1 Digital photography.......................................................................................... 36
4.2 Radiograph and trace fossil .............................................................................. 38
4.3 XRF result ........................................................................................................ 45
4.4 EPMA result ..................................................................................................... 49
CHAPTER 5 – Discussion ............................................................................................. 58
5.1 Methodology..................................................................................................... 58
5.1.1 Heavy mineral separation method ......................................................... 58
5.1.2 Minerals cleaning .................................................................................. 59
5.1.3 Sample surface....................................................................................... 60
5.1.4 Sampling points and total number for measurement ............................. 61
5.2 Excel sorting vs. MindIdent-Win 4.0 ............................................................... 62
5.3 Age control and core correlation ...................................................................... 67
5.4 The IRD-rich gray layer and interpretation ...................................................... 70
CHAPTER 6 – Conclusion............................................................................................. 82
References ...................................................................................................................... 84
Appendix A..................................................................................................................... 90
Appendix B................................................................................................................... 106
dc.language.isoen
dc.subject來源zh_TW
dc.subject沉積學zh_TW
dc.subject錳zh_TW
dc.subject重礦物zh_TW
dc.subject生物擾動zh_TW
dc.subject灰色沉積層zh_TW
dc.subject北極海zh_TW
dc.subjectHeavy mineralen
dc.subjectManganeseen
dc.subjectBioturbationen
dc.subjectGray layeren
dc.subjectProvenanceen
dc.subjectSedimentologyen
dc.subjectArctic Oceanen
dc.title格陵蘭外海羅蒙諾索夫海脊上獨特灰色沉積層之來源探討zh_TW
dc.titleHeavy Mineral Provenance of a Distinct Gray Layer from the Lomonosov Ridge off Greenlanden
dc.typeThesis
dc.date.schoolyear105-1
dc.description.degree碩士
dc.contributor.oralexamcommittee黃國芳(Kuo-Fang Huang),飯塚義之(Yoshiyuki Iizuka),蘇志杰(CHIH-CHIEH SU)
dc.subject.keyword北極海,重礦物,來源,灰色沉積層,生物擾動,錳,沉積學,zh_TW
dc.subject.keywordArctic Ocean,Heavy mineral,Provenance,Gray layer,Bioturbation,Manganese,Sedimentology,en
dc.relation.page106
dc.identifier.doi10.6342/NTU201700098
dc.rights.note有償授權
dc.date.accepted2017-01-17
dc.contributor.author-college理學院zh_TW
dc.contributor.author-dept地質科學研究所zh_TW
顯示於系所單位:地質科學系

文件中的檔案:
檔案 大小格式 
ntu-106-1.pdf
  未授權公開取用
11.41 MBAdobe PDF
顯示文件簡單紀錄


系統中的文件,除了特別指名其著作權條款之外,均受到著作權保護,並且保留所有的權利。

社群連結
聯絡資訊
10617臺北市大安區羅斯福路四段1號
No.1 Sec.4, Roosevelt Rd., Taipei, Taiwan, R.O.C. 106
Tel: (02)33662353
Email: ntuetds@ntu.edu.tw
意見箱
相關連結
館藏目錄
國內圖書館整合查詢 MetaCat
臺大學術典藏 NTU Scholars
臺大圖書館數位典藏館
本站聲明
© NTU Library All Rights Reserved