Skip navigation

DSpace

機構典藏 DSpace 系統致力於保存各式數位資料(如:文字、圖片、PDF)並使其易於取用。

點此認識 DSpace
DSpace logo
English
中文
  • 瀏覽論文
    • 校院系所
    • 出版年
    • 作者
    • 標題
    • 關鍵字
  • 搜尋 TDR
  • 授權 Q&A
    • 我的頁面
    • 接受 E-mail 通知
    • 編輯個人資料
  1. NTU Theses and Dissertations Repository
  2. 工學院
  3. 工程科學及海洋工程學系
請用此 Handle URI 來引用此文件: http://tdr.lib.ntu.edu.tw/jspui/handle/123456789/60008
完整後設資料紀錄
DC 欄位值語言
dc.contributor.advisor吳文中(Wen-Jong Wu)
dc.contributor.authorWei-Ting Shihen
dc.contributor.author施韋廷zh_TW
dc.date.accessioned2021-06-16T09:50:17Z-
dc.date.available2018-02-16
dc.date.copyright2017-02-16
dc.date.issued2017
dc.date.submitted2017-01-18
dc.identifier.citation[1] BP, 'Primary Energy,' BP Statistical Review of World Energy, pp. 39-43, June. 2015.
[2] BP, 'Oil,' BP Statistical Review of World Energy, pp. 5-19, June. 2015.
[3] V. Smil, 'Power Density Primer: Understanding the Spatial Dimension of the Unfolding Transition to Renewable Electricity Generation,' Master Resource: a free energy blog, 2010.
[4] G. Grem, V. Martin, F. Meghdadi, C. Paar, J. Stampfl, J. Sturm, et al., 'Stable poly(para-phenylene)s and their application in organic light emitting devices,' Synthetic Metals, vol. 71, pp. 2193-2194, 4/1/ 1995.
[5] G. Horowitz, F. Deloffre, F. Garnier, R. Hajlaoui, M. Hmyene, and A. Yassar, 'All-organic field-effect transistors made of π-conjugated oligomers and polymeric insulators,' Synthetic Metals, vol. 54, pp. 435-445, 3/1/ 1993.
[6] Y.-J. Cheng, S.-H. Yang, and C.-S. Hsu, 'Synthesis of conjugated polymers for organic solar cell applications,' Chemical reviews, vol. 109, pp. 5868-5923, 2009.
[7] R. Das and P. Harrop, 'Printed, organic & flexible electronics: forecasts, players & opportunities 2015–2025,' Cambridge: IDTechEx, 2013.
[8] ARM, 'Mobile and Embedded/IoT market Overview and Trends,' pp. 1-33, June 2014.
[9] K.-J. Baeg, M. Caironi, and Y.-Y. Noh, 'Toward Printed Integrated Circuits based on Unipolar or Ambipolar Polymer Semiconductors,' Advanced Materials, vol. 25, pp. 4210-4244, 2013.
[10] R. A. Rohde, 'Global Warming Art.'
[11] J. A. Hutchby and R. L. Fudurich, 'Theoretical optimization and parametric study of n‐on‐p AlxGa1− xAs‐GaAs graded band‐gap solar cell,' Journal of Applied Physics, vol. 47, pp. 3152-3158, 1976.
[12] T. Tinoco, C. Rincón, M. Quintero, and G. S. Pérez, 'Phase diagram and optical energy gaps for CuInyGa1− ySe2 alloys,' physica status solidi (a), vol. 124, pp. 427-434, 1991.
[13] A. Kojima, K. Teshima, Y. Shirai, and T. Miyasaka, 'Organometal halide perovskites as visible-light sensitizers for photovoltaic cells,' Journal of the American Chemical Society, vol. 131, pp. 6050-6051, 2009.
[14] D. M. Chapin, C. Fuller, and G. Pearson, 'A new silicon p‐n junction photocell for converting solar radiation into electrical power,' Journal of Applied Physics, pp. 676-677, 1954.
[15] P. G. Witherell and M. E. Faulhaber, 'The Silicon Solar Cell as a Photometric Detector,' Applied Optics, vol. 9, pp. 73-78, 1970/01/01 1970.
[16] R. J. Handy, 'Theoretical analysis of the series resistance of a solar cell,' Solid-State Electronics, vol. 10, pp. 765 - 775, 1967.
[17] H.-S. Kim, J.-W. Lee, N. Yantara, P. P. Boix, S. A. Kulkarni, S. Mhaisalkar, et al., 'High efficiency solid-state sensitized solar cell-based on submicrometer rutile TiO2 nanorod and CH3NH3PbI3 perovskite sensitizer,' Nano letters, vol. 13, pp. 2412-2417, 2013.
[18] H. Zhou, Q. Chen, G. Li, S. Luo, T.-b. Song, H.-S. Duan, et al., 'Interface engineering of highly efficient perovskite solar cells,' Science, vol. 345, pp. 542-546, 2014.
[19] M. M. Lee, J. Teuscher, T. Miyasaka, T. N. Murakami, and H. J. Snaith, 'Efficient hybrid solar cells based on meso-superstructured organometal halide perovskites,' Science, vol. 338, pp. 643-647, 2012.
[20] J.-M. Nunzi, 'Organic photovoltaic materials and devices,' Comptes Rendus Physique, vol. 3, pp. 523-542, 2002.
[21] G. Chamberlain, P. Cooney, and S. Dennison, 'Photovoltaic properties of merocyanine solid-state photocells,' 1981.
[22] G. Yu, J. Gao, J. C. Hummelen, F. Wudl, and A. J. Heeger, 'Polymer photovoltaic cells: enhanced efficiencies via a network of internal donor-acceptor heterojunctions,' Science-AAAS-Weekly Paper Edition, vol. 270, pp. 1789-1790, 1995.
[23] W. Ma, C. Yang, X. Gong, K. Lee, and A. J. Heeger, 'Thermally stable, efficient polymer solar cells with nanoscale control of the interpenetrating network morphology,' Advanced Functional Materials, vol. 15, pp. 1617-1622, 2005.
[24] G. Li, Y. Yao, H. Yang, V. Shrotriya, G. Yang, and Y. Yang, '' Solvent annealing' effect in polymer solar cells based on poly (3-hexylthiophene) and methanofullerenes,' Advanced Functional Materials, vol. 17, p. 1636, 2007.
[25] A. Lange, A. Hollaender, and M. Wegener, 'Modified processing conditions for optimized organic solar cells with inkjet printed P3HT: PC 61 BM active layers,' Materials Science and Engineering: B, vol. 178, pp. 299-305, 2013.
[26] K. Cnops, B. P. Rand, D. Cheyns, B. Verreet, M. A. Empl, and P. Heremans, '8.4% efficient fullerene-free organic solar cells exploiting long-range exciton energy transfer,' Nat Commun, vol. 5, 03/07/online 2014.

[27] S. K. Hau, H.-L. Yip, N. S. Baek, J. Zou, K. O’Malley, and A. K.-Y. Jen, 'Air-stable inverted flexible polymer solar cells using zinc oxide nanoparticles as an electron selective layer,' Applied Physics Letters, vol. 92, p. 253301, 2008.
[28] L. E. Greene, M. Law, B. D. Yuhas, and P. Yang, 'ZnO-TiO2 core-shell nanorod/P3HT solar cells,' The Journal of Physical Chemistry C, vol. 111, pp. 18451-18456, 2007.
[29] C. Xu, P. H. Shin, L. Cao, J. Wu, and D. Gao, 'Ordered TiO2Nanotube Arrays on Transparent Conductive Oxide for Dye-Sensitized Solar Cells,' Chemistry of Materials, vol. 22, pp. 143-148, 2010.
[30] B. O'regan and M. Grätzel, 'A low-cost, high-efficiency solar cell based on dye-sensitized colloidal TiO2 films,' nature, vol. 353, pp. 737-740, 1991.
[31] R. Thitima, C. Patcharee, S. Takashi, and Y. Susumu, 'Efficient electron transfers in ZnO nanorod arrays with N719 dye for hybrid solar cells,' Solid-State Electronics, vol. 53, pp. 176-180, 2009.
[32] W. Chen, Y. Qiu, K. Yan, and S. Yang, 'Surfactant directed self-assembly of size-tunable mesoporous titanium dioxide microspheres and their application in quasi-solid state dye-sensitized solar cells,' Journal of Power Sources, vol. 196, pp. 10806-10816, 2011.
[33] Y.-H. Wei, C.-S. Chen, C.-C. M. Ma, C.-H. Tsai, and C.-K. Hsieh, 'Electrochemical pulsed deposition of platinum nanoparticles on indium tin oxide/polyethylene terephthalate as a flexible counter electrode for dye-sensitized solar cells,' Thin Solid Films, vol. 570, pp. 277-281, 2014.
[34] A. Yella, H.-W. Lee, H. N. Tsao, C. Yi, A. K. Chandiran, M. K. Nazeeruddin, et al., 'Porphyrin-sensitized solar cells with cobalt (II/III)–based redox electrolyte exceed 12 percent efficiency,' science, vol. 334, pp. 629-634, 2011.
[35] H. Soliman, A. Kashyout, M. S. El Nouby, and A. Abosehly, 'Effect of hydrogen peroxide and oxalic acid on electrochromic nanostructured tungsten oxide thin films,' Int. J. Electrochem. Sci, vol. 7, pp. 258-271, 2012.
[36] A. C. Nwanya, C. J. Jafta, P. M. Ejikeme, P. E. Ugwuoke, M. V. Reddy, R. U. Osuji, et al., 'Electrochromic and electrochemical capacitive properties of tungsten oxide and its polyaniline nanocomposite films obtained by chemical bath deposition method,' Electrochimica Acta, vol. 128, pp. 218-225, 2014.
[37] C.-L. Wu, C.-K. Wang, C.-K. Lin, S.-C. Wang, and J.-L. Huang, 'Electrochromic properties of nanostructured tungsten oxide films prepared by surfactant-assisted sol–gel process,' Surface and Coatings Technology, vol. 231, pp. 403-407, 2013.
[38] M. Deepa, M. Kar, and S. A. Agnihotry, 'Electrodeposited tungsten oxide films: annealing effects on structure and electrochromic performance,' Thin Solid Films, vol. 468, pp. 32-42, 2004.
[39] J. Kukkola, M. Mohl, A.-R. Leino, G. Tóth, M.-C. Wu, A. Shchukarev, et al., 'Inkjet-printed gas sensors: metal decorated WO3 nanoparticles and their gas sensing properties,' Journal of Materials Chemistry, vol. 22, p. 17878, 2012.
[40] M. Vasilopoulou, G. Papadimitropoulos, L. C. Palilis, D. G. Georgiadou, P. Argitis, S. Kennou, et al., 'High performance organic light emitting diodes using substoichiometric tungsten oxide as efficient hole injection layer,' Organic Electronics, vol. 13, pp. 796-806, 2012.
[41] X. Yang, E. Mutlugun, Y. Zhao, Y. Gao, K. S. Leck, Y. Ma, et al., 'Solution processed tungsten oxide interfacial layer for efficient hole-injection in quantum dot light-emitting diodes,' Small, vol. 10, pp. 247-52, Jan 29 2014.
[42] F. Guillain, D. Tsikritzis, G. Skoulatakis, S. Kennou, G. Wantz, and L. Vignau, 'Annealing-free solution-processed tungsten oxide for inverted organic solar cells,' Solar Energy Materials and Solar Cells, vol. 122, pp. 251-256, 2014.
[43] E. Lassner and W.-D. Schubert, Tungsten: properties, chemistry, technology of the element, alloys, and chemical compounds: Springer Science & Business Media, 2012.
[44] M. Deepa, N. Sharma, P. Varshney, S. Varma, and S. Agnihotry, 'FTIR investigations of solid precursor materials for sol-gel deposition of WO3 based electrochromic films,' Journal of materials science, vol. 35, pp. 5313-5318, 2000.
[45] W. Tress, A. Petrich, M. Hummert, M. Hein, K. Leo, and M. Riede, 'Imbalanced mobilities causing S-shaped IV curves in planar heterojunction organic solar cells,' Applied Physics Letters, vol. 98, p. 063301, 2011.
[46] J. Pouzet, J. Bernede, A. Khellil, H. Essaidi, and S. Benhida, 'Preparation and characterization of tungsten diselenide thin films,' Thin Solid Films, vol. 208, pp. 252-259, 1992.
[47] W. Kim, J. Kyu Kim, Y. Lim, I. Park, Y. Suk Choi, and J. Hyeok Park, 'Tungsten oxide/PEDOT:PSS hybrid cascade hole extraction layer for polymer solar cells with enhanced long-term stability and power conversion efficiency,' Solar Energy Materials and Solar Cells, vol. 122, pp. 24-30, 2014.
dc.identifier.urihttp://tdr.lib.ntu.edu.tw/jspui/handle/123456789/60008-
dc.description.abstract本論文主要研究內容為有機太陽能電池,主動層材料利用P3HT混合PCBM的塊材異質接面為主體結構,從傳統結構、傳統結構加入三氧化鎢、氧化鎢(WOx) 等,討論不同結構及參數對於效率的影響,並試從本實驗室所架設之噴墨系統噴製氧化鎢作為電洞傳導層的可行性。
在傳統結構電池的製作中,在藉由升高主動層材料的混合時溫度及兩階段旋轉塗佈速度,使得兩種材料均勻度上升並且與基板的附著力增加,解決旋轉塗佈時溶質溶劑連帶分離及附著力不足導致薄膜破裂等成膜性差劣的狀況,將電池效率從不到0.1 %提升到目前平均1.0 %左右。而在加入三氧化鎢之後,其可能因為液滴沉積的方式造成三氧化鎢厚度太厚而使得電阻上升而反造成校的下降。氧化鎢的部分則利用兩種配置溶液的方法,在以雙氧水為溶劑的例子,可以看到其主動層表面粗糙度受下層氧化鎢顆粒的影響,而提高了表變粗糙度,進而提升電洞傳導層與主洞層間接觸面積因而提高效率,得到1.2 %及1.4 %的轉換效率,但同時也發現整體元件的使用可靠度可能受雙氧水的問題而加劇氧化。最後提出以異丙醇做為氧化鎢顆粒的最終溶劑,得到不錯的顆粒分布,同時也減輕前述的積聚的現象。
此溶液製成使得有機太陽能電池能以大面積製作、低成本、低材料消耗、製成簡易的優點,同時也利用液態沉積氧化鎢的方式,可製作出以無機材料取代傳統高分子材料的方式,以利後續無機、有機等相關整合的應用。
zh_TW
dc.description.abstractThis thesis is about using P3HT:PCBM as active layer material to be main structure of organic bulk heterojunction solar cell, including conventional structure and conventional structure hybrid with tungsten oxides as hole transportation layer (HTL).
In fabrication of conventional structure solar cell, by heating up the solution of the active layer material and two-steps of spin coating speed can improve the uniformity of solution and adhesion between active layer and substrate, solving the separation solute from solvent and enhancing film property by improving the adhesion. The conversion efficiency was improved from less than 0.1 % to 1.0 % in average. By adding tungsten trioxide, because of using drop-evaporate method to form tungsten trioxide film, the thickness can’t be easily controlled so that the resistance may be get higher then drop down the efficiency. About forming tungsten oxide (WOx) film, we use hydrogen peroxide to change the oxidation number of tungsten. By enlarge the roughness of ITO surface, the contact between ITO and active layer get better and improve the efficiency from 1.0 % to 1.4 %. But the electrode would be affected by the instability of the tungsten oxide solution and the stability of the device couldn’t sustain for a long time. By replacing the solvent from hydrogen peroxide to isopropyl alcohol, the efficiency drops down because of the aggregation of the active layer. Due to the poor uniformity of active layer, there’s no lots of carrier can transport from device to load.
All fabrication by solution methods for organic solar cell can be cheap, simple, and scalable in large area producing for future industries.
en
dc.description.provenanceMade available in DSpace on 2021-06-16T09:50:17Z (GMT). No. of bitstreams: 1
ntu-106-R02525049-1.pdf: 6319835 bytes, checksum: e3774b5b4aa87deb5facc86dddc730d0 (MD5)
Previous issue date: 2017
en
dc.description.tableofcontents中文摘要 i
Abstract ii
目錄 iii
圖目錄 v
表目錄 ix
第 1 章 緒論 1
1.1 前言 1
1.2 論文架構 5
第 2 章 各類太陽能電池簡介 6
2.1 簡介 6
2.2 太陽能電池工作原理及效率量測 9
2.3 鈣鈦礦型太陽能電池 16
2.4 有機高分子太陽能電池 19
2.4.1 高分子太陽能電池之特性與工作原理 19
2.4.2 有機高分子太陽能電池文獻回顧 22
2.5 染料敏化太陽能電池 28
2.5.1 染料敏化太陽能電池工作原理與特性 28
2.5.2 染料敏化太陽能電池文獻回顧 29
2.6 研究動機與及文獻回顧 33
第 3 章 實驗方法與步驟 35
3.1 製程設備 35
3.2 太陽能電池的製備 39
3.2.1 ITO透明電極 39
3.2.2 WO3、WOx電洞傳導層沉積及製備 40
3.2.3 PEDOT:PSS電洞傳導層沉積與製備 41
3.2.4 P3HT:PCBM主動層材料之配製與製備。 42
3.2.5 背電極之製作 43
3.3 太陽能電池效率量測及設備 44
第 4 章 結果與討論 45
4.1 傳統結構 45
4.2 傳統結構三氧化鎢替代電洞傳導層 48
4.3 傳統結構以鎢氧化物替代電洞傳導層 53
第 5 章 結論與未來展望 70
參考資料 71
dc.language.isozh-TW
dc.title以溶液製程沉積氧化鎢改善載子傳輸之有機異質接面太陽能電池研究zh_TW
dc.titleA Development of Carrier Transportation Enhancement in Polymer Photovoltaics at Organic/Inorganic Interface by Solution-based WOxen
dc.typeThesis
dc.date.schoolyear105-1
dc.description.degree碩士
dc.contributor.coadvisor林致廷(Chih-Ting Lin)
dc.contributor.oralexamcommittee李世光(Chih-Kung Lee),陳奕君(I-Chun Cheng)
dc.subject.keywordP3HT:PCBM,氧化鎢,反置結構,異質接面,有機太陽能,太陽能電池,zh_TW
dc.subject.keywordorganic solar cell,tungsten oxides,WOx,solution process,heterojunction,P3HT:PCBM,en
dc.relation.page73
dc.identifier.doi10.6342/NTU201700107
dc.rights.note有償授權
dc.date.accepted2017-01-18
dc.contributor.author-college工學院zh_TW
dc.contributor.author-dept工程科學及海洋工程學研究所zh_TW
顯示於系所單位:工程科學及海洋工程學系

文件中的檔案:
檔案 大小格式 
ntu-106-1.pdf
  目前未授權公開取用
6.17 MBAdobe PDF
顯示文件簡單紀錄


系統中的文件,除了特別指名其著作權條款之外,均受到著作權保護,並且保留所有的權利。

社群連結
聯絡資訊
10617臺北市大安區羅斯福路四段1號
No.1 Sec.4, Roosevelt Rd., Taipei, Taiwan, R.O.C. 106
Tel: (02)33662353
Email: ntuetds@ntu.edu.tw
意見箱
相關連結
館藏目錄
國內圖書館整合查詢 MetaCat
臺大學術典藏 NTU Scholars
臺大圖書館數位典藏館
本站聲明
© NTU Library All Rights Reserved