請用此 Handle URI 來引用此文件:
http://tdr.lib.ntu.edu.tw/jspui/handle/123456789/60006完整後設資料紀錄
| DC 欄位 | 值 | 語言 |
|---|---|---|
| dc.contributor.advisor | 劉長遠 | |
| dc.contributor.author | Wei-Lung Huang | en |
| dc.contributor.author | 黃偉倫 | zh_TW |
| dc.date.accessioned | 2021-06-16T09:50:10Z | - |
| dc.date.available | 2022-02-16 | |
| dc.date.copyright | 2017-02-16 | |
| dc.date.issued | 2017 | |
| dc.date.submitted | 2017-01-19 | |
| dc.identifier.citation | [1] The News Lens 關鍵評論,【人機世紀戰】李世乭奮勇進攻仍然敗陣 AlphaGo三連勝, http://www.thenewslens.com/post/297029/, 2016.
[2] 呂紹玉 , 人工智慧勝過人腦!AlphaGo 連下 3 城再贏李世乭, http://technews.tw/2016/03/12/google-alphago-vs-korea-champion-3/, 2016. [3] Yann LeCun, et al. 'Gradient-based learning applied to document recognition.'Proceedings of the IEEE 86.11 (1998): 2278-2324. [4] Steve Lawrence, Member, IEEE, C. Lee Giles, Senior Member, IEEE, Ah Chung Tsoi, Senior Member, IEEE, and Andrew D. Back, Member, IEEE, “Face Recognition: A Convolutional Neural-Network Approach”, IEEE TRANSACTIONS ON NEURAL NETWORKS, VOL. 8, NO. 1, JANUARY 1997. [5] Srivastava, N., Hinton, G., Krizhevsky, A., Sutskever, I., & Salakhutdinov, R. (2014). Dropout: A simple way to prevent neural networks from overfitting. The Journal of Machine Learning Research, 15(1), 1929-1958. [6] K. Chen, Y. Zhou, F. Dai, “A LSTM-based method for stock returns prediction: A case study of China stock market”, Big Data (Big Data), 2015 IEEE International Conference on, pp.2823 – 2824, Santa Clara, CA, Oct. 29 2015-Nov. 1 2015. [7] 維基百科, 深度學習, https://zh.wikipedia.org/wiki/%E6%B7%B1%E5%BA%A6%E5%AD%A6%E4%B9%A0#cite_note-HINTON2007-16, 2016. [8] “Keras: Deep Learning library for Theano and TensorFlow”, http://keras.io/, 2016 [9] Wikipedia, Autoencoder, https://en.wikipedia.org/wiki/Autoencoder, 2016. [10] Szegedy, Christian, et al. 'Going deeper with convolutions.' Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition. 2015. [11] CS231n Convolutional Neural Networks for Visual Recognition, http://cs231n.github.io/convolutional-networks/#case, 2016. [12] “Recurrent Neural Networks Tutorial, Part 1 – Introduction to RNNs”, http://www.wildml.com/2015/09/recurrent-neural-networks-tutorial-part-1-introduction-to-rnns/, 2016. [13] colah's blog, “Understanding LSTM Networks”, http://colah.github.io/posts/2015-08-Understanding-LSTMs/, 2016 [14] Nitish Srivastava, Geoffrey Hinton, Alex Krizhevsky, Ilya Sutskever, Ruslan Salakhutdinov, “Dropout: A Simple Way to Prevent Neural Networks from Overfitting”, Journal of Machine Learning Research 15 1929-1958, 2014. [15] 飛躍重洋的思念, 神經網路及其在影像處理中的應用, http://blog.csdn.net/taigw/article/details/50534376, 2016. [16] 尹相志, 淺談Alpha Go所涉及的深度學習技術, https://dotblogs.com.tw/allanyiin/2016/03/12/222215, 2016. [17] 循环神经网络(RNN, Recurrent Neural Networks)介绍, http://blog.csdn.net/heyongluoyao8/article/details/48636251, 2016 [18] DeepLearning tutorial(6)易用的深度學習框架Keras簡介, http://blog.csdn.net/u012162613/article/details/45397033 | |
| dc.identifier.uri | http://tdr.lib.ntu.edu.tw/jspui/handle/123456789/60006 | - |
| dc.description.abstract | 無論在學術界或是業界,與股票市場趨勢預測相關的研究論文其數目是不勝枚舉,足以見得股市預測之重要性,本論文運用深層類神經學習網路的學習架構,並搭配著Long Short Term Memory、Embedding Layer之及Dropout等深度學習網路常見的網路結構建立出深度學習模型,並以台灣股市中544檔上市上櫃股票的最高點、最低點、開盤價、收盤價、成交量、融資餘額、融券餘額、三大法人(外資、投信、自營商)買賣超張數共十項特徵值,接著外加大盤最高點、最低點、開盤價、收盤價、成交量五項特徵值,合併共十五項特徵值向量欲預測一般市場買賣經驗定義獲利比例超過5%且可能損失風險小於3%之股票,以作為經濟發展與市場投資之參考。
除了以Long Short Term Memory網路結構建立模型外,本論文也嘗試以Convolutional Neural Network網路結構建立模型並比較其差異,最後利用視覺化分析與探討預測模型中的參數與結果。 | zh_TW |
| dc.description.abstract | There are a large number of papers and studies about the prediction of stock market which show us the importance role it plays whether for industry or academia. In this article, deep learning models for stock prediction are composed of the architecture of deep learning neural network, long short-term memory, embedding layer and the thought of dropout neural network architecture. Data about 544 stocks listed company at stock exchange market and over-the-counter market are offered to train our models. There are ten features, including day's range (high, low), day’s open, day’s close, day's amount, the balance of margin loan, the balance of stock loan, and net buy and net sell of foreign investment institution, investment trust, dealer. The model will propose stocks making a profit higher than 5% and 3% lower loss of risk which can give some reference for the development of economy and investment.
For deep learning, long short-term memory may not be the only choice, that’s why we build another model with convolution neural network and discuss the advantage and disadvantage of the two models. | en |
| dc.description.provenance | Made available in DSpace on 2021-06-16T09:50:10Z (GMT). No. of bitstreams: 1 ntu-106-D97922012-1.pdf: 2921545 bytes, checksum: 952191e27a74a71f90db053ce01ac3f9 (MD5) Previous issue date: 2017 | en |
| dc.description.tableofcontents | 目錄
口試委員會審定書 # 誌謝 i 中文摘要 ii ABSTRACT iii 目錄 iv 圖目錄 vi 表目錄 viii 第1章 緒論 1 1.1 研究動機 1 1.2 研究目的 1 第2章 研究背景 3 2.1 深度學習 3 2.2 Autoencoder 6 2.3 Convolutional Neural Network 7 2.4 Recurrent Neural Network 10 2.4.1 Long Short Term Memory 11 2.5 Embedding Layer 12 2.6 Dropout 13 2.7 Keras 14 第3章 研究方法與系統設計 18 3.1 研究方法 18 3.2 資料來源與定義 18 3.3 開發環境 19 3.4 資料前處理 20 3.5 深度模型設計 20 3.6 目標函數修改 27 第4章 結果與分析 29 4.1 模型參數選擇與結果 29 4.2 架構分析與效能探討 34 第5章 結論與建議 45 REFERENCE 46 | |
| dc.language.iso | zh-TW | |
| dc.subject | Convolutional Neural Network | zh_TW |
| dc.subject | 深層類神經學習網路 | zh_TW |
| dc.subject | 股票預測 | zh_TW |
| dc.subject | Long Short Term Memory | zh_TW |
| dc.subject | Convolutional Neural Network | en |
| dc.subject | Long Short Term Memory | en |
| dc.title | 一種股市預測獲利行情的深度模型:以台灣股市為例 | zh_TW |
| dc.title | A Deep Neural Network Model for Stock Returns Prediction:
A Case Study of Taiwan Stock Market | en |
| dc.type | Thesis | |
| dc.date.schoolyear | 105-1 | |
| dc.description.degree | 博士 | |
| dc.contributor.oralexamcommittee | 劉邦鋒,張智星,吳建銘,趙坤茂,周承復 | |
| dc.subject.keyword | 深層類神經學習網路,股票預測,Long Short Term Memory,Convolutional Neural Network, | zh_TW |
| dc.subject.keyword | Long Short Term Memory,Convolutional Neural Network, | en |
| dc.relation.page | 47 | |
| dc.identifier.doi | 10.6342/NTU201700125 | |
| dc.rights.note | 有償授權 | |
| dc.date.accepted | 2017-01-19 | |
| dc.contributor.author-college | 電機資訊學院 | zh_TW |
| dc.contributor.author-dept | 資訊工程學研究所 | zh_TW |
| 顯示於系所單位: | 資訊工程學系 | |
文件中的檔案:
| 檔案 | 大小 | 格式 | |
|---|---|---|---|
| ntu-106-1.pdf 未授權公開取用 | 2.85 MB | Adobe PDF |
系統中的文件,除了特別指名其著作權條款之外,均受到著作權保護,並且保留所有的權利。
