請用此 Handle URI 來引用此文件:
http://tdr.lib.ntu.edu.tw/jspui/handle/123456789/60005完整後設資料紀錄
| DC 欄位 | 值 | 語言 |
|---|---|---|
| dc.contributor.advisor | 陳志宏(Jyh-Horng Chen) | |
| dc.contributor.author | I-Ning Tang | en |
| dc.contributor.author | 湯依寧 | zh_TW |
| dc.date.accessioned | 2021-06-16T09:50:06Z | - |
| dc.date.available | 2020-09-02 | |
| dc.date.copyright | 2020-09-02 | |
| dc.date.issued | 2020 | |
| dc.date.submitted | 2020-08-17 | |
| dc.identifier.citation | Achard, S., Salvador, R., Whitcher, B., Suckling, J., Bullmore, E. (2006). A resilient, low-frequency, small-world human brain functional network with highly connected association cortical hubs. Journal of Neuroscience, 26(1), 63-72. Alexander-Bloch, A. F., Gogtay, N., Meunier, D., Birn, R., Clasen, L., Lalonde, F., . . . Bullmore, E. T. (2010). Disrupted modularity and local connectivity of brain functional networks in childhood-onset schizophrenia. Frontiers in Systems Neuroscience, 4, 147. Almy, T. P., Tulin, M. (1947). Alterations in colonic function in man under stress; experimental production of changes simulating the irritable colon. Gastroenterology, 8(5), 616. Ansel, J. C., Kaynard, A. H., Armstrong, C. A., Olerud, J., Bunnett, N., Payan, D. (1996). Skin-nervous system interactions. Journal of Investigative Dermatology, 106(1), 198-204. Ashburner, J., Barnes, G., Chen, C.-C., Daunizeau, J., Flandin, G., Friston, K., . . . Phillips, C. (2018). SPM12 manual. London, UK: Functional Imaging Laboratory,Wellcome Trust Centre for Neuroimaging, Institute of Neurology, UCL. Backes, W. H., Mess, W. H., Wilmink, J. T. (2001). Functional MR imaging of the cervical spinal cord by use of median nerve stimulation and fist clenching. American Journal of Neuroradiology, 22(10), 1854-1859. Baria, A. T., Baliki, M. N., Parrish, T., Apkarian, A. V. (2011). Anatomical and functional assemblies of brain BOLD oscillations. Journal of Neuroscience, 31(21), 7910-7919. Barry, R. L., Smith, S. A., Dula, A. N., Gore, J. C. (2014). Resting state functional connectivity in the human spinal cord. Elife, 3, e02812. doi:10.7554/eLife.02812 Bashan, A., Bartsch, R. P., Kantelhardt, J. W., Havlin, S., Ivanov, P. C. (2012). Network physiology reveals relations between network topology and physiological function. Nature communications, 3(1), 1-9. Bassett, D., Bullmore, E. (2006). Small-world brain networks. The neuroscientist, 12(6), 512-523. Bassett, D. S., Sporns, O. (2017). Network neuroscience. nature neuroscience, 20(3), 353-364. Bast, S. C., Weaver, F. A., Perese, S., Jobe, F. W., Weaver, D. C., Vangsness Jr, C. T. (2011). The effects of shoulder laxity on upper extremity blood flow in professional baseball pitchers. Journal of shoulder and elbow surgery, 20(3), 461-466. Beckmann, C., DeLuca, M., Devlin, J., Smith, S. (2005). Investigations into resting-state connectivity using independent component analysis. Philosophical Transactions of the Royal Society B: Biological Sciences, 360(1457), 1001. Behrens, T. E., Johansen-Berg, H., Woolrich, M., Smith, S., Wheeler-Kingshott, C., Boulby, P., . . . Ciccarelli, O. (2003). Non-invasive mapping of connections between human thalamus and cortex using diffusion imaging. nature neuroscience, 6(7), 750. Biswal, B., Yetkin, F., Haughton, V., Hyde, J. (1995). Functional connectivity in the motor cortex of resting human brain using echo-planar MRI. Magnetic Resonance in Medicine, 34(4), 537-541. Buckner, R. L., Carroll, D. C. (2007). Self-projection and the brain. Trends in Cognitive Sciences, 11(2), 49-57. Bullmore, E. (2012). The future of functional MRI in clinical medicine. NeuroImage, 62(2), 1267-1271. Calhoun, V., Adali, T., Hansen, L., Larsen, J., Pekar, J. (2003). ICA of functional MRI data: an overview. Calhoun, V. D., Adali, T., Pearlson, G. D., Pekar, J. J. (2001). A method for making group inferences from functional MRI data using independent component analysis. Human Brain Mapping, 14(3), 140-151. Cope, F. W. (1975). A review of the applications of solid state physics concepts to biological systems. Journal of Biological Physics, 3(1), 1-41. Cummings, G., Tillman, L. (1992). Remodeling of dense connective tissue in normal adult tissues. Contemporary Perspectives in Rehabilitation, 8, 45-45. Damasio, A. R. (1996). The somatic marker hypothesis and the possible functions of the prefrontal cortex. Philosophical Transactions of the Royal Society of London. Series B: Biological Sciences, 351(1346), 1413-1420. Damoiseaux, J., Rombouts, S., Barkhof, F., Scheltens, P., Stam, C., Smith, S., Beckmann, C. (2006). Consistent resting-state networks across healthy subjects. Proceedings of the National Academy of Sciences, 103(37), 13848-13853. Decety, J. (1996). The neurophysiological basis of motor imagery. Behavioural Brain Reserach, 77, 45-52. Donahue, K. M., Van Kylen, J., Guven, S., El‐Bershawi, A., Luh, W. M., Bandettini, P. A., . . . Kissebah, A. H. (1998). Simultaneous gradient‐echo/spin‐echo EPI of graded ischemia in human skeletal muscle. Journal of Magnetic Resonance Imaging, 8(5), 1106-1113. Dopfel, D., Perez, P. D., Verbitsky, A., Bravo-Rivera, H., Ma, Y., Quirk, G. J., Zhang, N. (2019). Individual variability in behavior and functional networks predicts vulnerability using an animal model of PTSD. Nature communications, 10(1), 1-12. Duwayri, Y. M., Emery, V. B., Driskill, M. R., Earley, J. A., Wright, R. W., Paletta Jr, G. A., Thompson, R. W. (2011). Positional compression of the axillary artery causing upper extremity thrombosis and embolism in the elite overhead throwing athlete. Journal of vascular surgery, 53(5), 1329-1340. Fautz, H. P., Kannengiesser, S. (2006). Sliding multislice (SMS): a new technique for minimum FOV usage in axial continuously moving‐table acquisitions. Magnetic Resonance in Medicine: An Official Journal of the International Society for Magnetic Resonance in Medicine, 55(2), 363-370. Filipp, M. E., Travis, B. J., Henry, S. S., Idzikowski, E. C., Magnuson, S. A., Loh, M. Y., . . . Hanna, A. S. (2019). Differences in neuroplasticity after spinal cord injury in varying animal models and humans. Neural regeneration research, 14(1), 7. Fornito, A., Zalesky, A., Breakspear, M. (2015). The connectomics of brain disorders. Nat Rev Neurosci, 16(3), 159-172. doi:10.1038/nrn3901 Furness, J. (2006). A comprehensive overview of all aspects of the enteric nervous system. The Enteric Nervous System. Govers, N., Béghin, J., Van Goethem, J. W. M., Michiels, J., van den Hauwe, L., Vandervliet, E., Parizel, P. M. (2006). Functional MRI of the cervical spinal cord on 1.5 T with fingertapping: to what extent is it feasible? Neuroradiology, 49(1), 73-81. doi:10.1007/s00234-006-0162-4 Gross, J., Kujala, J., Hamalainen, M., Timmermann, L., Schnitzler, A., Salmelin, R. (2001). Dynamic imaging of coherent sources: studying neural interactions in the human brain. Proceedings of the National Academy of Sciences, 98(2), 694-699. Gross, J., Timmermann, L., Kujala, J., Dirks, M., Schmitz, F., Salmelin, R., Schnitzler, A. (2002). The neural basis of intermittent motor control in humans. Proceedings of the National Academy of Sciences of the United States of America, 99(4), 2299-2302. Gulino, R., Dimartino, M., Casabona, A., Lombardo, S. A., Perciavalle, V. (2007). Synaptic plasticity modulates the spontaneous recovery of locomotion after spinal cord hemisection. Neuroscience research, 57(1), 148-156. Gutmann, B., Zimmer, P., Hülsdünker, T., Lefebvre, J., Binnebößel, S., Oberste, M., . . . Mierau, A. (2018). The effects of exercise intensity and post-exercise recovery time on cortical activation as revealed by EEG alpha peak frequency. Neuroscience letters, 668, 159-163. Hiscock, A., Miller, S., Rothwell, J., Tallis, R. C., Pomeroy, V. M. (2008). Informing dose-finding studies of repetitive transcranial magnetic stimulation to enhance motor function: a qualitative systematic review. Neurorehabilitation and neural repair, 22(3), 228-249. Honey, C., Sporns, O., Cammoun, L., Gigandet, X., Thiran, J., Meuli, R., Hagmann, P. (2009). Predicting human resting-state functional connectivity from structural connectivity. Proceedings of the National Academy of Sciences, 106(6), 2035-2040. Huegli, R. W., Schulte, A.-C., Aschwanden, M., Thalhammer, C., Kos, S., Jacob, A. L., Bilecen, D. (2009). Effects of percutaneous transluminal angioplasty on muscle BOLD-MRI in patients with peripheral arterial occlusive disease: preliminary results. European radiology, 19(2), 509-515. Ishii, K., Matsukawa, K., Liang, N., Endo, K., Idesako, M., Hamada, H., . . . Kataoka, T. (2013). Evidence for centrally induced cholinergic vasodilatation in skeletal muscle during voluntary one-legged cycling and motor imagery in humans. Physiological Reports, 1(4). doi:10.1002/phy2.92 Jacob, A., Bilecen, D. (2009). Simultaneous Dynamic Blood Oxygen Level-Dependent Magnetic Resonance Imaging of Foot and Calf Muscles. foot, 105, 3.3. Jacobi, B., Bongartz, G., Partovi, S., Schulte, A. C., Aschwanden, M., Lumsden, A. B., . . . Karimi, S. (2012). Skeletal muscle BOLD MRI: from underlying physiological concepts to its usefulness in clinical conditions. Journal of Magnetic Resonance Imaging, 35(6), 1253-1265. Jao, T., Vértes, P. E., Alexander-Bloch, A. F., Tang, I.-N., Yu, Y.-C., Chen, J.-H., Bullmore, E. T. (2013). Volitional eyes opening perturbs brain dynamics and functional connectivity regardless of light input. NeuroImage, 69, 21-34. Jarero-Basulto, J. J., Gasca-Martínez, Y., Rivera-Cervantes, M. C., Ureña-Guerrero, M. E., Feria-Velasco, A. I., Beas-Zarate, C. (2018). Interactions between epilepsy and plasticity. Pharmaceuticals, 11(1), 17. Johnston, J., Vaishnavi, S., Smyth, M., Zhang, D., He, B., Zempel, J., . . . Raichle, M. (2008). Loss of resting interhemispheric functional connectivity after complete section of the corpus callosum. Journal of Neuroscience, 28(25), 6453-6458. Kido, A., Koyama, T., Kataoka, M., Yamamoto, A., Saga, T., Turner, R., Togashi, K. (2007). Physiological changes of the human uterine myometrium during menstrual cycle: Preliminary evaluation using BOLD MR imaging. Journal of Magnetic Resonance Imaging, 26(3), 695-700. doi:10.1002/jmri.21061 Klimesch, W. (1999). EEG alpha and theta oscillations reflect cognitive and memory performance: a review and analysis. Brain research reviews, 29(2-3), 169-195. Klimesch, W. (2018). The frequency architecture of brain and brain body oscillations: an analysis. European Journal of Neuroscience, 48(7), 2431-2453. doi:10.1111/ejn.14192 Klimesch, W., Sauseng, P., Gerloff, C. (2003). Enhancing cognitive performance with repetitive transcranial magnetic stimulation at human individual alpha frequency. European Journal of Neuroscience, 17(5), 1129-1133. Kong, Y., Eippert, F., Beckmann, C. F., Andersson, J., Finsterbusch, J., Büchel, C., . . . Brooks, J. C. W. (2014). Intrinsically organized resting state networks in the human spinal cord. Proceedings of the National Academy of Sciences, 111(50), 18067-18072. doi:10.1073/pnas.1414293111 Kos, S., Klarhöfer, M., Aschwanden, M., Scheffler, K., Jacob, A. L., Bilecen, D. (2009). Simultaneous dynamic blood oxygen level-dependent magnetic resonance imaging of foot and calf muscles: aging effects at ischemia and postocclusive hyperemia in healthy volunteers. Investigative radiology, 44(11), 741-747. Langevin, H. M. (2006). Connective tissue: a body-wide signaling network? Medical hypotheses, 66(6), 1074-1077. Ledermann, H. P., Schulte, A.-C., Heidecker, H.-G., Aschwanden, M., Jäger, K. A., Scheffler, K., . . . Bilecen, D. (2006). Blood Oxygenation Level–Dependent Magnetic Resonance Imaging of the Skeletal Muscle in Patients With Peripheral Arterial Occlusive Disease. Circulation, 113(25), 2929-2935. doi:10.1161/circulationaha.105.605717 Logothetis, N., Pauls, J., Augath, M., Trinath, T., Oeltermann, A. (2001). Neurophysiological investigation of the basis of the fMRI signal. Nature, 412(6843), 150-157. Logothetis, N. K., Pauls, J., Augath, M., Trinath, T., Oeltermann, A. (2001). Neurophysiological investigation of the basis of the fMRI signal. Nature, 412(6843), 150. Manka, R., Paetsch, I., Schnackenburg, B., Gebker, R., Fleck, E., Jahnke, C. (2010). BOLD cardiovascular magnetic resonance at 3.0 tesla in myocardial ischemia. J Cardiovasc Magn Reson, 12, 54. doi:10.1186/1532-429X-12-54 Mayer, E. A. (2011). Gut feelings: the emerging biology of gut–brain communication. Nature Reviews Neuroscience, 12(8), 453-466. doi:10.1038/nrn3071 Meyer, R. A., Towse, T. F., Reid, R. W., Jayaraman, R. C., Wiseman, R. W., McCully, K. K. (2004). BOLD MRI mapping of transient hyperemia in skeletal muscle after single contractions. NMR Biomed, 17(6), 392-398. doi:10.1002/nbm.893 Mima, T., Hallett, M. (1999). Electroencephalographic analysis of cortico-muscular coherence: reference effect, volume conduction and generator mechanism. Clinical Neurophysiology, 110(11), 1892-1899. Mulcahey, M., Smith, B., Betz, R. (1999). Evaluation of the lower motor neuron integrity of upper extremity muscles in high level spinal cord injury. Spinal Cord, 37(8), 585-591. Murphy, K., Birn, R. M., Handwerker, D. A., Jones, T. B., Bandettini, P. A. (2009). The impact of global signal regression on resting state correlations: are anti-correlated networks introduced? NeuroImage, 44(3), 893-905. Myers, N., Pasquini, L., Göttler, J., Grimmer, T., Koch, K., Ortner, M., . . . Kurz, A. (2014). Within-patient correspondence of amyloid-β and intrinsic network connectivity in Alzheimer’s disease. Brain, 137(7), 2052-2064. Nardone, R., Höller, Y., Brigo, F., Seidl, M., Christova, M., Bergmann, J., . . . Trinka, E. (2013). Functional brain reorganization after spinal cord injury: systematic review of animal and human studies. Brain research, 1504, 58-73. Navarro, X., Vivo, M., Valero-Cabre, A. (2007). Neural plasticity after peripheral nerve injury and regeneration. Prog Neurobiol, 82(4), 163-201. doi:10.1016/j.pneurobio.2007.06.005 Nekovarova, T., Fajnerova, I., Horacek, J., Spaniel, F. (2014). Bridging disparate symptoms of schizophrenia: a triple network dysfunction theory. Frontiers in behavioral neuroscience, 8, 171. Ogawa, S., Lee, T.-M., Kay, A. R., Tank, D. W. (1990). Brain magnetic resonance imaging with contrast dependent on blood oxygenation. Proceedings of the National Academy of Sciences, 87(24), 9868-9872. Partovi, S., Karimi, S., Jacobi, B., Schulte, A.-C., Aschwanden, M., Zipp, L., . . . Bilecen, D. (2012). Clinical implications of skeletal muscle blood-oxygenation-level-dependent (BOLD) MRI. Magnetic Resonance Materials in Physics, Biology and Medicine, 25(4), 251-261. doi:10.1007/s10334-012-0306-y Peer, M., Nitzan, M., Bick, A. S., Levin, N., Arzy, S. (2017). Evidence for functional networks within the human brain's white matter. Journal of Neuroscience, 37(27), 6394-6407. Raethjen, J., Lindemann, M., Dümpelmann, M., Wenzelburger, R., Stolze, H., Pfister, G., . . . Deuschl, G. (2002). Corticomuscular coherence in the 6–15 Hz band: is the cortex involved in the generation of physiologic tremor? Experimental brain research, 142(1), 32-40. Raichle, M., MacLeod, A., Snyder, A., Powers, W., Gusnard, D., Shulman, G. (2001). A default mode of brain function. Proceedings of the National Academy of Sciences, 98(2), 676-682. Roberts, T. T., Leonard, G. R., Cepela, D. J. (2017). Classifications in brief: American spinal injury association (ASIA) impairment scale. In: Springer. Rohrer, M. J., Cardullo, P. A., Pappas, A. M., Phillips, D. A., Wheeler, H. B. (1990). Axillary artery compression and thrombosis in throwing athletes. Journal of vascular surgery, 11(6), 761-769. Saiote, C., Tacchino, A., Brichetto, G., Roccatagliata, L., Bommarito, G., Cordano, C., . . . Inglese, M. (2016). Resting-state functional connectivity and motor imagery brain activation. Hum Brain Mapp, 37(11), 3847-3857. doi:10.1002/hbm.23280 Sanchez, O. A., Copenhaver, E. A., Chance, M. A., Fowler, M. J., Towse, T. F., Kent-Braun, J. A., Damon, B. M. (2011). Postmaximal contraction blood volume responses are blunted in obese and type 2 diabetic subjects in a muscle-specific manner. American Journal of Physiology-Heart and Circulatory Physiology, 301(2), H418-H427. Smith, C. U. M., Whitaker, H. (2014). Brain, mind and consciousness in the history of neuroscience: Springer. Stracke, C., Pettersson, L., Schoth, F., Möller-Hartmann, W., Krings, T. (2005). Interneuronal systems of the cervical spinal cord assessed with BOLD imaging at 1.5 T. Neuroradiology, 47(2), 127-133. Tang, I., Huang, Y., Chen, J., Jao, T. (2019). Evidence of whole body networks: Task-related BOLD oscillations in the brain and the periphery. Paper presented at the OHBM Annual Meeting, Rome, Italy. Tang, I.-N. (2012). The Effect of Repetitive Transcranial Magnetic Stimulation on Upper Extremity Motor Function in Stroke Patients: A Meta-Analytical Review. Journal of Food Drug Analysis, 20(1). Tang, I.-N., Jao, T., Yu, Y.-C., Huang, Y.-A., Bullmore, E., Chen, J.-H. (2011). Spontaneous Brain Oscillations Beyond Resting Brain. Paper presented at the 17th OHBM Conference, Quebec, Canada. Timmermann, L., Gross, J., Dirks, M., Volkmann, J., Freund, H., Schnitzler, A. (2002). The cerebral oscillatory network of parkinsonian resting tremor. Brain, 126(1), 199-212. Towse, T. F., Childs, B. T., Sabin, S. A., Bush, E. C., Elder, C. P., Damon, B. M. (2016). Comparison of muscle BOLD responses to arterial occlusion at 3 and 7 Tesla. Magn Reson Med, 75(3), 1333-1340. doi:10.1002/mrm.25562 Towse, T. F., Slade, J. M., Ambrose, J. A., DeLano, M. C., Meyer, R. A. (2011). Quantitative analysis of the postcontractile blood-oxygenation-level-dependent (BOLD) effect in skeletal muscle. J Appl Physiol (1985), 111(1), 27-39. doi:10.1152/japplphysiol.01054.2009 Vahdat, S., Darainy, M., Thiel, A., Ostry, D. J. (2019). A single session of robot-controlled proprioceptive training modulates functional connectivity of sensory motor networks and improves reaching accuracy in chronic stroke. Neurorehabilitation and neural repair, 33(1), 70-81. van den Heuvel, M. P., Mandl, R. C., Kahn, R. S., Hulshoff Pol, H. E. (2009). Functionally linked resting-state networks reflect the underlying structural connectivity architecture of the human brain. Hum Brain Mapp, 30(10), 3127-3141. doi:10.1002/hbm.20737 Wang, D., Sun, T. (2011). Neural plasticity and functional recovery of human central nervous system with special reference to spinal cord injury. Spinal Cord, 49(4), 486-492. Ward, N. (2005). Mechanisms underlying recovery of motor function after stroke. Postgraduate Medical Journal, 81(958), 510-514. Weissenbacher, A., Kasess, C., Gerstl, F., Lanzenberger, R., Moser, E., Windischberger, C. (2009). Correlations and anticorrelations in resting-state functional connectivity MRI: a quantitative comparison of preprocessing strategies. NeuroImage, 47(4), 1408-1416. Welvaert, M., Rosseel, Y. (2013). On the definition of signal-to-noise ratio and contrast-to-noise ratio for fMRI data. PLoS One, 8(11), e77089. Yan, C.-G., Wang, X.-D., Zuo, X.-N., Zang, Y.-F. (2016). DPABI: data processing analysis for (resting-state) brain imaging. Neuroinformatics, 14(3), 339-351. | |
| dc.identifier.uri | http://tdr.lib.ntu.edu.tw/jspui/handle/123456789/60005 | - |
| dc.description.abstract | 磁振造影(MRI)在醫學上用途廣泛。臨床醫療中,主要用於偵測身體各部位病灶,而「功能性」造影則越發用於大腦科學研究。神經系統遍佈全身,腦部和脊髓屬於中樞神經,而其餘為周邊神經。解剖以及生理功能上,兩者密切關連,並且與其他系統譬如心血管循環緊密互動。有關中樞及周邊神經的研究相當廣泛,但過往研究多著重個別變化,而整合性研究是近年來新興趨勢。本計畫以建立整合中樞及周邊神經系統研究之平台為出發點,期待以同步形式,研究跨系統功能。 本研究建立首度可以同時獲取腦部及週邊組織影像之結構與功能磁振造影平台。在此平台,受試者採取新受檢姿勢,也就是「手臂過頭」檢查姿勢(Arm-Over-Head, AOH position),此姿勢運用現有的磁振造影技術與線圈,同時取得腦部及手臂的影像。在已建立之磁振造影平台,我們測試了各種不同造影參數,獲得判讀上可接受的結構與功能影像品質。同時,一併測試受試者對於此種姿勢的耐受度。在此實驗中,所獲取的是頭部及右側手臂的影像。 在決定最適宜造影參數,同時也確定受測者耐受度後,我們讓受試者執行上手臂屈曲運動想像之實驗,以探討此種活動對中樞及周邊神經系統的擾動,並藉此研究兩者關聯性的空間與時間變化。上手臂屈曲運動想像包括了「右側上手臂屈曲運動想像」以及「左側上手臂區曲運動想像」。所採用分析方法,主要為獨立成份分析(Independent component analysis, ICA)與複雜神經網路分析(complex network analysis)。分析顯示,在執行自發運動想像時,不論是「右側上手臂屈曲運動想像」以及「左側上手臂區曲運動想像」,腦部與右側上臂處觀測到具有信號共振現象的區域包括預設模式網路(Default mode network, DMN)、感覺運動網路、以及視覺網路。以經過驗證大腦磁振造影神經科學的角度觀之,此種現象,應不只是局部血液循環「雜訊」干擾大腦之呈現(bottom-up noise),合理包括中樞神經延伸至周邊神經之單向甚是雙向細微調控(top-down regulation)。此外,檢視6位受試者的平均資料,發現主要在感覺運動網路,「左側上手臂區曲運動想像」時的信號共振現象較「右側上手臂區曲運動想像」來得明顯,此差異達統計意義(未經校正p值<0.05)。 建構此平台提供研究潛在遍佈全身神經及生理網路現象、及其間相關性的科學性方法。可能的應用包括:協助了解神經系統功能性網路之機轉與本質,作為探討身體各器官系統網絡交互作用的起始基礎,作為輔助診斷的參數,疾病進程的指標,以及各項生理訓練或是治療對於整體生理功能的影響。 | zh_TW |
| dc.description.abstract | Magnetic resonance imaging (MRI) has multiple applications in medicine. In clinical medicine, it is mainly used to detect lesions in various parts of the body, while 'functional' imaging is more frequently used in brain science research. The nervous system is spread throughout the body. The brain and spinal cord belong to the central nervous system, while the rest belong to the peripheral nervous system. Anatomically and physiologically, the two systems are closely related and interact with other organ systems such as cardiovascular circulation. Researches on the central and peripheral nervous systems are quite extensive, but previous studies mainly focused on “respective” changes. This study intends to establish a platform that integrates the research of the central and peripheral nervous system and looks forward to studying cross-system functions. This research establishes the first structural and functional MRI platform that can simultaneously obtain images of the brain and the periphery. On this platform, the subject adopts a new examination posture, which is the 'Arm-Over-Head (AOH)” position. This posture uses currently available MRI technology to obtain images of the brain and arms at the same time. Under this platform, we tested various imaging parameters to obtain acceptable structural and functional image quality for further analysis. The tolerability of the AOH position is acceptable. In this platform, the brain and “right” upper arm imaging were obtained simultaneously. After deciding the optimal parameters, motor imagery tasks (imagery right elbow flexion and imagery left elbow flexion) composed of 6-cycle on-off blocked design with self-paced rhythmic elbow flexion were performed to test the possible brain-periphery oscillations. Independent component analysis (ICA) and complex network analysis were used. It is demonstrated during motionless motor imagery tasks there existed possible brain-body blood oxygen level dependent (BOLD) oscillations connecting especially arm flexors to default mode, vision, and sensorimotor networks in the brain. These oscillations exist during both imagery right elbow flexion and imagery left elbow flexion. For the functional connectivities between the right arm flexor and especially sensorimotor networks, there was a positive effect of “imagery left elbow flexion” on them, i.e., brain to right arm functional connectivities seemed to be stronger with imagery left sessions, and the uncorrected p-value was < 0.05. From the current state-of-the-art perspective of neuroscience, this phenomenon should not be solely explained by the 'bottom-up noise' of local blood circulation, but may also be explained by the unidirectional or bidirectional regulation of the central nervous system to the peripheral nervous system. The construction of this platform provides a scientific method for studying the potential of neural and physiological network phenomena throughout the body and their correlations. Possible applications include: assisting in understanding the mechanism and nature of the functional network of the nervous system, as an initial basis for exploring the network interaction of various organ systems of the body, as a parameter for assisting diagnosis, an indicator of disease progression, and various physiological training or the effect of treatment on the overall physiological function. | en |
| dc.description.provenance | Made available in DSpace on 2021-06-16T09:50:06Z (GMT). No. of bitstreams: 1 U0001-1308202015021300.pdf: 13335431 bytes, checksum: 267753d6027250f10489c66886ddc622 (MD5) Previous issue date: 2020 | en |
| dc.description.tableofcontents | 口試委員會審定書…………………………………………………………… i 誌謝…………………………………………………………………………. ii 中文摘要…………………………………………………………………......iii 英文摘要……………………………………………………………………....v List of Published Works…………………………………………………….vii Contents…………………………………………………………………....viii List of Figures……………………………………………………………….. x List of Tables………………………………………………………………...xi List of Abbreviations………………………………………………………..xii 1. Introduction…………………………………………………………………1 1.1 Background…………………………………………………………..1 1.2 MRI and fMRI: from structure to functional connectivity…………..3 1.3 fMRI outside the brain………………………………………………7 1.4 The concept of physiological networks…………………………….12 1.5 Pilot exploration: rTMS and upper limb function………………….19 1.6 Proposed hypothesis………………………………………………..22 2. Materials and Methods…………………………………………………….31 2.1 Subjects…………………………………………………………....31 2.2 Establishing the appropriate imaging position……………………32 2.3 Obtaining acceptable imaging quality…………………………….34 2.4 Detecting BOLD signals via this platform………………………..36 2.5 Data analysis………………………………………………………38 2.5.1 Independent component analysis (ICA) analysis …………..38 2.5.2 Seed-based functional network analyses …………………...40 3. Results……………………………………………………………………..52 3.1 Structural image demonstration…………………………………...52 3.2 Preliminary resting-state results…………………………………...53 3.3 Independent component analysis (ICA) ………………………….53 3.4 Seed-based functional network analyses …………………………55 4. Discussions………………………………………………………………..71 5. Conclusions and future work………………………………………….......78 5.1 Conclusion………………………………………………………...78 5.2 Future Work……………………………………………………….79 Reference…………………………………………………………………….81 Appendix …………………………………………………………………….90 | |
| dc.language.iso | en | |
| dc.subject | 功能性磁振造影 | zh_TW |
| dc.subject | 生理網路 | zh_TW |
| dc.subject | 手臂過頭姿勢 | zh_TW |
| dc.subject | 運動想像 | zh_TW |
| dc.subject | 大腦網路 | zh_TW |
| dc.subject | arm-over-head (AOH) position | en |
| dc.subject | BOLD oscillations | en |
| dc.subject | motor imagery | en |
| dc.subject | brain networks | en |
| dc.subject | physiological networks | en |
| dc.subject | fMRI | en |
| dc.title | 大腦及周邊連結之功能性磁振造影初探
| zh_TW |
| dc.title | An exploration on whole body network: an fMRI study on brain-arm connectivity | en |
| dc.type | Thesis | |
| dc.date.schoolyear | 108-2 | |
| dc.description.degree | 博士 | |
| dc.contributor.oralexamcommittee | 黃美涓(May-Kuen Wong),邱銘章(Ming-Jang Chiu),梁庚辰(Keng-Chen Liang),陳雅芳(Ya-Fang CHEN),周坤賢(Kun-Hsien Chou) | |
| dc.subject.keyword | 功能性磁振造影,運動想像,大腦網路,生理網路,手臂過頭姿勢, | zh_TW |
| dc.subject.keyword | fMRI,BOLD oscillations,motor imagery,brain networks,physiological networks,arm-over-head (AOH) position, | en |
| dc.relation.page | 95 | |
| dc.identifier.doi | 10.6342/NTU202003263 | |
| dc.rights.note | 有償授權 | |
| dc.date.accepted | 2020-08-18 | |
| dc.contributor.author-college | 電機資訊學院 | zh_TW |
| dc.contributor.author-dept | 生醫電子與資訊學研究所 | zh_TW |
| 顯示於系所單位: | 生醫電子與資訊學研究所 | |
文件中的檔案:
| 檔案 | 大小 | 格式 | |
|---|---|---|---|
| U0001-1308202015021300.pdf 未授權公開取用 | 13.02 MB | Adobe PDF |
系統中的文件,除了特別指名其著作權條款之外,均受到著作權保護,並且保留所有的權利。
