Skip navigation

DSpace

機構典藏 DSpace 系統致力於保存各式數位資料(如:文字、圖片、PDF)並使其易於取用。

點此認識 DSpace
DSpace logo
English
中文
  • 瀏覽論文
    • 校院系所
    • 出版年
    • 作者
    • 標題
    • 關鍵字
    • 指導教授
  • 搜尋 TDR
  • 授權 Q&A
    • 我的頁面
    • 接受 E-mail 通知
    • 編輯個人資料
  1. NTU Theses and Dissertations Repository
  2. 電機資訊學院
  3. 生醫電子與資訊學研究所
請用此 Handle URI 來引用此文件: http://tdr.lib.ntu.edu.tw/jspui/handle/123456789/60003
完整後設資料紀錄
DC 欄位值語言
dc.contributor.advisor黃念祖(Nien-Tsu Huang)
dc.contributor.authorYu-Shin Changen
dc.contributor.author張郁欣zh_TW
dc.date.accessioned2021-06-16T09:49:59Z-
dc.date.available2019-02-16
dc.date.copyright2017-02-16
dc.date.issued2016
dc.date.submitted2017-01-19
dc.identifier.citation1. Watson, J.D. and F.H.C. Crick, Molecular Structure of Nucleic Acids: A Structure for Deoxyribose Nucleic Acid. Nature, 1953. 171(4356): p. 737-738.
2. Pray, L., Discovery of DNA structure and function: Watson and Crick. Nature Education, 2008. 1(1): p. 100.
3. Snyderman, R., Personalized health care: from theory to practice. Biotechnol J, 2012. 7(8): p. 973-9.
4. Karki, R., et al., Defining “mutation” and “polymorphism” in the era of personal genomics. BMC Medical Genomics, 2015. 8(1): p. 37.
5. Newton, C.R., et al., Analysis of any point mutation in DNA. The amplification refractory mutation system (ARMS). Nucleic Acids Res, 1989. 17(7): p. 2503-16.
6. McGuigan, F.E. and S.H. Ralston, Single nucleotide polymorphism detection: allelic discrimination using TaqMan. Psychiatr Genet, 2002. 12(3): p. 133-6.
7. Kim, S. and A. Misra, SNP genotyping: technologies and biomedical applications. Annu Rev Biomed Eng, 2007. 9: p. 289-320.
8. Perkel, J., SNP genotyping: six technologies that keyed a revolution. Nat Meth, 2008. 5(5): p. 447-453.
9. Medeiros-Domingo, A., P. Iturralde-Torres, and M.J. Ackerman, Clinical and genetic characteristics of long QT syndrome. Rev Esp Cardiol, 2007. 60(7): p. 739-52.
10. Modell, S.M. and M.H. Lehmann, The long QT syndrome family of cardiac ion channelopathies: A HuGE review. Genetics in Medicine, 2006. 8(3): p. 143-155.
11. Chang, Y.S., et al., Mutation Analysis of KCNQ1, KCNH2 and SCN5A Genes in Taiwanese Long QT Syndrome Patients. Int Heart J, 2015. 56(4): p. 450-3.
12. Modell, S.M., D.J. Bradley, and M.H. Lehmann, Genetic testing for long QT syndrome and the category of cardiac ion channelopathies. PLoS Currents, 2012. 4: p. e4f9995f69e6c7.
13. Nakano, Y. and W. Shimizu, Genetics of long-QT syndrome. J Hum Genet, 2016. 61(1): p. 51-5.
14. Moss, A.J., et al., Clinical aspects of type-1 long-QT syndrome by location, coding type, and biophysical function of mutations involving the KCNQ1 gene. Circulation, 2007. 115(19): p. 2481-9.
15. Shimizu, W., et al., Mutation site-specific differences in arrhythmic risk and sensitivity to sympathetic stimulation in the LQT1 form of congenital long QT syndrome: multicenter study in Japan. J Am Coll Cardiol, 2004. 44(1): p. 117-25.
16. Priori, S.G., C. Napolitano, and P.J. Schwartz, Low penetrance in the long-QT syndrome: clinical impact. Circulation, 1999. 99(4): p. 529-33.
17. Kaufman, E.S., Efficient genotyping for congenital long QT syndrome. Jama, 2005. 294(23): p. 3027-8.
18. Benn, J.A., et al., Comparative modeling and analysis of microfluidic and conventional DNA microarrays. Anal Biochem, 2006. 348(2): p. 284-93.
19. Wang, L. and P.C. Li, Microfluidic DNA microarray analysis: a review. Anal Chim Acta, 2011. 687(1): p. 12-27.
20. Weng, X., H. Jiang, and D. Li, Microfluidic DNA hybridization assays. Microfluidics and Nanofluidics, 2011. 11(4): p. 367-383.
21. Liu, J., et al., Enhanced signals and fast nucleic acid hybridization by microfluidic chaotic mixing. Angew Chem Int Ed Engl, 2006. 45(22): p. 3618-23.
22. Huang, S., et al., Microvalve and micropump controlled shuttle flow microfluidic device for rapid DNA hybridization. Lab Chip, 2010. 10(21): p. 2925-31.
23. Lee, H.H., et al., Recirculating flow accelerates DNA microarray hybridization in a microfluidic device. Lab Chip, 2006. 6(9): p. 1163-70.
24. Wei, C.W., et al., Using a microfluidic device for 1 microl DNA microarray hybridization in 500 s. Nucleic Acids Res, 2005. 33(8): p. e78.
25. Jiang, X., et al., Microfluidic chip integrating high throughput continuous-flow PCR and DNA hybridization for bacteria analysis. Talanta, 2014. 122: p. 246-250.
26. Peytavi, R., et al., Microfluidic device for rapid (<15 min) automated microarray hybridization. Clin Chem, 2005. 51(10): p. 1836-44.
27. Li, C., et al., Rapid nanoliter DNA hybridization based on reciprocating flow on a compact disk microfluidic device. Analytica chimica acta, 2009. 640(1-2): p. 93-99.
28. Park, B.H., et al., Integration of sample pretreatment, μPCR, and detection for a total genetic analysis microsystem. Microchimica Acta, 2013. 181(13-14): p. 1655-1668.
29. Chen, L., A. Manz, and P.J. Day, Total nucleic acid analysis integrated on microfluidic devices. Lab Chip, 2007. 7(11): p. 1413-23.
30. Hsieh, K., et al., Integrated electrochemical microsystems for genetic detection of pathogens at the point of care. Acc Chem Res, 2015. 48(4): p. 911-20.
31. Mauk, M., et al., Integrated Microfluidic Nucleic Acid Isolation, Isothermal Amplification, and Amplicon Quantification. Microarrays, 2015. 4(4): p. 474-489.
32. Guttenberg, Z., et al., Planar chip device for PCR and hybridization with surface acoustic wave pump. Lab Chip, 2005. 5(3): p. 308-17.
33. Liu, R.H., et al., Self-contained, fully integrated biochip for sample preparation, polymerase chain reaction amplification, and DNA microarray detection. Anal Chem, 2004. 76(7): p. 1824-31.
34. Stedtfeld, R.D., et al., Gene-Z: a device for point of care genetic testing using a smartphone. Lab Chip, 2012. 12(8): p. 1454-62.
35. Gresham, D., et al., Genome-wide detection of polymorphisms at nucleotide resolution with a single DNA microarray. Science, 2006. 311(5769): p. 1932-6.
36. Liu, J., et al., An improved allele-specific PCR primer design method for SNP marker analysis and its application. Plant Methods, 2012. 8: p. 34-34.
37. Kao, P.-C., et al., A bead-based single nucleotide polymorphism (SNP) detection using melting temperature on a microchip. Microfluidics and Nanofluidics, 2014. 17(3): p. 477-488.
38. Li, K.C., et al., Melting analysis on microbeads in rapid temperature-gradient inside microchannels for single nucleotide polymorphisms detection. Biomicrofluidics, 2014. 8(6): p. 064109.
39. Lee, K., et al., Sensitive and Selective Label-Free DNA Detection by Conjugated Polymer-Based Microarrays and Intercalating Dye. Chemistry of Materials, 2008. 20(9): p. 2848-2850.
40. Keyi Liu, X.F., A Label-free Aptasensor for Rapid Detection of H1N1 Virus based on Graphene Oxide and Polymerase-aided Signal Amplification. Journal of Nanomedicine & Nanotechnology, 2015. 06(03).
dc.identifier.urihttp://tdr.lib.ntu.edu.tw/jspui/handle/123456789/60003-
dc.description.abstract本研究論文開發一自動化微流道DNA微陣列檢測平台,用於長Q-T症候群(Long QT syndrome,以下簡稱LQTS)之單核苷酸多型性檢測。LQTS是一種先天性的心臟疾病,可能會引發致死性的心律不整。目前科學家發現數個基因的突變和LQTS有關,已知有超過700個點突變位點會造成不同類型的LQTS。目前臨床利用DNA微陣列檢測基因型,診斷病人患有的LQTS類型並給予適當的治療。然而傳統的DNA微陣列檢測除了成本昂貴(一個樣本1500-3000美元)之外,基因檢測需要4至6週才能得到檢驗報告,十分耗時。為了解決檢測時間過長的問題,我們設計微流道DNA微陣列晶片,縮小樣本的反應體積使得表面積/體積比增加,縮短反應時間。並利用微幫浦進行主動混合,增加樣本DNA和探針DNA接觸雜交的機會。另外由於DNA微陣列需要繁雜的操作步驟,因此我們將微流道DNA微陣列晶片和商業化的微流道系統為基底(包含微幫浦、微閥門、閥門控制器及液體收集區)整合,設計出自動化的檢測平台。自動化微流道DNA微陣列檢測平台可以利用程式控制流體流入微流道的流速和體積,使樣本在微流道中和下方DNA微陣列上的DNA 探針做雜交反應 (Hybridization)。為了提升檢測單核苷酸多型性的專一性,我們在正常 (Wild type) 和突變 (Mutant) 兩種探針加入額外的點突變,以增加兩者雜交反應的差異性。最後再加入SYBR green I 螢光染劑標定雙股DNA。本論文首先將雜交的條件最佳化,包括雜交的反應溫度和流體速度,以及SYBR green I的染色條件。接著利用寡核甘酸exon12 WT 和exon12 MU做為目標序列,證實透過我們所研發的自動化微流道DNA微陣列檢測平台可以區分單核苷酸多型性。接著再以病人檢體做檢測。相較於目前的DNA微陣列,自動化微流道DNA微陣列檢測平台可以自動化的完成雜交複雜的實驗流程,不但節省反應時間也同時降低人工成本及可能的人為誤差。 此外利用SYBR green I 做為螢光染劑可省去樣本前處理的標定動作,使的操作起來更方便迅速。此自動化微流道DNA微陣列檢測平台有潛力達到高通量、快速、反應靈敏的單核苷酸多型性檢測。zh_TW
dc.description.abstractIn this thesis, we have developed an automatic microfluidic DNA microarray system for single nucleotide polymorphism (SNP) screening for Long QT syndrome (LQTS). LQTS is a genetic heart disease caused by SNPs and genetic screening is the most effective diagnosis method. DNA microarray is one of the most powerful methods which can screen thousands of genes on a single chip. However, conventional DNA microarray is time-consuming (at least 16 hours) since the target and probe DNA hybridization is based on the passive diffusion. To address this problem, we integrated a microfluidic system with DNA microarray to reduce the hybridization time from 16 to 2 hours by active mixing and minimizing the manual operation process. Our study first optimized the hybridization conditions, including hybridization temperature and sample flow rate. Then, to differentiate the SNPs between wild type and mutation probes, we placed an additional mismatch on both types of probes. The results showed that the SNPs could be effectively detected (or differentiated). Compared to current DNA microarray methods, automatic microfluidic DNA microarray can minimize the manual manipulation. Besides, by reducing the assay reagent volume and using the active mixing in the hybridization process, the total assay time can be reduced to 3 hours, which is eight times shorter than conventional DNA microarray. With the higher selectivity of SNPs, short hybridization time, and automatic procedure, we believe that our device has the potential to achieve high-throughput, rapid and sensitive gene screening test.en
dc.description.provenanceMade available in DSpace on 2021-06-16T09:49:59Z (GMT). No. of bitstreams: 1
ntu-105-R03945020-1.pdf: 4192741 bytes, checksum: 54c3bf27155b88d96643f522f436c72e (MD5)
Previous issue date: 2016
en
dc.description.tableofcontents口試委員會審定書 #
誌謝 i
中文摘要 iii
ABSTRACT iv
CONTENTS v
FIGURE CONTENTS viii
TABLE CONTENTS x
Chapter 1 Introduction 11
1.1 Background 11
1.2 Research motivation 14
1.2.1 Long QT Syndrome 14
1.2.2 DNA microarray for SNP genotyping 16
1.2.3 Microfluidic-based DNA microarray 17
1.3 Literature review 18
1.4 Thesis structure 25
Chapter 2 Experimental design 26
2.1 Microfluidic chip design 26
2.2 Automatic microfluidic system 27
2.3 DNA microarray assay 29
2.3.1 Probe design 29
2.3.2 SYBR green I fluorescent dye 30
2.3.3 DNA microarray assays workflow 30
Chapter 3 Materials and Methods 32
3.1 PMMA microfluidic chip fabrication 32
3.2 COMSOL simulation of flow in the microfluidic chip 32
3.3 DNA microarray spotting 33
3.4 DNA probes and oligonucleotide targets 36
3.5 PCR protocol 37
3.6 Microfluidic DNA microarray hybridization 38
3.7 Conventional DNA microarray hybridization 42
3.8 Fluorescent image and data analysis 42
Chapter 4 Results and discussion 43
4.1 Simulation results 43
4.2 Stability test 46
4.3 Microfluidic DNA hybridization condition optimization 47
4.3.1 Hybridization temperature optimization 47
4.3.2 Hybridization flow rate optimization 49
4.4 Hybridization results with Cy3 labeled DNA target 50
4.4.1 Different exon analysis 50
4.4.2 SNP analysis 50
4.5 SYBR green I condition optimization 53
4.5.1 SYBR green I concentration optimization 53
4.5.2 Washing condition optimization 54
4.6 Hybridization results with SYBR green I 56
4.6.1 Different exons analysis 56
4.6.2 SNP analysis 56
4.7 Comparison of microfluidic and conventional microarray 60
4.7.1 PCR of clinical sample 60
4.7.2 SNP analysis of clinical sample 60
4.8 The enhancement of background uniformity by Graphene Oxide 64
Chapter 5 Conclusion 66
Chapter 6 Future work 68
Reference 69
dc.language.isoen
dc.subject微流道zh_TW
dc.subjectDNA 微陣列zh_TW
dc.subject自動化zh_TW
dc.subject長QT症候群zh_TW
dc.subject單核?酸多型性zh_TW
dc.subjectmicrofluidicsen
dc.subjectDNA microarrayen
dc.subjectautomaticen
dc.subjectLong QT Syndromeen
dc.subjectsingle nucleotide polymorphismen
dc.title開發自動化微流道DNA微陣列晶片應用於長Q-T症候群之單核苷酸多型性檢測zh_TW
dc.titleAn Automatic Microfluidic DNA Microarray Platform for Single Nucleotide Polymorphism Screening of Long QT Syndromeen
dc.typeThesis
dc.date.schoolyear105-1
dc.description.degree碩士
dc.contributor.oralexamcommittee莊曜宇(Eric Y. Chuang),蔡孟勳(Mong-Hsun Tsai),盧彥文(Yen-Wen Lu)
dc.subject.keyword微流道,DNA 微陣列,自動化,長QT症候群,單核?酸多型性,zh_TW
dc.subject.keywordmicrofluidics,DNA microarray,automatic,Long QT Syndrome,single nucleotide polymorphism,en
dc.relation.page72
dc.identifier.doi10.6342/NTU201700129
dc.rights.note有償授權
dc.date.accepted2017-01-19
dc.contributor.author-college電機資訊學院zh_TW
dc.contributor.author-dept生醫電子與資訊學研究所zh_TW
顯示於系所單位:生醫電子與資訊學研究所

文件中的檔案:
檔案 大小格式 
ntu-105-1.pdf
  未授權公開取用
4.09 MBAdobe PDF
顯示文件簡單紀錄


系統中的文件,除了特別指名其著作權條款之外,均受到著作權保護,並且保留所有的權利。

社群連結
聯絡資訊
10617臺北市大安區羅斯福路四段1號
No.1 Sec.4, Roosevelt Rd., Taipei, Taiwan, R.O.C. 106
Tel: (02)33662353
Email: ntuetds@ntu.edu.tw
意見箱
相關連結
館藏目錄
國內圖書館整合查詢 MetaCat
臺大學術典藏 NTU Scholars
臺大圖書館數位典藏館
本站聲明
© NTU Library All Rights Reserved