Skip navigation

DSpace

機構典藏 DSpace 系統致力於保存各式數位資料(如:文字、圖片、PDF)並使其易於取用。

點此認識 DSpace
DSpace logo
English
中文
  • 瀏覽論文
    • 校院系所
    • 出版年
    • 作者
    • 標題
    • 關鍵字
    • 指導教授
  • 搜尋 TDR
  • 授權 Q&A
    • 我的頁面
    • 接受 E-mail 通知
    • 編輯個人資料
  1. NTU Theses and Dissertations Repository
  2. 公共衛生學院
  3. 流行病學與預防醫學研究所
請用此 Handle URI 來引用此文件: http://tdr.lib.ntu.edu.tw/jspui/handle/123456789/60001
完整後設資料紀錄
DC 欄位值語言
dc.contributor.advisor賴美淑(Mei-Shu Lai)
dc.contributor.authorSheng-Yuan Ruanen
dc.contributor.author阮聖元zh_TW
dc.date.accessioned2021-06-16T09:49:51Z-
dc.date.available2020-01-02
dc.date.copyright2017-02-24
dc.date.issued2016
dc.date.submitted2017-01-19
dc.identifier.citation1. Palmer RM, Ferrige AG, Moncada S. Nitric oxide release accounts for the biological activity of endothelium-derived relaxing factor. Nature. 1987;327(6122):524-6.
2. Griffiths MJ, Evans TW. Inhaled nitric oxide therapy in adults. The New England journal of medicine. 2005;353(25):2683-95.
3. Rimar S, Gillis CN. Selective pulmonary vasodilation by inhaled nitric oxide is due to hemoglobin inactivation. Circulation. 1993;88(6):2884-7.
4. Pepke-Zaba J, Higenbottam TW, Dinh-Xuan AT, Stone D, Wallwork J. Inhaled nitric oxide as a cause of selective pulmonary vasodilatation in pulmonary hypertension. Lancet (London, England). 1991;338(8776):1173-4.
5. Dellinger RP, Zimmerman JL, Taylor RW, Straube RC, Hauser DL, Criner GJ, et al. Effects of inhaled nitric oxide in patients with acute respiratory distress syndrome: results of a randomized phase II trial. Inhaled Nitric Oxide in ARDS Study Group. Critical care medicine. 1998;26(1):15-23.
6. Lundin S, Mang H, Smithies M, Stenqvist O, Frostell C. Inhalation of nitric oxide in acute lung injury: results of a European multicentre study. The European Study Group of Inhaled Nitric Oxide. Intensive care medicine. 1999;25(9):911-9.
7. McCleverty JA. Chemistry of nitric oxide relevant to biology. Chemical reviews. 2004;104(2):403-18.
8. Stamler JS, Singel DJ, Loscalzo J. Biochemistry of nitric oxide and its redox-activated forms. Science (New York, NY). 1992;258(5090):1898-902.
9. Pryor WA, Squadrito GL. The chemistry of peroxynitrite: a product from the reaction of nitric oxide with superoxide. The American journal of physiology. 1995;268(5 Pt 1):L699-722.
10. Young JD, Sear JW, Valvini EM. Kinetics of methaemoglobin and serum nitrogen oxide production during inhalation of nitric oxide in volunteers. British journal of anaesthesia. 1996;76(5):652-6.
11. Jia L, Bonaventura C, Bonaventura J, Stamler JS. S-nitrosohaemoglobin: a dynamic activity of blood involved in vascular control. Nature. 1996;380(6571):221-6.
12. Troncy E, Francoeur M, Blaise G. Inhaled nitric oxide: clinical applications, indications, and toxicology. Canadian journal of anaesthesia = Journal canadien d'anesthesie. 1997;44(9):973-88.
13. Cooper CE. Nitric oxide and iron proteins. Biochimica et biophysica acta. 1999;1411(2-3):290-309.
14. McMahon TJ, Doctor A. Extrapulmonary effects of inhaled nitric oxide: role of reversible S-nitrosylation of erythrocytic hemoglobin. Proceedings of the American Thoracic Society. 2006;3(2):153-60.
15. Wagner DA, Schultz DS, Deen WM, Young VR, Tannenbaum SR. Metabolic fate of an oral dose of 15N-labeled nitrate in humans: effect of diet supplementation with ascorbic acid. Cancer research. 1983;43(4):1921-5.
16. Rossaint R, Falke KJ, Lopez F, Slama K, Pison U, Zapol WM. Inhaled nitric oxide for the adult respiratory distress syndrome. The New England journal of medicine. 1993;328(6):399-405.
17. Inhaled nitric oxide in full-term and nearly full-term infants with hypoxic respiratory failure. The New England journal of medicine. 1997;336(9):597-604.
18. Fullerton DA, Jones SD, Jaggers J, Piedalue F, Grover FL, McIntyre RC, Jr. Effective control of pulmonary vascular resistance with inhaled nitric oxide after cardiac operation. The Journal of thoracic and cardiovascular surgery. 1996;111(4):753-62; discussion 62-3.
19. Creagh-Brown BC, Griffiths MJ, Evans TW. Bench-to-bedside review: Inhaled nitric oxide therapy in adults. Critical care (London, England). 2009;13(3):221.
20. Adhikari NK, Dellinger RP, Lundin S, Payen D, Vallet B, Gerlach H, et al. Inhaled nitric oxide does not reduce mortality in patients with acute respiratory distress syndrome regardless of severity: systematic review and meta-analysis. Critical care medicine. 2014;42(2):404-12.
21. Afshari A, Brok J, Moller AM, Wetterslev J. Inhaled nitric oxide for acute respiratory distress syndrome (ARDS) and acute lung injury in children and adults. The Cochrane database of systematic reviews. 2010(7):Cd002787.
22. Weinberger B, Laskin DL, Heck DE, Laskin JD. The toxicology of inhaled nitric oxide. Toxicological sciences : an official journal of the Society of Toxicology. 2001;59(1):5-16.
23. Germann P, Braschi A, Della Rocca G, Dinh-Xuan AT, Falke K, Frostell C, et al. Inhaled nitric oxide therapy in adults: European expert recommendations. Intensive care medicine. 2005;31(8):1029-41.
24. Steudel W, Hurford WE, Zapol WM. Inhaled nitric oxide: basic biology and clinical applications. Anesthesiology. 1999;91(4):1090-121.
25. Kostler WJ, Rabitsch W, Locker GJ, Staudinger T, El-Menyawi I, Frass M, et al. Influence of inhaled nitric oxide on plasma nitrate concentrations in patients with adult respiratory distress syndrome and sepsis: results of a pilot study. Journal of clinical anesthesia. 2006;18(3):179-84.
26. Loh E, Stamler JS, Hare JM, Loscalzo J, Colucci WS. Cardiovascular effects of inhaled nitric oxide in patients with left ventricular dysfunction. Circulation. 1994;90(6):2780-5.
27. Hogman M, Frostell C, Arnberg H, Hedenstierna G. Bleeding time prolongation and NO inhalation. Lancet (London, England). 1993;341(8861):1664-5.
28. Cheung PY, Salas E, Etches PC, Phillipos E, Schulz R, Radomski MW. Inhaled nitric oxide and inhibition of platelet aggregation in critically ill neonates. Lancet (London, England). 1998;351(9110):1181-2.
29. Gaston B. Summary: systemic effects of inhaled nitric oxide. Proceedings of the American Thoracic Society. 2006;3(2):170-2.
30. Matthay MA, Ware LB, Zimmerman GA. The acute respiratory distress syndrome. The Journal of clinical investigation. 2012;122(8):2731-40.
31. Ranieri VM, Rubenfeld GD, Thompson BT, Ferguson ND, Caldwell E, Fan E, et al. Acute respiratory distress syndrome: the Berlin Definition. Jama. 2012;307(23):2526-33.
32. Ashbaugh DG, Bigelow DB, Petty TL, Levine BE. Acute respiratory distress in adults. Lancet (London, England). 1967;2(7511):319-23.
33. Rubenfeld GD, Herridge MS. Epidemiology and outcomes of acute lung injury. Chest. 2007;131(2):554-62.
34. Chen W, Chen YY, Tsai CF, Chen SC, Lin MS, Ware LB, et al. Incidence and Outcomes of Acute Respiratory Distress Syndrome: A Nationwide Registry-Based Study in Taiwan, 1997 to 2011. Medicine. 2015;94(43):e1849.
35. Sigurdsson MI, Sigvaldason K, Gunnarsson TS, Moller A, Sigurdsson GH. Acute respiratory distress syndrome: nationwide changes in incidence, treatment and mortality over 23 years. Acta anaesthesiologica Scandinavica. 2013;57(1):37-45.
36. Bellani G, Laffey JG, Pham T, Fan E, Brochard L, Esteban A, et al. Epidemiology, Patterns of Care, and Mortality for Patients With Acute Respiratory Distress Syndrome in Intensive Care Units in 50 Countries. Jama. 2016;315(8):788-800.
37. Phua J, Badia JR, Adhikari NK, Friedrich JO, Fowler RA, Singh JM, et al. Has mortality from acute respiratory distress syndrome decreased over time?: A systematic review. American journal of respiratory and critical care medicine. 2009;179(3):220-7.
38. Slutsky AS, Ranieri VM. Ventilator-induced lung injury. The New England journal of medicine. 2014;370(10):980.
39. Del Sorbo L, Slutsky AS. Acute respiratory distress syndrome and multiple organ failure. Current opinion in critical care. 2011;17(1):1-6.
40. Imai Y, Parodo J, Kajikawa O, de Perrot M, Fischer S, Edwards V, et al. Injurious mechanical ventilation and end-organ epithelial cell apoptosis and organ dysfunction in an experimental model of acute respiratory distress syndrome. Jama. 2003;289(16):2104-12.
41. Pierrakos C, Vincent JL. The changing pattern of acute respiratory distress syndrome over time: a comparison of two periods. The European respiratory journal. 2012;40(3):589-95.
42. Darmon M, Clec'h C, Adrie C, Argaud L, Allaouchiche B, Azoulay E, et al. Acute respiratory distress syndrome and risk of AKI among critically ill patients. Clinical journal of the American Society of Nephrology : CJASN. 2014;9(8):1347-53.
43. Diaz JV, Brower R, Calfee CS, Matthay MA. Therapeutic strategies for severe acute lung injury. Critical care medicine. 2010;38(8):1644-50.
44. Guerin C, Reignier J, Richard JC, Beuret P, Gacouin A, Boulain T, et al. Prone positioning in severe acute respiratory distress syndrome. The New England journal of medicine. 2013;368(23):2159-68.
45. Ruan SY, Lin HH, Huang CT, Kuo PH, Wu HD, Yu CJ. Exploring the heterogeneity of effects of corticosteroids on acute respiratory distress syndrome: a systematic review and meta-analysis. Critical care (London, England). 2014;18(2):R63.
46. Munshi L, Gershengorn HB, Fan E, Wunsch H, Ferguson ND, Stukel TA, et al. Adjuvants to Mechanical Ventilation for Acute Respiratory Failure. Adoption, De-adoption, and Factors Associated with Selection. Annals of the American Thoracic Society. 2017;14(1):94-102.
47. Meade MO, Jacka MJ, Cook DJ, Dodek P, Griffith L, Guyatt GH. Survey of interventions for the prevention and treatment of acute respiratory distress syndrome. Critical care medicine. 2004;32(4):946-54.
48. Hoste EA, De Corte W. Implementing the Kidney Disease: Improving Global Outcomes/acute kidney injury guidelines in ICU patients. Current opinion in critical care. 2013;19(6):544-53.
49. Hoste EA, Schurgers M. Epidemiology of acute kidney injury: how big is the problem? Critical care medicine. 2008;36(4 Suppl):S146-51.
50. Liu KD, Matthay MA. Advances in critical care for the nephrologist: acute lung injury/ARDS. Clinical journal of the American Society of Nephrology : CJASN. 2008;3(2):578-86.
51. Rewa O, Bagshaw SM. Acute kidney injury-epidemiology, outcomes and economics. Nature reviews Nephrology. 2014;10(4):193-207.
52. Valvini EM, Young JD. Serum nitrogen oxides during nitric oxide inhalation. Br J Anaesth. 1995;74.
53. Troncy E, Francoeur M, Salazkin I, Yang F, Charbonneau M, Leclerc G, et al. Extra-pulmonary effects of inhaled nitric oxide in swine with and without phenylephrine. British journal of anaesthesia. 1997;79(5):631-40.
54. Preiser JC, Backer D, Debelle F, Vray B, Vincent JL. The metabolic fate of long-term inhaled nitric oxide. J Crit Care. 1998;13.
55. Kielbasa WB, Fung HL. Systemic biochemical effects of inhaled NO in rats: increased expressions of NOS III, nitrotyrosine-, and phosphotyrosine-immunoreactive proteins in liver and kidney tissues. Nitric Oxide. 2001;5.
56. Wraight WM, Young JD. Renal effects of inhaled nitric oxide in humans. Br J Anaesth. 2001;86.
57. Da J, Chen L, Hedenstierna G. Nitric oxide up-regulates the glucocorticoid receptor and blunts the inflammatory reaction in porcine endotoxin sepsis. Crit Care Med. 2007;35.
58. Gozdzik W, Albert J, Harbut P, Zielinski S, Ryniak S, Lindwall R. Prolonged exposure to inhaled nitric oxide transiently modifies tubular function in healthy piglets and promotes tubular apoptosis. Acta Physiol (Oxf). 2009;195.
59. Taylor RW, Zimmerman JL, Dellinger RP, Straube RC, Criner GJ, Davis K, Jr., et al. Low-dose inhaled nitric oxide in patients with acute lung injury: a randomized controlled trial. Jama. 2004;291(13):1603-9.
60. Adhikari NK, Burns KE, Friedrich JO, Granton JT, Cook DJ, Meade MO. Effect of nitric oxide on oxygenation and mortality in acute lung injury: systematic review and meta-analysis. BMJ (Clinical research ed). 2007;334(7597):779.
61. Afshari A, Brok J, Moller AM, Wetterslev J. Inhaled nitric oxide for acute respiratory distress syndrome and acute lung injury in adults and children: a systematic review with meta-analysis and trial sequential analysis. Anesthesia and analgesia. 2011;112(6):1411-21.
62. Kleinbaum DG, Klein M. Survival analysis : a self-learning text. New York, NY: Springer; 2005.
63. Lunn M, McNeil D. Applying Cox regression to competing risks. Biometrics. 1995;51(2):524-32.
64. Bakoyannis G, Touloumi G. Practical methods for competing risks data: a review. Statistical methods in medical research. 2012;21(3):257-72.
65. Dignam JJ, Zhang Q, Kocherginsky M. The use and interpretation of competing risks regression models. Clinical cancer research : an official journal of the American Association for Cancer Research. 2012;18(8):2301-8.
66. Fine JP, Gray RJ. A Proportional Hazards Model for the Subdistribution of a Competing Risk. Journal of the American Statistical Association. 1999;94(446):496-509.
67. Ruan PK, Gray RJ. Analyses of cumulative incidence functions via non-parametric multiple imputation. Statistics in medicine. 2008;27(27):5709-24.
68. Koyner JL. Assessment and diagnosis of renal dysfunction in the ICU. Chest. 2012;141(6):1584-94.
69. Chawla LS, Eggers PW, Star RA, Kimmel PL. Acute kidney injury and chronic kidney disease as interconnected syndromes. The New England journal of medicine. 2014;371(1):58-66.
70. Moher D, Liberati A, Tetzlaff J, Altman DG. Preferred reporting items for systematic reviews and meta-analyses: the PRISMA statement. PLoS Med. 2009;6.
71. Higgins JP, Altman DG, Gotzsche PC, Juni P, Moher D, Oxman AD. The Cochrane Collaboration’s tool for assessing risk of bias in randomised trials. BMJ. 2011;343.
72. Harrison RJ, Bradburn MJ, Deeks JJ, Harbord RM, Altman DG, Sterne JAC. Metan: fixed- and random-effects meta-analysis. The Stata Journal. 2008;8.
73. Bradburn MJ, Deeks JJ, Berlin JA, Russell LA. Much ado about nothing: a comparison of the performance of meta-analytical methods with rare events. Stat Med. 2007;26.
74. Higgins JP, Thompson SG, Deeks JJ, Altman DG. Measuring inconsistency in meta-analyses. BMJ (Clinical research ed). 2003;327.
75. Egger M, Davey Smith G, Schneider M, Minder C. Bias in meta-analysis detected by a simple, graphical test. BMJ. 1997;315.
76. Schneeweiss S. A basic study design for expedited safety signal evaluation based on electronic healthcare data. Pharmacoepidemiology and drug safety. 2010;19(8):858-68.
77. Cockcroft DW, Gault MH. Prediction of creatinine clearance from serum creatinine. Nephron. 1976;16(1):31-41.
78. Rubin DB. Estimating causal effects from large data sets using propensity scores. Annals of internal medicine. 1997;127(8 Pt 2):757-63.
79. Austin PC. Optimal caliper widths for propensity-score matching when estimating differences in means and differences in proportions in observational studies. Pharmaceutical statistics. 2011;10(2):150-61.
80. Fine J, Gray R. A proportional hazards model for the subdistribution of a competing risk. J Am Stat Assoc. 1999;94:496-509.
81. Schneeweiss S. Sensitivity analysis and external adjustment for unmeasured confounders in epidemiologic database studies of therapeutics. Pharmacoepidemiology and drug safety. 2006;15(5):291-303.
82. Perazella MA. Renal vulnerability to drug toxicity. Clinical journal of the American Society of Nephrology : CJASN. 2009;4(7):1275-83.
83. Ruan SY, Huang TM, Wu HY, Wu HD, Yu CJ, Lai MS. Inhaled nitric oxide therapy and risk of renal dysfunction: a systematic review and meta-analysis of randomized trials. Critical care (London, England). 2015;19:137.
84. Cuthbertson BH, Dellinger P, Dyar OJ, Evans TE, Higenbottam T, Latimer R, et al. UK guidelines for the use of inhaled nitric oxide therapy in adult ICUs. American-European Consensus Conference on ALI/ARDS. Intensive care medicine. 1997;23(12):1212-8.
85. Soto GJ, Frank AJ, Christiani DC, Gong MN. Body mass index and acute kidney injury in the acute respiratory distress syndrome. Critical care medicine. 2012;40(9):2601-8.
86. Freemantle N, Marston L, Walters K, Wood J, Reynolds MR, Petersen I. Making inferences on treatment effects from real world data: propensity scores, confounding by indication, and other perils for the unwary in observational research. BMJ (Clinical research ed). 2013;347:f6409.
87. Haukoos JS, Lewis RJ. The Propensity Score. Jama. 2015;314(15):1637-8.
88. Cepeda MS, Boston R, Farrar JT, Strom BL. Comparison of logistic regression versus propensity score when the number of events is low and there are multiple confounders. American journal of epidemiology. 2003;158(3):280-7.
89. Arbogast PG, Ray WA. Performance of disease risk scores, propensity scores, and traditional multivariable outcome regression in the presence of multiple confounders. American journal of epidemiology. 2011;174(5):613-20.
90. Kurth T, Walker AM, Glynn RJ, Chan KA, Gaziano JM, Berger K, et al. Results of multivariable logistic regression, propensity matching, propensity adjustment, and propensity-based weighting under conditions of nonuniform effect. American journal of epidemiology. 2006;163(3):262-70.
91. Kane-Gill SL, Goldstein SL. Drug-Induced Acute Kidney Injury: A Focus on Risk Assessment for Prevention. Critical care clinics. 2015;31(4):675-84.
92. Andersen PK, Geskus RB, de Witte T, Putter H. Competing risks in epidemiology: possibilities and pitfalls. International journal of epidemiology. 2012;41(3):861-70.
93. Bentley ML, Corwin HL, Dasta J. Drug-induced acute kidney injury in the critically ill adult: recognition and prevention strategies. Critical care medicine. 2010;38(6 Suppl):S169-74.
94. Bonventre JV, Yang L. Cellular pathophysiology of ischemic acute kidney injury. The Journal of clinical investigation. 2011;121(11):4210-21.
95. Sharfuddin AA, Molitoris BA. Pathophysiology of ischemic acute kidney injury. Nature reviews Nephrology. 2011;7(4):189-200.
96. Lukaszewicz AC, Mebazaa A, Callebert J, Mateo J, Gatecel C, Kechiche H. Lack of alteration of endogenous nitric oxide pathway during prolonged nitric oxide inhalation in intensive care unit patients. Critical care medicine. 2005;33.
97. Morsy MA, Ibrahim SA, Amin EF, Kamel MY, Rifaai RA, Hassan MK. Sildenafil ameliorates gentamicin-induced nephrotoxicity in rats: role of iNOS and eNOS. J Toxicol. 2014;2014.
98. Blanchard B, Dendane M, Gallard JF, Houee-Levin C, Karim A, Payen D. Oxidation, nitrosation, and nitration of serotonin by nitric oxide-derived nitrogen oxides: biological implications in the rat vascular system. Nitric Oxide. 1997;1(6):442-52.
99. Han M, Guo Z, Li G, Sang N. Nitrogen dioxide inhalation induces genotoxicity in rats. Chemosphere. 2013;90(11):2737-42.
100.Lameire N, Vanholder R, Van Biesen W, Benoit D. Acute kidney injury in critically ill cancer patients: an update. Critical care (London, England). 2016;20(1):209.
101. Chen LX, Koyner JL. Biomarkers in Acute Kidney Injury. Critical care clinics. 2015;31(4):633-48.
dc.identifier.urihttp://tdr.lib.ntu.edu.tw/jspui/handle/123456789/60001-
dc.description.abstract背景: 吸入性一氧化氮(Inhaled nitric oxide)是一種血管擴張藥物,可選擇性擴張肺部血管,而不會影響周邊血管造成低血壓,臨床上被用於急性呼吸窘迫症候群(Acute respiratory distress syndrome)、及肺血管高壓相關疾病的治療。過去的研究顯示,吸入性一氧化氮具有很好的藥物安全性。但有零星的資料顯示,一氧化氮治療可能會帶來腎損傷風險,然而未有定論。因此,我們欲利用統合分析的方法,分析已發表的隨機臨床試驗,以評估一氧化氮治療是否會升高腎損傷之風險,並利用觀察性研究,評估該風險在一般臨床情境中之高低,以及該風險與病人之背景腎功能和疾病嚴重度之間的交互作用。
方法: 首先,我們以系統性文獻回顧及統合分析的方法,找出已發表的隨機臨床試驗,進行評估吸入性一氧化氮與腎損傷風險之間的關係。統合分析之主要方法是採用隨機效應模型(Random-effects model)。在敏感性分析中,我們亦使用不同的統合分析模型,來了解不同分析方法對風險估計的影響。研究的第二部分,我們利用台灣一醫學中心的資料,來進行世代研究,評估一氧化氮所帶來的腎損傷導致血液透析的風險,是否與統合分析所觀察到的風險大小一致,並評估該風險與病人之背景腎功能和疾病嚴重度之間有無交互作用。我們利用傾向分數(Propensity score)配對、及競爭風險分析(Competing-risks analysis)的方法,來進行資料的分析。
結果: 研究的第一部分,經由系統性文獻回顧共找出10個隨機臨床試驗,包含了1363位受試者。其中有4個臨床試驗(919位受試者)是屬於急性呼吸窘迫症候群,另6個研究受試者是肺高壓及其他族群。統合分析的結果顯示,吸入性一氧化氮的治療顯著地增加腎損傷的風險(相對風險1.4倍, 95%信賴區間: 1.06-1.83),尤其是在急性呼吸窘迫症候群的病人中風險更高(相對風險1.55倍, 95%信賴區間: 1.15-2.09)。第二部份的世代研究納入了547位急性呼吸窘迫症候群的病人,其中包含216位吸入性一氧化氮使用者。吸入性一氧化氮引起腎衰竭的未調整風險比值為2.23倍(95%信賴區間: 1.61-3.09),經傾向分數配對及競爭風險分析之計算後,調整後之風險比值為1.59倍(95%信賴區間: 1.08-2.34),年齡對於此風險有修飾作用(p-value for interaction = 0.05),年齡大於65歲者,更易遭受吸入性一氧化氮所引起腎衰竭之危害。
結論: 我們的研究結果顯示,吸入性一氧化氮會升高急性呼吸窘迫症候群病人發生腎衰竭的風險,尤其在老年患者此風險會更加升高。臨床上若使用吸入性一氧化氮治療病人時,建議應規則監測腎功能,以即時發現腎功能之變化而能做出適當的處置。將來吸入性一氧化氮相關之臨床試驗,亦應注意此一藥物安全議題。
zh_TW
dc.description.abstractBackground: Inhaled nitric oxide (iNO) possesses the therapeutic effects of selective pulmonary vasodilatation without causing systemic hypotension and is a therapy for acute respiratory distress syndrome (ARDS) and pulmonary arterial hypertension. Previous studies suggest that iNO therapy has a good safety profile and its potential adverse effects are usually mild. However, safety concerns regarding iNO and renal dysfunction have been reported but remains controversial. Our objectives were using the data from published randomized controlled trials (RCTs) to ascertain the risk of renal dysfunction associated with iNO therapy and to evaluate the risk magnitude in real-world practice by a cohort study.
Methods: Firstly, we conduct a systematic review of randomized trials to evaluate the risk of renal dysfunction associated with iNO therapy. Effect estimates for risk ratio of renal dysfunction were pooled using a random-effects model with the DerSimonian and Laird method. Sensitivity analysis by different data synthesis models was performed to check the robustness of the effect estimate. Secondly, we conducted a hospital-based cohort study to evaluate the risk of iNO-associated renal dysfunction in real-world practice. Propensity score matching and competing-risks analysis were used for data analysis. We also explore the effect modification by age, baseline renal function and disease severity.
Results: Through the systematic review, 10 RCTs involving a total of 1363 patients were identified. The study population was ARDS in 4 trials (919 subjects) and pulmonary hypertension and other diseases in 6 trials. Meta-analysis showed that iNO therapy significantly increased the risk of renal dysfunction (Risk ratio = 1.4, 95%CI, 1.06-1.83), especially in patients with ARDS (Risk ratio = 1.55, 95%CI, 1.15 to 2.09). In addition, the cohort study enrolled 547 patients with ARDS, including 216 iNO users. The crude hazard ratio of renal failure requiring renal replacement therapy in iNO-users compared with non-users was 2.23 (95% CI, 1.61-3.09). After propensity score matching and competing-risks analysis, the adjusted hazard ratio was 1.59 (95% CI, 1.08-2.34). Older aged patients (≥65 years) were more susceptible to iNO-associated kidney injury than younger patients (p-value for interaction = 0.05).
Conclusions: Our findings suggest that iNO therapy substantially increased the risk of renal dysfunction in patients with ARDS. Older aged patients were especially susceptible to this adverse event. We suggest that renal function should be monitored during iNO therapy and that future clinical trials of iNO should evaluate renal safety.
en
dc.description.provenanceMade available in DSpace on 2021-06-16T09:49:51Z (GMT). No. of bitstreams: 1
ntu-105-F00849033-1.pdf: 1612658 bytes, checksum: 6dcce900055107c8e3b33e2f31d664d5 (MD5)
Previous issue date: 2016
en
dc.description.tableofcontents1. Literature Review p1
1.1. Inhaled nitric oxide (iNO) p1
1.1.1. Mechanism of action of inhaled nitric oxide p1
1.1.2. Pharmacokinetics of inhaled nitric oxide p2
1.1.3. Clinical applications of inhaled nitric oxide p3
1.1.4. Safety issues and extra-pulmonary effects of inhaled nitric oxide p4
1.2. Acute respiratory distress syndrome (ARDS) p6
1.2.1. Epidemiology and significance p6
1.2.2. Clinical course and organ dysfunction in ARDS p7
1.2.3. Incidence and risk factors of renal dysfunction in ARDS p9
1.3. Inhaled nitric oxide and renal dysfunction p10
1.3.1. Bench studies investigating the effects of inhaled nitric oxide on kidneys p10
1.3.2. Renal safety data of inhaled nitric oxide from clinical trials and the discrepancy with bench studies p10
1.4. Death as a competing risk in the evaluation of renal safety outcomes p12
1.4.1. Competing risks in survival analysis p12
1.4.2. Effect of death on outcome measure in this study p13
1.5. Objectives p14
1.5.1. To evaluate iNO-associated risk of renal dysfunction through systematic review of randomized controlled trials p14
1.5.2. To evaluate iNO-associated risk of renal dysfunction in daily clinical practice p14
1.5.3. To explore possible effect modification by patient-specific factors p15
2. Materials and Method p16
2.1. Systematic review and meta-analysis of randomized controlled trials for iNO-associated risk of renal dysfunction p16
2.1.1. Data source and search strategy p16
2.1.2. Study selection and assessment of risk of bias p16
2.1.3. Data synthesis p17
2.2. Inhaled nitric oxide and risk of renal dysfunction in daily clinical practice: a hospital-based cohort study p19
2.2.1. Data source and study population p19
2.2.2. Defining exposure and outcome p20
2.2.3. Covariates p20
2.2.4. Statistical analysis p21
3. Results p23
3.1. Systematic review and meta-analysis of randomized trials p23
3.1.1. Literature search and study characteristics p23
3.1.2. Risk of acute kidney injury with any severity p24
3.1.3. Risk of incident renal replacement therapy p25
3.1.4. Sensitivity analysis by data synthesis methods p25
3.1.5. Subgroup analysis by patient population p25
3.1.6. Dose-response relationship p26
3.2. Propensity-matched cohort study p27
3.2.1. Descriptive analysis of study cohort and the use of inhaled nitric oxide p27
3.2.2. Crude hazard ratio of incident renal replacement therapy p27
3.2.3. Propensity score distribution and matching p28
3.2.4. Adjusted hazard ratio of incident renal replacement therapy p28
3.2.5. Sensitivity analysis p29
3.2.6. Effect modification p29
3.2.7. Evaluating the influence of unmeasured confounders p30
4. Discussion p31
4.1. Interpretation of the main study findings p31
4.2. Implications in clinical practice p32
4.3. Comparison of propensity score-based methods and traditional regression for confounder control in this study p33
4.4. Influence of unmeasured confounders p35
4.5. Effect estimate in the presence of competing risks p36
4.6. Effect modification by risk factors of drug-related kidney injury p38
4.7. Possible mechanism for iNO-related nephrotoxicity p39
4.8. Limitations p40
4.9. Future research p42
5. References p45
6. Table 1-11 p53
7. Figure 1-11 p67
8. Appendixes p78
dc.language.isoen
dc.subject急性呼吸窘迫症候群zh_TW
dc.subject急性腎損傷zh_TW
dc.subject不良反應zh_TW
dc.subject一氧化氮zh_TW
dc.subject血液透析zh_TW
dc.subjectAcute respiratory distress syndromeen
dc.subjectacute kidney injuryen
dc.subjectadverse effecten
dc.subjectnitric oxideen
dc.subjectrenal replacement therapyen
dc.title吸入性一氧化氮治療發生腎衰竭風險之研究:臨床試驗統合分析及世代研究之證據zh_TW
dc.titleInhaled Nitric Oxide Related Risk of Renal Dysfunction in Acute Respiratory Distress Syndrome: Evidence from Randomized Trials by Meta-analysis and Cohort Studyen
dc.typeThesis
dc.date.schoolyear105-1
dc.description.degree博士
dc.contributor.oralexamcommittee陳建煒,余忠仁,杜裕康,林先和
dc.subject.keyword急性呼吸窘迫症候群,急性腎損傷,不良反應,一氧化氮,血液透析,zh_TW
dc.subject.keywordAcute respiratory distress syndrome,acute kidney injury,adverse effect,nitric oxide,renal replacement therapy,en
dc.relation.page84
dc.identifier.doi10.6342/NTU201700040
dc.rights.note有償授權
dc.date.accepted2017-01-19
dc.contributor.author-college公共衛生學院zh_TW
dc.contributor.author-dept流行病學與預防醫學研究所zh_TW
顯示於系所單位:流行病學與預防醫學研究所

文件中的檔案:
檔案 大小格式 
ntu-105-1.pdf
  未授權公開取用
1.57 MBAdobe PDF
顯示文件簡單紀錄


系統中的文件,除了特別指名其著作權條款之外,均受到著作權保護,並且保留所有的權利。

社群連結
聯絡資訊
10617臺北市大安區羅斯福路四段1號
No.1 Sec.4, Roosevelt Rd., Taipei, Taiwan, R.O.C. 106
Tel: (02)33662353
Email: ntuetds@ntu.edu.tw
意見箱
相關連結
館藏目錄
國內圖書館整合查詢 MetaCat
臺大學術典藏 NTU Scholars
臺大圖書館數位典藏館
本站聲明
© NTU Library All Rights Reserved