Skip navigation

DSpace JSPUI

DSpace preserves and enables easy and open access to all types of digital content including text, images, moving images, mpegs and data sets

Learn More
DSpace logo
English
中文
  • Browse
    • Communities
      & Collections
    • Publication Year
    • Author
    • Title
    • Subject
    • Advisor
  • Search TDR
  • Rights Q&A
    • My Page
    • Receive email
      updates
    • Edit Profile
  1. NTU Theses and Dissertations Repository
  2. 生命科學院
  3. 生化科學研究所
Please use this identifier to cite or link to this item: http://tdr.lib.ntu.edu.tw/jspui/handle/123456789/59968
Full metadata record
???org.dspace.app.webui.jsptag.ItemTag.dcfield???ValueLanguage
dc.contributor.advisor蕭超隆(Chiaolong Hsiao)
dc.contributor.authorShu-Huai Hsuen
dc.contributor.author許書懷zh_TW
dc.date.accessioned2021-06-16T09:47:54Z-
dc.date.available2017-02-16
dc.date.copyright2017-02-16
dc.date.issued2017
dc.date.submitted2017-01-23
dc.identifier.citationReference
1. Moore, P.B. (1999) Structural motifs in RNA. Annual review of biochemistry, 68, 287-300.
2. Leontis, N.B. and Westhof, E. (2003) Analysis of RNA motifs. Current Opinion in Structural Biology, 13, 300-308.
3. Hendrix, D.K., Brenner, S.E. and Holbrook, S.R. (2005) RNA structural motifs: building blocks of a modular biomolecule. Q Rev Biophys, 38, 221-243.
4. Zuker, M. (1989) [20] Computer prediction of RNA structure. Methods in enzymology, 180, 262-288.
5. Gutell, R. (1996) Comparative sequence analysis and the structure of 16S and 23S rRNA. Ribosomal RNA: structure, evolution, processing, and function in protein biosynthesis, 111-128.
6. Mathews, D.H., Andre, T.C., Kim, J., Turner, D.H. and Zuker, M. (1997) An Updated Recursive Algorithm for RNA Secondary Structure Prediction with Improved Thermodynamic Parameters. 682, 246-257.
7. Rivas, E. and Eddy, S.R. (1999) A dynamic programming algorithm for RNA structure prediction including pseudoknots. Journal of molecular biology, 285, 2053-2068.
8. Hofacker, I.L. (2003) Vienna RNA secondary structure server. Nucleic Acids Research, 31, 3429-3431.
9. Hsiao, C., Mohan, S., Hershkovitz, E., Tannenbaum, A. and Williams, L.D. (2006) Single nucleotide RNA choreography. Nucleic Acids Res, 34, 1481-1491.
10. Tuerk, C., Gauss, P., Thermes, C., Groebe, D.R., Gayle, M., Guild, N., Stormo, G., d'Aubenton-Carafa, Y., Uhlenbeck, O.C. and Tinoco, I. (1988) CUUCGG hairpins: extraordinarily stable RNA secondary structures associated with various biochemical processes. Proceedings of the National Academy of Sciences, 85, 1364-1368.
11. Selinger, D., Liao, X. and Wise, J.A. (1993) Functional interchangeability of the structurally similar tetranucleotide loops GAAA and UUCG in fission yeast signal recognition particle RNA. Proceedings of the National Academy of Sciences, 90, 5409-5413.
12. Michel, F. and Westhof, E. (1990) Modelling of the three-dimensional architecture of group I catalytic introns based on comparative sequence analysis. Journal of molecular biology, 216, 585-610.
13. Jaeger, L., Michel, F. and Westhof, E. (1994) Involvement of a GNRA tetraloop in long-range RNA tertiary interactions. Journal of molecular biology, 236, 1271-1276.
14. Puglisi, J.D., Tan, R., Calnan, B.J., Frankel, A.D. and Williamson, J.R. (1992) Conformation of the TAR RNA-arginine complex by NMR spectroscopy. Science, 257, 76-80.
15. Cate, J.H., Gooding, A.R., Podell, E. and Zhou, K. (1996) Crystal structure of a group I ribozyme domain: principles of RNA packing. Science, 273, 1678.
16. Klein, D.J., Schmeing, T.M., Moore, P.B. and Steitz, T.A. (2001) The kink-turn: a new RNA secondary structure motif. The EMBO Journal, 20, 4214-4221.
17. Montange, R.K. and Batey, R.T. (2006) Structure of the S-adenosylmethionine riboswitch regulatory mRNA element. Nature, 441, 1172-1175.
18. Blouin, S. and Lafontaine, D.A. (2007) A loop loop interaction and a K-turn motif located in the lysine aptamer domain are important for the riboswitch gene regulation control. RNA, 13, 1256-1267.
19. Moore, T., Zhang, Y., Fenley, M.O. and Li, H. (2004) Molecular basis of box C/D RNA-protein interactions; cocrystal structure of archaeal L7Ae and a box C/D RNA. Structure, 12, 807-818.
20. Hamma, T. and Ferre-D'Amare, A.R. (2004) Structure of protein L7Ae bound to a K-turn derived from an archaeal box H/ACA sRNA at 1.8 A resolution. Structure, 12, 893-903.
21. Rozhdestvensky, T.S., Tang, T.H., Tchirkova, I.V., Brosius, J., Bachellerie, J.P. and HuÈttenhofer, A. (2003) Binding of L7Ae protein to the K‐turn of archaeal snoRNAs: a shared RNA binding motif for C/D and H/ACA box snoRNAs in Archaea. Nucleic acids research, 31, 869-877.
22. Leontis, N.B. and Westhof, E. (1998) A common motif organizes the structure of multi-helix loops in 16 S and 23 S ribosomal RNAs. Journal of molecular biology, 283, 571-583.
23. Chan, R.T., Robart, A.R., Rajashankar, K.R., Pyle, A.M. and Toor, N. (2012) Crystal structure of a group II intron in the pre-catalytic state. Nat Struct Mol Biol, 19, 555-557.
24. Correll, C.C., Wool, I.G. and Munishkin, A. (1999) The two faces of the Escherichia coli 23 S rRNA sarcin/ricin domain: the structure at 1.11 Å resolution. Journal of molecular biology, 292, 275-287.
25. Lancaster, L., Lambert, N.J., Maklan, E.J., Horan, L.H. and Noller, H.F. (2008) The sarcin-ricin loop of 23S rRNA is essential for assembly of the functional core of the 50S ribosomal subunit. RNA, 14, 1999-2012.
26. Shi, X., Khade, P.K., Sanbonmatsu, K.Y. and Joseph, S. (2012) Functional role of the sarcin-ricin loop of the 23S rRNA in the elongation cycle of protein synthesis. J Mol Biol, 419, 125-138.
27. Yamamoto, H., Qin, Y., Achenbach, J., Li, C., Kijek, J., Spahn, C.M. and Nierhaus, K.H. (2014) EF-G and EF4: translocation and back-translocation on the bacterial ribosome. Nat Rev Microbiol, 12, 89-100.
28. Anger, A.M., Armache, J.P., Berninghausen, O., Habeck, M., Subklewe, M., Wilson, D.N. and Beckmann, R. (2013) Structures of the human and Drosophila 80S ribosome. Nature, 497, 80-85.
29. Khatter, H., Myasnikov, A.G., Natchiar, S.K. and Klaholz, B.P. (2015) Structure of the human 80S ribosome. Nature, 520, 640-645.
30. Gabdulkhakov, A., Nikonov, S. and Garber, M. (2013) Revisiting the Haloarcula marismortui 50S ribosomal subunit model. Acta Crystallogr D Biol Crystallogr, 69, 997-1004.
31. Melnikov, S., Mailliot, J., Shin, B.S., Rigger, L., Yusupova, G., Micura, R., Dever, T.E. and Yusupov, M. (2016) Crystal Structure of Hypusine-Containing Translation Factor eIF5A Bound to a Rotated Eukaryotic Ribosome. J Mol Biol, 428, 3570-3576.
32. Zhong, C. and Zhang, S. (2012) Clustering RNA structural motifs in ribosomal RNAs using secondary structural alignment. Nucleic Acids Res, 40, 1307-1317.
33. Strobel, S.A., Adams, P.L., Stahley, M.R. and Wang, J. (2004) RNA kink turns to the left and to the right. RNA, 10, 1852-1854.
34. Bernier, C.R., Petrov, A.S., Waterbury, C.C., Jett, J., Li, F., Freil, L.E., Xiong, X., Wang, L., Migliozzi, B.L., Hershkovits, E. et al. (2014) RiboVision suite for visualization and analysis of ribosomes. Faraday Discuss, 169, 195-207.
35. Hsiao, C., Mohan, S., Kalahar, B.K. and Williams, L.D. (2009) Peeling the onion: ribosomes are ancient molecular fossils. Mol Biol Evol, 26, 2415-2425.
36. Neefs, J.-M. and De Wachter, R. (1990) A proposal for the secondary structure of a variable area of eukaryotic small ribosomal subunit RNA involving the existence of a pseudoknot. Nucleic acids research, 18, 5695-5704.
37. Gerbi, S.A. (1986) The evolution of eukaryotic ribosomal DNA. Biosystems, 19, 247-258.
38. Gerbi, S. (1996) Expansion segments: regions of variable size that interrupt the universal core secondary structure of ribosomal RNA. Ribosomal RNA structure, evolution, processing, and function in protein biosynthesis, 87.
39. Alkemar, G. (2003) A possible tertiary rRNA interaction between expansion segments ES3 and ES6 in eukaryotic 40S ribosomal subunits. Rna, 9, 20-24.
40. Doris, S.M., Smith, D.R., Beamesderfer, J.N., Raphael, B.J., Nathanson, J.A. and Gerbi, S.A. (2015) Universal and domain-specific sequences in 23S-28S ribosomal RNA identified by computational phylogenetics. RNA, 21, 1719-1730.
41. Petrov, A.S., Bernier, C.R., Hsiao, C., Norris, A.M., Kovacs, N.A., Waterbury, C.C., Stepanov, V.G., Harvey, S.C., Fox, G.E., Wartell, R.M. et al. (2014) Evolution of the ribosome at atomic resolution. Proc Natl Acad Sci U S A, 111, 10251-10256.
42. Ciriello, G., Gallina, C. and Guerra, C. (2010) Analysis of interactions between ribosomal proteins and RNA structural motifs. BMC Bioinformatics, 11 Suppl 1, S41.
43. Nissen, P., Ippolito, J.A., Ban, N., Moore, P.B. and Steitz, T.A. (2001) RNA tertiary interactions in the large ribosomal subunit: the A-minor motif. Proc Natl Acad Sci U S A, 98, 4899-4903.
44. Leontis, N.B., Stombaugh, J. and Westhof, E. (2002) The non‐Watson–Crick base pairs and their associated isostericity matrices. Nucleic acids research, 30, 3497-3531.
45. Fox, G.E. (2010) Origin and evolution of the ribosome. Cold Spring Harb Perspect Biol, 2, a003483.
46. Klein, D.J., Moore, P.B. and Steitz, T.A. (2004) The roles of ribosomal proteins in the structure assembly, and evolution of the large ribosomal subunit. J Mol Biol, 340, 141-177.
47. Röhl, R. and Nierhaus, K.H. (1982) Assembly map of the large subunit (50S) of Escherichia coli ribosomes. Proceedings of the National Academy of Sciences, 79, 729-733.
48. Spahn, C.M., Beckmann, R., Eswar, N., Penczek, P.A., Sali, A., Blobel, G. and Frank, J. (2001) Structure of the 80S ribosome from Saccharomyces cerevisiae—tRNA-ribosome and subunit-subunit interactions. Cell, 107, 373-386.
dc.identifier.urihttp://tdr.lib.ntu.edu.tw/jspui/handle/123456789/59968-
dc.description.abstract核醣體是所有生命體中不可或缺的蛋白質轉譯的工廠。核醣體的基本結構包含了重複性的核醣核酸二級結構,又稱作模體(motifs),像是A-helix, tetraloop, kink-turn, E-loop等。核醣核酸模體被認為具有:(1)啟動及輔助核醣核酸的折疊,(2)提供辨識的平台以形成三級結構,(3)穩定核醣核酸分子的複合體。近年來,在單一粒子冷凍電子顯微鏡的輔助下,一些非常複雜的真核生物的核醣體結構,像是智人80S的核醣體,得以在接近原子層級的解析度下被解析出來。智人的60S核醣體中的大次單元中包含了28S、5.8S、5S核醣體核醣核酸和47個核醣體蛋白質,並且擁有著比細菌及古菌的50S核醣體多出了21個值得注意的擴張片段(expansion segments)。 在這篇論文中,我們利用結構探勘去針對智人60S核醣體中的tetraloop, kink-turn, E-loop三種核醣核酸模體進行重複的搜尋。到目前為止,我們總共在智人的28S核醣體核醣核酸中鑑定並驗證出59組核醣核酸模體(33組tetraloops,20組kink-turns,6組E-loops)。接著,藉由核醣體洋蔥模型(onion model),我們發現智人的28S核醣核酸模體會和核醣體的大次單元共同演化。另外,從古生菌到真核生物的4種物種的核醣體的交叉比較分析中,顯示出核醣核酸模體極有可能是智人核醣體的大次單元中的擴張片段所坐落的位置。zh_TW
dc.description.abstractRibosome, the machinery of translation, is essential in all living organisms. The fundamental architecture of the ribosome consists of repetitive RNA secondary structures, including A-helix, tetraloop, kink-turn, E-loop, etc., which are so-called motifs. The RNA motifs are thought to (i) initiate and facilitate the RNA folding, (ii) provide recognition platforms to form tertiary structures, and (iii) stabilize complex RNA molecules. Recently, some very complicated structures of the eukaryotic ribosomes, for example, the Homo sapiens 80S ribosome, are revealed at near-atomic resolution in the assist of single-particle cryo-electron microscopy. The large subunit of the H. sapiens 60S ribosome, which consists of 28S, 5.8S, and 5S rRNAs and 47 ribosomal proteins, has notable 21 rRNA expansion segments, compared to that of bacterial and archaeal 50S ribosomes. Here we perform the structural mining to recursively search for RNA motifs, including tetraloops, kink-turns, and E-loops within the H. sapiens 60S ribosome. By far, a total of 59 RNA motifs from the H. sapiens 28S rRNA (33 tetraloops; 20 kink-turns; 6 E-loops) are identified and verified. By using the onion model of the ribosome, the H. sapiens 28S rRNA motifs are shown to be adaptively co-evolved with the large subunit of the ribosome. In addition, the cross-comparison analysis on structures of the four species ribosomes from Archaea and Eukarya, indicates that RNA motifs are plausible sites for expansion segments in the large subunit of the H. sapiens 60S ribosome.en
dc.description.provenanceMade available in DSpace on 2021-06-16T09:47:54Z (GMT). No. of bitstreams: 1
ntu-106-R03b46020-1.pdf: 8303348 bytes, checksum: 873dc6928f8f2dac6603953cc6fd5a50 (MD5)
Previous issue date: 2017
en
dc.description.tableofcontentsCONTENTS
論文口試委員審定書 i
謝誌 ii
中文摘要 iii
Abstract iv
CONTENTS vi
FIGURE CONTENTS ix
TABLE CONTENTS x
CHAPTER 1: INTRODUCTION 1
CHAPTER 2: MATERIAL AND METHOD 3
2.1 Bioinformatically search the RNA motifs 3
2.2 Analysis of the RNA motifs evolution by using the onion model of the ribosome from locate H. marismortui LSU 5
2.3 The frequency of rRNA secondary structures in the H. marismortui 23S 6
2.4 Insertion sites of expansion segments from archaea to eukarya LSUs 6
CHAPTER 3: RESULT 7
3.1 Identify Homo Sapiens 28S rRNA motifs 7
3.1.1 Tetraloops 7
3.1.2 E-Loop 8
3.1.3 Kink-turn 8
3.1.4 The RNA motif evolution 13
3.2. RNA motifs at the expansion segments of the H. sapiens LSU 16
3.2.1 RNA motifs are the turning points for the expansion segments of the H. sapiens LSU 16
3.2.2 The frequency of rRNA secondary structures in the H. marismortui 23S 19
3.3 RNA motifs are the plausible sites for expansion segments 20
3.3.1 RNA motifs as insertion sites for expansion segments in ribosome evolution 20
3.3.1.1 H. marismortui vs. S. cerevisiae 21
3.3.1.2 S. cerevisiae vs. D. melanogaster 21
3.3.1.3 D. melanogaster vs. H. sapiens 22
CHAPTER 4: DISCUSSION 25
4.1 Evolution of RNA motifs in the H. sapiens LSU 25
4.2 Sequence preferences for RNA motifs as expansion sites 27
4.3 RNA motifs as insertion sites for expansion segments can be observed also in the SSU of ribosome evolution 30
4.3.1 Escherichia coli vs. S. cerevisiae 30
4.3.2 S. cerevisiae vs. D. melanogaster 30
4.3.3 D. melanogaster vs. H. sapiens 31
Reference 32
Appendix 40
Appendix 1. The RNA motifs mapped on the secondary structure of the Homo Sapiens 28S rRNA (Shannon_Entropy). 40
Appendix 2. The locations of the identified RNA motifs from H. marismortui 23S and H. sapiens 28S. 41
Appendix 3. The frequency of rRNA secondary structures in the H. marismortui (HM) 23S. 45
Appendix 4. RNA motifs as insertion sites for expansion segments in ribosome evolution. 45
Appendix 5. RNA motifs as insertion sites for expansion segments in ribosome evolution(HM 23SSC 25SDM 28S). 48
Appendix 6. RNA motifs as insertion sites for expansion segments in ribosome evolution(SC 25SDM 28SHS 28S). 48
Appendix 7. The RNA motifs in H. Sapiens 28S. 49
dc.language.isoen
dc.subject生物資訊學zh_TW
dc.subject擴張片段zh_TW
dc.subjectE-loopzh_TW
dc.subjectkink-turnzh_TW
dc.subjecttetraloopzh_TW
dc.subject核醣核酸模體zh_TW
dc.subject核醣體的演化zh_TW
dc.subjectkink-turnen
dc.subjectbioinformaticsen
dc.subjectribosomal evolutionen
dc.subjectexpansion segmentsen
dc.subjectRNA motifen
dc.subjectE-loopen
dc.subjecttetraloopen
dc.titleRNA motifs:核醣體演化的轉捩點zh_TW
dc.titleRibosomal evolution at the turning points : the RNA motifsen
dc.typeThesis
dc.date.schoolyear105-1
dc.description.degree碩士
dc.contributor.oralexamcommittee張震東(Geen-Dong Chang),冀宏源(Hung-Yuan Chi)
dc.subject.keyword核醣核酸模體,核醣體的演化,tetraloop,kink-turn,E-loop,擴張片段,生物資訊學,zh_TW
dc.subject.keywordRNA motif,ribosomal evolution,tetraloop,kink-turn,E-loop,expansion segments,bioinformatics,en
dc.relation.page78
dc.identifier.doi10.6342/NTU201700162
dc.rights.note有償授權
dc.date.accepted2017-01-23
dc.contributor.author-college生命科學院zh_TW
dc.contributor.author-dept生化科學研究所zh_TW
Appears in Collections:生化科學研究所

Files in This Item:
File SizeFormat 
ntu-106-1.pdf
  Restricted Access
8.11 MBAdobe PDF
Show simple item record


Items in DSpace are protected by copyright, with all rights reserved, unless otherwise indicated.

社群連結
聯絡資訊
10617臺北市大安區羅斯福路四段1號
No.1 Sec.4, Roosevelt Rd., Taipei, Taiwan, R.O.C. 106
Tel: (02)33662353
Email: ntuetds@ntu.edu.tw
意見箱
相關連結
館藏目錄
國內圖書館整合查詢 MetaCat
臺大學術典藏 NTU Scholars
臺大圖書館數位典藏館
本站聲明
© NTU Library All Rights Reserved