Skip navigation

DSpace

機構典藏 DSpace 系統致力於保存各式數位資料(如:文字、圖片、PDF)並使其易於取用。

點此認識 DSpace
DSpace logo
English
中文
  • 瀏覽論文
    • 校院系所
    • 出版年
    • 作者
    • 標題
    • 關鍵字
  • 搜尋 TDR
  • 授權 Q&A
    • 我的頁面
    • 接受 E-mail 通知
    • 編輯個人資料
  1. NTU Theses and Dissertations Repository
  2. 生物資源暨農學院
  3. 獸醫專業學院
  4. 分子暨比較病理生物學研究所
請用此 Handle URI 來引用此文件: http://tdr.lib.ntu.edu.tw/jspui/handle/123456789/59957
完整後設資料紀錄
DC 欄位值語言
dc.contributor.advisor鄭穹翔(Chiung-Hsiang Cheng)
dc.contributor.authorWei-An Chenen
dc.contributor.author陳薇安zh_TW
dc.date.accessioned2021-06-16T09:47:15Z-
dc.date.available2020-02-21
dc.date.copyright2017-02-21
dc.date.issued2017
dc.date.submitted2017-01-23
dc.identifier.citationAbraham, J., Edgerly, M., Wilson, R., Chen, C., Rutt, A., Bakke, S., . . . Fojo, T. (2009). A phase I study of the P-glycoprotein antagonist tariquidar in combination with vinorelbine. Clin Cancer Res, 15(10), 3574-3582. doi:10.1158/1078-0432.ccr-08-0938
Ahsan, A. (2016). Mechanisms of Resistance to EGFR Tyrosine Kinase Inhibitors and Therapeutic Approaches: An Update. Adv Exp Med Biol, 893, 137-153. doi:10.1007/978-3-319-24223-1_7
Allikmets, R., Gerrard, B., Hutchinson, A., & Dean, M. (1996). Characterization of the human ABC superfamily: isolation and mapping of 21 new genes using the expressed sequence tags database. Hum Mol Genet, 5(10), 1649-1655.
An, X., Tiwari, A. K., Sun, Y., Ding, P. R., Ashby, C. R., Jr., & Chen, Z. S. (2010). BCR-ABL tyrosine kinase inhibitors in the treatment of Philadelphia chromosome positive chronic myeloid leukemia: a review. Leuk Res, 34(10), 1255-1268. doi:10.1016/j.leukres.2010.04.016
Arora, A., & Scholar, E. M. (2005). Role of tyrosine kinase inhibitors in cancer therapy. J Pharmacol Exp Ther, 315(3), 971-979. doi:10.1124/jpet.105.084145
Atadja, P., Watanabe, T., Xu, H., & Cohen, D. (1998). PSC-833, a frontier in modulation of P-glycoprotein mediated multidrug resistance. Cancer Metastasis Rev, 17(2), 163-168.
Axiak-Bechtel, S., Fowler, B., Yu, D. H., Amorim, J., Tsuruta, K., & DeClue, A. (2014). Chemotherapy and remission status do not alter pre-existing innate immune dysfunction in dogs with lymphoma. Res Vet Sci, 97(2), 230-237. doi:10.1016/j.rvsc.2014.07.009
Baer, M. R., George, S. L., Dodge, R. K., O'Loughlin, K. L., Minderman, H., Caligiuri, M. A., . . . Larson, R. A. (2002). Phase 3 study of the multidrug resistance modulator PSC-833 in previously untreated patients 60 years of age and older with acute myeloid leukemia: Cancer and Leukemia Group B Study 9720. Blood, 100(4), 1224-1232.
Baguley, B. C. (2010). Multiple drug resistance mechanisms in cancer. Mol Biotechnol, 46(3), 308-316. doi:10.1007/s12033-010-9321-2
Bhamidipati, P. K., Kantarjian, H., Cortes, J., Cornelison, A. M., & Jabbour, E. (2013). Management of imatinib-resistant patients with chronic myeloid leukemia. Ther Adv Hematol, 4(2), 103-117. doi:10.1177/2040620712468289
Bielecka, Z. F., Czarnecka, A. M., Solarek, W., Kornakiewicz, A., & Szczylik, C. (2014). Mechanisms of Acquired Resistance to Tyrosine Kinase Inhibitors in Clear - Cell Renal Cell Carcinoma (ccRCC). Curr Signal Transduct Ther, 8(3), 218-228. doi:10.2174/1574362409666140206223014
Bienzle, D., & Vernau, W. (2011). The diagnostic assessment of canine lymphoma: implications for treatment. Clin Lab Med, 31(1), 21-39. doi:10.1016/j.cll.2010.10.001
Boesch, D., Gaveriaux, C., Jachez, B., Pourtier-Manzanedo, A., Bollinger, P., & Loor, F. (1991). In vivo circumvention of P-glycoprotein-mediated multidrug resistance of tumor cells with SDZ PSC 833. Cancer Res, 51(16), 4226-4233.
Bonkobara, M. (2015). Dysregulation of tyrosine kinases and use of imatinib in small animal practice. Vet J, 205(2), 180-188. doi:10.1016/j.tvjl.2014.12.015
Botting, G. M., Rastogi, I., Chhabra, G., Nlend, M., & Puri, N. (2015). Mechanism of Resistance and Novel Targets Mediating Resistance to EGFR and c-Met Tyrosine Kinase Inhibitors in Non-Small Cell Lung Cancer. PLoS One, 10(8), e0136155. doi:10.1371/journal.pone.0136155
Bouwman, P., & Jonkers, J. (2012). The effects of deregulated DNA damage signalling on cancer chemotherapy response and resistance. Nat Rev Cancer, 12(9), 587-598. doi:10.1038/nrc3342
Burger, H., van Tol, H., Boersma, A. W., Brok, M., Wiemer, E. A., Stoter, G., & Nooter, K. (2004). Imatinib mesylate (STI571) is a substrate for the breast cancer resistance protein (BCRP)/ABCG2 drug pump. Blood, 104(9), 2940-2942. doi:10.1182/blood-2004-04-1398
Chang, G. (2003). Multidrug resistance ABC transporters. FEBS Lett, 555(1), 102-105.
Chen, Z. S., Kawabe, T., Ono, M., Aoki, S., Sumizawa, T., Furukawa, T., . . . Akiyama, S. I. (1999). Effect of multidrug resistance-reversing agents on transporting activity of human canalicular multispecific organic anion transporter. Mol Pharmacol, 56(6), 1219-1228.
Cheng, J. Q., Jiang, X., Fraser, M., Li, M., Dan, H. C., Sun, M., & Tsang, B. K. (2002). Role of X-linked inhibitor of apoptosis protein in chemoresistance in ovarian cancer: possible involvement of the phosphoinositide-3 kinase/Akt pathway. Drug Resist Updat, 5(3-4), 131-146.
Chou, T. C. (2010). Drug combination studies and their synergy quantification using the Chou-Talalay method. Cancer Res, 70(2), 440-446. doi:10.1158/0008-5472.can-09-1947
Chun, R., Garrett, L. D., & Vail, D. M. (2000). Evaluation of a high-dose chemotherapy protocol with no maintenance therapy for dogs with lymphoma. J Vet Intern Med, 14(2), 120-124.
Dai, C. L., Tiwari, A. K., Wu, C. P., Su, X. D., Wang, S. R., Liu, D. G., . . . Fu, L. W. (2008). Lapatinib (Tykerb, GW572016) reverses multidrug resistance in cancer cells by inhibiting the activity of ATP-binding cassette subfamily B member 1 and G member 2. Cancer Res, 68(19), 7905-7914. doi:10.1158/0008-5472.can-08-0499
Dantzig, A. H., Shepard, R. L., Law, K. L., Tabas, L., Pratt, S., Gillespie, J. S., . . . Wrighton, S. A. (1999). Selectivity of the multidrug resistance modulator, LY335979, for P-glycoprotein and effect on cytochrome P-450 activities. J Pharmacol Exp Ther, 290(2), 854-862.
Daters, A. T., Mauldin, G. E., Mauldin, G. N., Brodsky, E. M., & Post, G. S. (2010). Evaluation of a multidrug chemotherapy protocol with mitoxantrone based maintenance (CHOP-MA) for the treatment of canine lymphoma. Vet Comp Oncol, 8(1), 11-22. doi:10.1111/j.1476-5829.2009.00199.x
Deavall, D. G., Martin, E. A., Horner, J. M., & Roberts, R. (2012). Drug-induced oxidative stress and toxicity. J Toxicol, 2012, 645460. doi:10.1155/2012/645460
Dobson, J. M. (2013). Breed-Predispositions to Cancer in Pedigree Dogs. ISRN Veterinary Science, 2013, 23. doi:10.1155/2013/941275
Dobson, J. M. a. J. (2001). Small Animal Oncology. Ames, Iowa.
Doyle, L. A., Yang, W., Abruzzo, L. V., Krogmann, T., Gao, Y., Rishi, A. K., & Ross, D. D. (1998). A multidrug resistance transporter from human MCF-7 breast cancer cells. Proc Natl Acad Sci U S A, 95(26), 15665-15670.
Drori, S., Jansen, G., Mauritz, R., Peters, G. J., & Assaraf, Y. G. (2000). Clustering of mutations in the first transmembrane domain of the human reduced folate carrier in GW1843U89-resistant leukemia cells with impaired antifolate transport and augmented folate uptake. J Biol Chem, 275(40), 30855-30863. doi:10.1074/jbc.M003988200
Ettinger, S. J., & Feldman, E. C. (2010). Textbook of veterinary internal medicine. . Elesevier, St. Louis.
Ettinger, S. N. (2003). Principles of treatment for feline lymphoma. Clin Tech Small Anim Pract, 18(2), 98-102. doi:10.1053/svms.2003.36623
Falasca, M., & Linton, K. J. (2012). Investigational ABC transporter inhibitors. Expert Opin Investig Drugs, 21(5), 657-666. doi:10.1517/13543784.2012.679339
Ferry, D. R., Traunecker, H., & Kerr, D. J. (1996). Clinical trials of P-glycoprotein reversal in solid tumours. Eur J Cancer, 32a(6), 1070-1081.
Foucquier, J., & Guedj, M. (2015). Analysis of drug combinations: current methodological landscape. Pharmacol Res Perspect, 3(3), e00149. doi:10.1002/prp2.149
Friedenberg, W. R., Rue, M., Blood, E. A., Dalton, W. S., Shustik, C., Larson, R. A., . . . Greipp, P. R. (2006). Phase III study of PSC-833 (valspodar) in combination with vincristine, doxorubicin, and dexamethasone (valspodar/VAD) versus VAD alone in patients with recurring or refractory multiple myeloma (E1A95): a trial of the Eastern Cooperative Oncology Group. Cancer, 106(4), 830-838. doi:10.1002/cncr.21666
Fu, D., Calvo, J. A., & Samson, L. D. (2012). Balancing repair and tolerance of DNA damage caused by alkylating agents. Nat Rev Cancer, 12(2), 104-120. doi:10.1038/nrc3185
Fu, L., Liang, Y., Deng, L., Ding, Y., Chen, L., Ye, Y., . . . Pan, Q. (2004). Characterization of tetrandrine, a potent inhibitor of P-glycoprotein-mediated multidrug resistance. Cancer Chemother Pharmacol, 53(4), 349-356. doi:10.1007/s00280-003-0742-5
Galmarini, C. M., Mackey, J. R., & Dumontet, C. (2001). Nucleoside analogues: mechanisms of drug resistance and reversal strategies. Leukemia, 15(6), 875-890.
Garrett, L. D., Thamm, D. H., Chun, R., Dudley, R., & Vail, D. M. (2002). Evaluation of a 6-month chemotherapy protocol with no maintenance therapy for dogs with lymphoma. J Vet Intern Med, 16(6), 704-709.
Germann, U. A., Shlyakhter, D., Mason, V. S., Zelle, R. E., Duffy, J. P., Galullo, V., . . . Harding, M. W. (1997). Cellular and biochemical characterization of VX-710 as a chemosensitizer: reversal of P-glycoprotein-mediated multidrug resistance in vitro. Anticancer Drugs, 8(2), 125-140.
Glavinas, H., Krajcsi, P., Cserepes, J., & Sarkadi, B. (2004). The role of ABC transporters in drug resistance, metabolism and toxicity. Curr Drug Deliv, 1(1), 27-42.
Gotink, K. J., & Verheul, H. M. (2010). Anti-angiogenic tyrosine kinase inhibitors: what is their mechanism of action? Angiogenesis, 13(1), 1-14. doi:10.1007/s10456-009-9160-6
Gottesman, M. M., Fojo, T., & Bates, S. E. (2002). Multidrug resistance in cancer: role of ATP-dependent transporters. Nat Rev Cancer, 2(1), 48-58. doi:10.1038/nrc706
Greenlee, P. G., Filippa, D. A., Quimby, F. W., Patnaik, A. K., Calvano, S. E., Matus, R. E., . . . Lieberman, P. H. (1990). Lymphomas in dogs. A morphologic, immunologic, and clinical study. Cancer, 66(3), 480-490.
Gridelli, C., De Marinis, F., Di Maio, M., Cortinovis, D., Cappuzzo, F., & Mok, T. (2011). Gefitinib as first-line treatment for patients with advanced non-small-cell lung cancer with activating epidermal growth factor receptor mutation: Review of the evidence. Lung Cancer, 71(3), 249-257. doi:10.1016/j.lungcan.2010.12.008
Gschwind, A., Fischer, O. M., & Ullrich, A. (2004). Timeline - The discovery of receptor tyrosine kinases: targets for cancer therapy. Nature Reviews Cancer, 4(5), 361-370. doi:Doi 10.1038/Nrc1360
Hartmann, J. T., Haap, M., Kopp, H. G., & Lipp, H. P. (2009). Tyrosine kinase inhibitors - a review on pharmacology, metabolism and side effects. Curr Drug Metab, 10(5), 470-481.
Hayes, H. M., Tarone, R. E., Cantor, K. P., Jessen, C. R., McCurnin, D. M., & Richardson, R. C. (1991). Case-control study of canine malignant lymphoma: positive association with dog owner's use of 2,4-dichlorophenoxyacetic acid herbicides. J Natl Cancer Inst, 83(17), 1226-1231.
He, M., & Wei, M. J. (2012). Reversing multidrug resistance by tyrosine kinase inhibitors. Chin J Cancer, 31(3), 126-133. doi:10.5732/cjc.011.10315
Hinds, M., Deisseroth, K., Mayes, J., Altschuler, E., Jansen, R., Ledley, F. D., & Zwelling, L. A. (1991). Identification of a point mutation in the topoisomerase II gene from a human leukemia cell line containing an amsacrine-resistant form of topoisomerase II. Cancer Res, 51(17), 4729-4731.
Honjo, Y., Hrycyna, C. A., Yan, Q. W., Medina-Perez, W. Y., Robey, R. W., van de Laar, A., . . . Bates, S. E. (2001). Acquired mutations in the MXR/BCRP/ABCP gene alter substrate specificity in MXR/BCRP/ABCP-overexpressing cells. Cancer Res, 61(18), 6635-6639.
Hubbard, S. R., & Till, J. H. (2000). Protein tyrosine kinase structure and function. Annu Rev Biochem, 69, 373-398. doi:10.1146/annurev.biochem.69.1.373
Irie, M., Takeuchi, Y., Ohtake, Y., Suzuki, H., Nagata, N., Miyoshi, T., . . . Yamagami, T. (2015). Imatinib mesylate treatment in a dog with gastrointestinal stromal tumors with a c-kit mutation. J Vet Med Sci, 77(11), 1535-1539. doi:10.1292/jvms.15-0096
Jemal, A., Tiwari, R. C., Murray, T., Ghafoor, A., Samuels, A., Ward, E., . . . Thun, M. J. (2004). Cancer statistics, 2004. Ca-a Cancer Journal for Clinicians, 54(1), 8-29.
Johnston, S. A., Thamm, D. H., & Legutki, J. B. (2014). The immunosignature of canine lymphoma: characterization and diagnostic application. BMC Cancer, 14, 657. doi:10.1186/1471-2407-14-657
Keller, E. T., MacEwen, E. G., Rosenthal, R. C., Helfand, S. C., & Fox, L. E. (1993). Evaluation of prognostic factors and sequential combination chemotherapy with doxorubicin for canine lymphoma. J Vet Intern Med, 7(5), 289-295.
Kim, D., Dan, H. C., Park, S., Yang, L., Liu, Q., Kaneko, S., . . . Cheng, J. Q. (2005). AKT/PKB signaling mechanisms in cancer and chemoresistance. Front Biosci, 10, 975-987.
Kim, S. H., Juhnn, Y. S., & Song, Y. S. (2007). Akt involvement in paclitaxel chemoresistance of human ovarian cancer cells. Ann N Y Acad Sci, 1095, 82-89. doi:10.1196/annals.1397.012
Knuefermann, C., Lu, Y., Liu, B., Jin, W., Liang, K., Wu, L., . . . Fan, Z. (2003). HER2/PI-3K/Akt activation leads to a multidrug resistance in human breast adenocarcinoma cells. Oncogene, 22(21), 3205-3212. doi:10.1038/sj.onc.1206394
Kosior, K., Lewandowska-Grygiel, M., & Giannopoulos, K. (2011). Tyrosine kinase inhibitors in hematological malignancies. Postepy Higieny I Medycyny Doswiadczalnej, 65, 819-828.
Kuhne, A., Tzvetkov, M. V., Hagos, Y., Lage, H., Burckhardt, G., & Brockmoller, J. (2009). Influx and efflux transport as determinants of melphalan cytotoxicity: Resistance to melphalan in MDR1 overexpressing tumor cell lines. Biochem Pharmacol, 78(1), 45-53. doi:10.1016/j.bcp.2009.03.026
Lancet, J. E., Baer, M. R., Duran, G. E., List, A. F., Fielding, R., Marcelletti, J. F., . . . Sikic, B. I. (2009). A phase I trial of continuous infusion of the multidrug resistance inhibitor zosuquidar with daunorubicin and cytarabine in acute myeloid leukemia. Leuk Res, 33(8), 1055-1061. doi:10.1016/j.leukres.2008.09.015
Lee, R. C. j. (2005). Retrospective Survey of Canine Neoplasm in the National Taiwan University Veterinary Hospital 1999-2003.
Leggas, M., Panetta, J. C., Zhuang, Y., Schuetz, J. D., Johnston, B., Bai, F., . . . Stewart, C. F. (2006). Gefitinib modulates the function of multiple ATP-binding cassette transporters in vivo. Cancer Res, 66(9), 4802-4807. doi:10.1158/0008-5472.can-05-2915
Li, X., Lu, Y., Liang, K., Liu, B., & Fan, Z. (2005). Differential responses to doxorubicin-induced phosphorylation and activation of Akt in human breast cancer cells. Breast Cancer Res, 7(5), R589-597. doi:10.1186/bcr1259
MacDonald, V. S., Thamm, D. H., Kurzman, I. D., Turek, M. M., & Vail, D. M. (2005). Does L-asparaginase influence efficacy or toxicity when added to a standard CHOP protocol for dogs with lymphoma? J Vet Intern Med, 19(5), 732-736.
MacEwen, E. G., Patnaik, A. K., & Wilkins, R. J. (1977). Diagnosis and treatment of canine hematopoietic neoplasms. Vet Clin North Am, 7(1), 105-118.
McCaw, D. L., Chan, A. S., Stegner, A. L., Mooney, B., Bryan, J. N., Turnquist, S. E., . . . Alexander, S. (2007). Proteomics of canine lymphoma identifies potential cancer-specific protein markers. Clin Cancer Res, 13(8), 2496-2503. doi:10.1158/1078-0432.ccr-06-2699
McDermott, M., Eustace, A. J., Busschots, S., Breen, L., Crown, J., Clynes, M., . . . Stordal, B. (2014). In vitro Development of Chemotherapy and Targeted Therapy Drug-Resistant Cancer Cell Lines: A Practical Guide with Case Studies. Front Oncol, 4, 40. doi:10.3389/fonc.2014.00040
Mellanby, R. J., Herrtage, M. E., & Dobson, J. M. (2003). Owners' assessments of their dog's quality of life during palliative chemotherapy for lymphoma. J Small Anim Pract, 44(3), 100-103.
Mi, Y. J., Liang, Y. J., Huang, H. B., Zhao, H. Y., Wu, C. P., Wang, F., . . . Fu, L. W. (2010). Apatinib (YN968D1) reverses multidrug resistance by inhibiting the efflux function of multiple ATP-binding cassette transporters. Cancer Res, 70(20), 7981-7991. doi:10.1158/0008-5472.can-10-0111
Milman, G., Smith, K. C., & Erles, K. (2011). Serological detection of Epstein-Barr virus infection in dogs and cats. Vet Microbiol, 150(1-2), 15-20. doi:10.1016/j.vetmic.2010.12.013
Modiano, J. F., Breen, M., Burnett, R. C., Parker, H. G., Inusah, S., Thomas, R., . . . Avery, A. C. (2005). Distinct B-cell and T-cell lymphoproliferative disease prevalence among dog breeds indicates heritable risk. Cancer Res, 65(13), 5654-5661. doi:10.1158/0008-5472.can-04-4613
Mukai, M., Che, X. F., Furukawa, T., Sumizawa, T., Aoki, S., Ren, X. Q., . . . Akiyama, S. (2003). Reversal of the resistance to STI571 in human chronic myelogenous leukemia K562 cells. Cancer Sci, 94(6), 557-563.
Nagata, Y., Lan, K. H., Zhou, X., Tan, M., Esteva, F. J., Sahin, A. A., . . . Yu, D. (2004). PTEN activation contributes to tumor inhibition by trastuzumab, and loss of PTEN predicts trastuzumab resistance in patients. Cancer Cell, 6(2), 117-127. doi:10.1016/j.ccr.2004.06.022
Nakano, Y., Kobayashi, T., Oshima, F., Fukazawa, E., Yamagami, T., Shiraishi, Y., & Takanosu, M. (2014). Imatinib responsiveness in canine mast cell tumors carrying novel mutations of c-KIT exon 11. J Vet Med Sci, 76(4), 545-548.
Nieth, C., & Lage, H. (2005). Induction of the ABC-transporters Mdr1/P-gp (Abcb1), mrpl (Abcc1), and bcrp (Abcg2) during establishment of multidrug resistance following exposure to mitoxantrone. J Chemother, 17(2), 215-223. doi:10.1179/joc.2005.17.2.215
Nikousefat, Z., Hashemnia, M., & Javdani, M. (2016). Large B-cell lymphoma in a dog: A cyto-histopathological evaluation and Immunophenotyping according to WHO classification for canine lymphomas. Vet Res Forum, 7(1), 79-83.
Nilsen, H., & Krokan, H. E. (2001). Base excision repair in a network of defence and tolerance. Carcinogenesis, 22(7), 987-998.
Ozols, R. F., Cunnion, R. E., Klecker, R. W., Jr., Hamilton, T. C., Ostchega, Y., Parrillo, J. E., & Young, R. C. (1987). Verapamil and adriamycin in the treatment of drug-resistant ovarian cancer patients. J Clin Oncol, 5(4), 641-647.
Paul, M. K., & Mukhopadhyay, A. K. (2004). Tyrosine kinase - Role and significance in Cancer. Int J Med Sci, 1(2), 101-115.
Persidis, A. (1999). Cancer multidrug resistance. Nat Biotechnol, 17(1), 94-95. doi:10.1038/5289
Pisco, A. O., Jackson, D. A., & Huang, S. (2014). Reduced Intracellular Drug Accumulation in Drug-Resistant Leukemia Cells is Not Only Solely Due to MDR-Mediated Efflux but also to Decreased Uptake. Front Oncol, 4, 306. doi:10.3389/fonc.2014.00306
Politi, P. M., & Sinha, B. K. (1989). Role of differential drug uptake, efflux, and binding of etoposide in sensitive and resistant human tumor cell lines: implications for the mechanisms of drug resistance. Mol Pharmacol, 35(3), 271-278.
Pommier, Y. (2006). Topoisomerase I inhibitors: camptothecins and beyond. Nat Rev Cancer, 6(10), 789-802. doi:10.1038/nrc1977
Ponce, F., Marchal, T., Magnol, J. P., Turinelli, V., Ledieu, D., Bonnefont, C., . . . Fournel-Fleury, C. (2010). A morphological study of 608 cases of canine malignant lymphoma in France with a focus on comparative similarities between canine and human lymphoma morphology. Vet Pathol, 47(3), 414-433. doi:10.1177/0300985810363902
Prenzel, N., Fischer, O. M., Streit, S., Hart, S., & Ullrich, A. (2001). The epidermal growth factor receptor family as a central element for cellular signal transduction and diversification. Endocr Relat Cancer, 8(1), 11-31.
Rebhun, R. B., Kent, M. S., Borrofka, S. A., Frazier, S., Skorupski, K., & Rodriguez, C. O. (2011). CHOP chemotherapy for the treatment of canine multicentric T-cell lymphoma. Vet Comp Oncol, 9(1), 38-44. doi:10.1111/j.1476-5829.2010.00230.x
Reif, J. S., Lower, K. S., & Ogilvie, G. K. (1995). Residential exposure to magnetic fields and risk of canine lymphoma. Am J Epidemiol, 141(4), 352-359.
Richards, K. L., & Suter, S. E. (2015). Man's best friend: what can pet dogs teach us about non-Hodgkin's lymphoma? Immunol Rev, 263(1), 173-191. doi:10.1111/imr.12238
Robinson, D. R., Wu, Y. M., & Lin, S. F. (2000). The protein tyrosine kinase family of the human genome. Oncogene, 19(49), 5548-5557. doi:10.1038/sj.onc.1203957
Rochat, B. (2005). Role of cytochrome P450 activity in the fate of anticancer agents and in drug resistance: focus on tamoxifen, paclitaxel and imatinib metabolism. Clin Pharmacokinet, 44(4), 349-366. doi:10.2165/00003088-200544040-00002
Rubin, E. H., de Alwis, D. P., Pouliquen, I., Green, L., Marder, P., Lin, Y., . . . Slapak, C. A. (2002). A phase I trial of a potent P-glycoprotein inhibitor, Zosuquidar.3HCl trihydrochloride (LY335979), administered orally in combination with doxorubicin in patients with advanced malignancies. Clin Cancer Res, 8(12), 3710-3717.
Rutgen, B. C., Hammer, S. E., Gerner, W., Christian, M., de Arespacochaga, A. G., Willmann, M., . . . Saalmuller, A. (2010). Establishment and characterization of a novel canine B-cell line derived from a spontaneously occurring diffuse large cell lymphoma. Leuk Res, 34(7), 932-938. doi:10.1016/j.leukres.2010.01.021
Rutley, M., & MacDonald, V. (2007). Managing the canine lymphosarcoma patient in general practice. Can Vet J, 48(9), 977-979.
Sandler, A., Gordon, M., De Alwis, D. P., Pouliquen, I., Green, L., Marder, P., . . . Slapak, C. A. (2004). A Phase I trial of a potent P-glycoprotein inhibitor, zosuquidar trihydrochloride (LY335979), administered intravenously in combination with doxorubicin in patients with advanced malignancy. Clin Cancer Res, 10(10), 3265-3272. doi:10.1158/1078-0432.ccr-03-0644
Sarkaria, J. N., Kitange, G. J., James, C. D., Plummer, R., Calvert, H., Weller, M., & Wick, W. (2008). Mechanisms of chemoresistance to alkylating agents in malignant glioma. Clin Cancer Res, 14(10), 2900-2908. doi:10.1158/1078-0432.ccr-07-1719
Schinkel, A. H. (1999). P-Glycoprotein, a gatekeeper in the blood-brain barrier. Adv Drug Deliv Rev, 36(2-3), 179-194.
Shen, T., Kuang, Y. H., Ashby, C. R., Lei, Y., Chen, A., Zhou, Y., . . . Chen, Z. S. (2009). Imatinib and nilotinib reverse multidrug resistance in cancer cells by inhibiting the efflux activity of the MRP7 (ABCC10). PLoS One, 4(10), e7520. doi:10.1371/journal.pone.0007520
Shepard, R. L., Cao, J., Starling, J. J., & Dantzig, A. H. (2003). Modulation of P-glycoprotein but not MRP1- or BCRP-mediated drug resistance by LY335979. Int J Cancer, 103(1), 121-125. doi:10.1002/ijc.10792
Shi, Z., Peng, X. X., Kim, I. W., Shukla, S., Si, Q. S., Robey, R. W., . . . Chen, Z. S. (2007). Erlotinib (Tarceva, OSI-774) antagonizes ATP-binding cassette subfamily B member 1 and ATP-binding cassette subfamily G member 2-mediated drug resistance. Cancer Res, 67(22), 11012-11020. doi:10.1158/0008-5472.can-07-2686
Shukla, S., Chen, Z. S., & Ambudkar, S. V. (2012). Tyrosine kinase inhibitors as modulators of ABC transporter-mediated drug resistance. Drug Resist Updat, 15(1-2), 70-80. doi:10.1016/j.drup.2012.01.005
Shukla, S., Sauna, Z. E., & Ambudkar, S. V. (2008). Evidence for the interaction of imatinib at the transport-substrate site(s) of the multidrug-resistance-linked ABC drug transporters ABCB1 (P-glycoprotein) and ABCG2. Leukemia, 22(2), 445-447. doi:10.1038/sj.leu.2404897
Sims, J. T., Ganguly, S. S., Bennett, H., Friend, J. W., Tepe, J., & Plattner, R. (2013). Imatinib reverses doxorubicin resistance by affecting activation of STAT3-dependent NF-kappaB and HSP27/p38/AKT pathways and by inhibiting ABCB1. PLoS One, 8(1), e55509. doi:10.1371/journal.pone.0055509
Slichenmyer, W. J., & Fry, D. W. (2001). Anticancer therapy targeting the erbB family of receptor tyrosine kinases. Semin Oncol, 28(5 Suppl 16), 67-79.
Smith, T. A., Phyu, S. M., & Akabuogu, E. U. (2016). Effects of Administered Cardioprotective Drugs on Treatment Response of Breast Cancer Cells. Anticancer Res, 36(1), 87-93.
Squire, R. A., Bush, M., Melby, E. C., Neeley, L. M., & Yarbrough, B. (1973). Clinical and pathologic study of canine lymphoma: clinical staging, cell classification, and therapy. J Natl Cancer Inst, 51(2), 565-574.
Stewart, A., Steiner, J., Mellows, G., Laguda, B., Norris, D., & Bevan, P. (2000). Phase I trial of XR9576 in healthy volunteers demonstrates modulation of P-glycoprotein in CD56+ lymphocytes after oral and intravenous administration. Clin Cancer Res, 6(11), 4186-4191.
Stewart, C. F., Leggas, M., Schuetz, J. D., Panetta, J. C., Cheshire, P. J., Peterson, J., . . . Houghton, P. J. (2004). Gefitinib enhances the antitumor activity and oral bioavailability of irinotecan in mice. Cancer Res, 64(20), 7491-7499. doi:10.1158/0008-5472.can-04-0096
Sumizawa, T., Chen, Z. S., Chuman, Y., Seto, K., Furukawa, T., Haraguchi, M., . . . Akiyama, S. I. (1997). Reversal of multidrug resistance-associated protein-mediated drug resistance by the pyridine analog PAK-104P. Mol Pharmacol, 51(3), 399-405.
Takashima-Uebelhoer, B. B., Barber, L. G., Zagarins, S. E., Procter-Gray, E., Gollenberg, A. L., Moore, A. S., & Bertone-Johnson, E. R. (2012). Household chemical exposures and the risk of canine malignant lymphoma, a model for human non-Hodgkin's lymphoma. Environ Res, 112, 171-176. doi:10.1016/j.envres.2011.12.003
Thiebaut, F., Tsuruo, T., Hamada, H., Gottesman, M. M., Pastan, I., & Willingham, M. C. (1987). Cellular localization of the multidrug-resistance gene product P-glycoprotein in normal human tissues. Proc Natl Acad Sci U S A, 84(21), 7735-7738.
Thomas, J., Wang, L., Clark, R. E., & Pirmohamed, M. (2004). Active transport of imatinib into and out of cells: implications for drug resistance. Blood, 104(12), 3739-3745. doi:10.1182/blood-2003-12-4276
Thorn, C. F., Oshiro, C., Marsh, S., Hernandez-Boussard, T., McLeod, H., Klein, T. E., & Altman, R. B. (2011). Doxorubicin pathways: pharmacodynamics and adverse effects. Pharmacogenet Genomics, 21(7), 440-446. doi:10.1097/FPC.0b013e32833ffb56
Tiwari, A. K., Sodani, K., Dai, C. L., Ashby, C. R., Jr., & Chen, Z. S. (2011). Revisiting the ABCs of multidrug resistance in cancer chemotherapy. Curr Pharm Biotechnol, 12(4), 570-594.
Tsuruo, T., Iida, H., Tsukagoshi, S., & Sakurai, Y. (1981). Overcoming of vincristine resistance in P388 leukemia in vivo and in vitro through enhanced cytotoxicity of vincristine and vinblastine by verapamil. Cancer Res, 41(5), 1967-1972.
Ullah, M. F. (2008). Cancer multidrug resistance (MDR): a major impediment to effective chemotherapy. Asian Pac J Cancer Prev, 9(1), 1-6.
Umeki, S., Ema, Y., Suzuki, R., Kubo, M., Hayashi, T., Okamura, Y., . . . Mizuno, T. (2013). Establishment of five canine lymphoma cell lines and tumor formation in a xenotransplantation model. J Vet Med Sci, 75(4), 467-474.
Uozurmi, K., Nakaichi, M., Yamamoto, Y., Une, S., & Taura, Y. (2005). Development of multidrug resistance in a canine lymphoma cell line. Res Vet Sci, 78(3), 217-224. doi:10.1016/j.rvsc.2004.09.012
Valerius, K. D., Ogilvie, G. K., Mallinckrodt, C. H., & Getzy, D. M. (1997). Doxorubicin alone or in combination with asparaginase, followed by cyclophosphamide, vincristine, and prednisone for treatment of multicentric lymphoma in dogs: 121 cases (1987-1995). J Am Vet Med Assoc, 210(4), 512-516.
Valli, V. E., Kass, P. H., San Myint, M., & Scott, F. (2013). Canine lymphomas: association of classification type, disease stage, tumor subtype, mitotic rate, and treatment with survival. Vet Pathol, 50(5), 738-748. doi:10.1177/0300985813478210
Valli, V. E., San Myint, M., Barthel, A., Bienzle, D., Caswell, J., Colbatzky, F., . . . Vernau, W. (2011). Classification of canine malignant lymphomas according to the World Health Organization criteria. Vet Pathol, 48(1), 198-211. doi:10.1177/0300985810379428
Vasiliou, V., Vasiliou, K., & Nebert, D. W. (2009). Human ATP-binding cassette (ABC) transporter family. Hum Genomics, 3(3), 281-290.
Veldhoen, N., Stewart, J., Brown, R., & Milner, J. (1998). Mutations of the p53 gene in canine lymphoma and evidence for germ line p53 mutations in the dog. Oncogene, 16(2), 249-255. doi:10.1038/sj.onc.1201489
Vlahovic, G., & Crawford, J. (2003). Activation of tyrosine kinases in cancer. Oncologist, 8(6), 531-538.
Vlaming, M. L., Lagas, J. S., & Schinkel, A. H. (2009). Physiological and pharmacological roles of ABCG2 (BCRP): recent findings in Abcg2 knockout mice. Adv Drug Deliv Rev, 61(1), 14-25. doi:10.1016/j.addr.2008.08.007
Wagner, J. P., Wolf-Yadlin, A., Sevecka, M., Grenier, J. K., Root, D. E., Lauffenburger, D. A., & MacBeath, G. (2013). Receptor tyrosine kinases fall into distinct classes based on their inferred signaling networks. Sci Signal, 6(284), ra58. doi:10.1126/scisignal.2003994
Waller, C. F. (2014). Imatinib mesylate. Recent Results Cancer Res, 201, 1-25. doi:10.1007/978-3-642-54490-3_1
Wang, S., Konorev, E. A., Kotamraju, S., Joseph, J., Kalivendi, S., & Kalyanaraman, B. (2004). Doxorubicin induces apoptosis in normal and tumor cells via distinctly different mechanisms. intermediacy of H(2)O(2)- and p53-dependent pathways. J Biol Chem, 279(24), 25535-25543. doi:10.1074/jbc.M400944200
Wang, Y., Schmid-Bindert, G., & Zhou, C. (2012). Erlotinib in the treatment of advanced non-small cell lung cancer: an update for clinicians. Ther Adv Med Oncol, 4(1), 19-29. doi:10.1177/1758834011427927
Waugh, E. M., Gallagher, A., McAulay, K. A., Henriques, J., Alves, M., Bell, A. J., . . . Jarrett, R. F. (2015). Gammaherpesviruses and canine lymphoma: no evidence for direct involvement in commonly occurring lymphomas. J Gen Virol, 96(Pt 7), 1863-1872. doi:10.1099/vir.0.000106
Withrow, S. J., & Vail, D. M. (2007). Withrow & MacEwen's small animal clinical oncology. Saunders.
Yeheskely-Hayon, D., Regev, R., Eytan, G. D., & Dann, E. J. (2005). The tyrosine kinase inhibitors imatinib and AG957 reverse multidrug resistance in a chronic myelogenous leukemia cell line. Leuk Res, 29(7), 793-802. doi:10.1016/j.leukres.2004.12.007
Yu, H. G., Ai, Y. W., Yu, L. L., Zhou, X. D., Liu, J., Li, J. H., . . . Yu, J. P. (2008). Phosphoinositide 3-kinase/Akt pathway plays an important role in chemoresistance of gastric cancer cells against etoposide and doxorubicin induced cell death. Int J Cancer, 122(2), 433-443. doi:10.1002/ijc.23049
Yuan, Z. Q., Feldman, R. I., Sussman, G. E., Coppola, D., Nicosia, S. V., & Cheng, J. Q. (2003). AKT2 inhibition of cisplatin-induced JNK/p38 and Bax activation by phosphorylation of ASK1: implication of AKT2 in chemoresistance. J Biol Chem, 278(26), 23432-23440. doi:10.1074/jbc.M302674200
Zahm, S. H., & Blair, A. (1992). Pesticides and non-Hodgkin's lymphoma. Cancer Res, 52(19 Suppl), 5485s-5488s.
Zandvliet, M., & Teske, E. (2015). Mechanisms of Drug Resistance in Veterinary Oncology— A Review with an Emphasis on Canine Lymphoma. Veterinary Sciences, 2(3), 150.
Zandvliet, M., Teske, E., Chapuis, T., Fink-Gremmels, J., & Schrickx, J. A. (2013). Masitinib reverses doxorubicin resistance in canine lymphoid cells by inhibiting the function of P-glycoprotein. J Vet Pharmacol Ther, 36(6), 583-587. doi:10.1111/jvp.12039
dc.identifier.urihttp://tdr.lib.ntu.edu.tw/jspui/handle/123456789/59957-
dc.description.abstract犬淋巴癌為犬隻中最常發生的惡性腫瘤之一。除了提早檢查預防之外,腫瘤治療的進步及改善也是相當重要的,有些癌細胞在一開始使用化學治療時即對化療藥物具有抗性,另一部分的抗藥性則是在療程時逐漸產生。這些具有抗藥性的癌細胞,通常會高度表現和藥物排出有關的運輸蛋白,這樣的機制在多重抗藥性的細胞中是相當常見的。這些運輸蛋白中,ABC transporters 尤其是P-glycoprotein (P-gp, ABCB1),breast cancer resistant protein (BCRP, ABCG2),以及 multidrug resistant protein (MRP1, ABCC1)在對艾黴素(doxorubicin)具有抗藥性的細胞當中常常有高度表現的現象,因此使得化療藥物的效果降低,因此這些蛋白在抗藥性中扮演了重要的角色。在我們的研究中,酪胺酸激酶抑制劑基利克(imatinib)能夠有效的藉由促使細胞進行凋亡,以提升具有過度表現P-glycoprotein的doxorubicin抗藥性犬淋巴癌細胞對於doxorubicin的敏感度。並且當同時使用imatinib以及doxorubicin時,可以藉由減少doxorubicin的排出以提高其在抗藥性細胞內的累積量,而非藉由改變比起母細胞還要過度表現的P-glycoprotein之表現量。然而,Akt在同時給予兩種藥物後的24小時有被活化的現象,這可能是在癌細胞中特有的性質以避免細胞死亡的機制之一。但經過48小時後,活化的Akt表現量則降低,這樣的結果可與先前實驗互相對照,此時細胞已經經由細胞凋亡的機制而死亡,因此調控細胞存活的磷酸化蛋白激酶B (Protein kinase B/Akt) 表現量因此降低。總結來說,在過度表現P-glycoprotein的doxorubicin抗藥性犬淋巴癌細胞當中,使用imatinib可以藉由抑制藥物的排出以反轉doxorubicin的抗藥性。而此結果顯示未來在臨床上imatinib 或許可以用來反轉抗藥性,並提高doxorubicin的抗癌效果。zh_TW
dc.description.abstractCanine lymphoma is one of most common malignant tumors to occur in dogs with high incidence around the world. Despite advances in the cancer prevention, the treatment of tumor diseases also has to be improved. Some cancer cells may resist the effect of chemotherapeutic agents by upregulating drug transporters which efflux the drugs intrinsically or develop during treatments, this kind of mechanism is commonly seen in doxorubicin resistant tumor cells. ABC transporters, especially P-glycoprotein (P-gp, ABCB1), breast cancer resistant protein (BCRP, ABCG2), and multidrug resistant protein (MRP1, ABCC1) are mostly involved in doxorubicin resistant cancer cells. In our studies, CLBL1-8.0, a doxorubicin resistant B type lymphoma cell line was created from CLBL-1 by increasing doxorubicin concentration during culturing, it shows highly expressed of P-glycoprotein (P-gp, ABCB1), the protein which are mostly involved in doxorubicin resistant cancer cells. Also, we demonstrated that imatinib, a tyrosine kinase inhibitor, significantly potentiated the sensitivity of doxorubicin in P-gp overexpressing resistant cells by promoting cells into apoptosis. And also combination of these two drugs may increase the accumulation of doxorubicin by decreasing the efflux of doxorubicin, but not by altering the protein expression of P-glycoprotein, which was highly expressed than its parental cells. While the Akt was activated after 24 hours treatment of imatinib and doxorubicin to suppress apoptosis, it may be one of a mechanism reflects a cellular defense of cancer cells in order to prevent doxorubicin-induced cytotoxicity effects. While after 48 hour treatment, activated Akt was decreased, it corresponds to the results of cell viability assay that imatinib may induce cell death after 48 hour of treatment combined with doxorubicin. In conclusion, imatinib can reverse doxorubicin resistant by decreasing the drug efflux in ABCB1 overexpressed canine lymphoma doxorubicin resistant cells. These results suggest an optimal to use this strategy of combining doxorubicin, one of the mostly used chemotherapeutic drugs in the treatment of canine lymphoma, with imatinib in clinic to overcome its resistance.en
dc.description.provenanceMade available in DSpace on 2021-06-16T09:47:15Z (GMT). No. of bitstreams: 1
ntu-106-R03644003-1.pdf: 1828914 bytes, checksum: 86579867e4aff0453b0773c8aefa58b3 (MD5)
Previous issue date: 2017
en
dc.description.tableofcontents口試委員會審定書 I
致謝 II
中文摘要 III
Abstract IV
Chapter 1 Introduction 1
Chapter 2 Background and Literature Review 3
2.1 Canine lymphoma 3
2.1.1 Prevalence of canine lymphoma 3
2.1.2 Classification, staging of canine lymphoma 4
2.1.3 Treatment and prognosis of canine lymphoma 6
2.2 Multidrug resistance (MDR) 9
2.2.1 Classification of multidrug resistance 9
2.2.2 Mechanisms of multidrug resistance 10
2.3 Reverse of multidrug resistance 16
2.3.1 ABC transporters inhibitor 16
2.3.2 Tyrosine kinase 18
2.3.3 Tyrosine kinase inhibitors (TKIs) 19
3.1 Cell lines and reagents 22
3.2 Development and maintenance of doxorubicin resistance canine lymphoma cell line 23
3.3 Cell viability assay 24
3.4 Cell cycle analysis 25
3.5 Western blot 25
3.6 Passive uptake, accumulation and efflux of doxorubicin 27
3.7 Statistical analysis 28
Chapter 4 Results 30
4.1 Doxorubicin inhibited proliferation of CLBL-1, CLBL1-8.0, UL1 and CLC 30
4.3 Imatinib inhibited proliferation of CLBL-1, CLBL1-8.0, UL1 and CLC 31
4.4 The protein expression were altered in DOX-resistant cell lines 32
4.4 The transport functions were altered in DOX-resistant cell lines 33
4.5 Imatinib potentiates the sensitivity of doxorubicin in doxorubicin resistant cell lines 33
4.6 The effect of imatinib on the reversing of doxorubicin is not shown in MDCK 35
4.7 Imatinib enhanced the accumulation of doxorubicin in CLBL1-8.0 35
4.8 Imatinib only slightly decreased the expression of ABCC1, while the protein levels of ABCB1 and ABCG2 did not change in the presence of imatinib 36
4.9 Imatinib decreased the efflux of doxorubicin in ABCB1 overexpressed canine lymphoma cells 37
4.10 Imatinib prevented doxorubicin-induced cytotoxicity effects after 24 hours, while potentiated the cell death effect of doxorubicin after 48 hours 38
Chapter 5 Discussion 40
Tables 47
Table 1. World Health Organization’s clinical staging system for lymphoma in domestic animals 49
Tables 2. Tyrosine kinase inhibitors used in human cancer types 50
Table 3. Tyrosine kinase inhibitors used in veterinary cancer types and species 51
Table 4. Sources and dilutions of the antibodies used in this study for Western blot 52
Table 5. Effect of DOX and Imatinib on canine lymphoma cell lines 53
Table 6. CI value of combination of DOX and Imatinib on CLBL1-8.0 54
Table 7. CI value of combination of DOX and Imatinib on UL-1 55
Table 8. CI value of the combination of DOX and Imatinib on MDCK at 48 hr 56
Figures 57
Figure 1. Effect of doxorubicin on the cell viability of canine lymphoma cell lines 57
Figure 2. Effect of doxorubicin on the cell cycle in canine lymphoma cell lines 59
Figure 3. The effect of doxorubicin on apoptosis in canine lymphoma cells 60
Figure 4. Effect of imatinib on the cell viability of canine lymphoma cell lines 61
Figure 5. Effect of imatinib on the cell cycle in canine lymphoma cell lines 62
Figure 6. The effect of doxorubicin on apoptosis in canine lymphoma cells 63
Figure 7. Immunobloting detection and quantification of ABCG2/BCRP, ABCB1/P-gp and ABCC1/MRP1 protein expression in canine lymphoma cell lines 64
Figure 8. Immunoblotting detection of p-Akt and Akt protein expression in canine lymphoma cell lines 65
Figure 9. The doxorubicin accumulation, uptake and efflux among the canine lymphoma cell lines 66
Figure 10. Effect of imatinib reversing resistance of doxorubicin on the cell viability of canine lymphoma cell lines 67
Figure 11. Assessment of the combination of DOX and imatinib by normalized isobologram and combination index curves on CLBL1-8.0 68
Figure 12. Assessment of the combination of DOX and imatinib by normalized isobologram and combination index curves on UL-1 69
Figure 13. Effect of imatinib potentiation of the effect of doxorubicin in MDCK 70
Figure 14. Assessment of the combination of DOX and imatinib by normalized isobologram and combination index curves on MDCK 71
Figure 15. Effect of imatinib reversing resistance of doxorubicin on the cell cycle on CLBL1-8.0 72
Figure 16. Effect of imatinib reversing resistance of doxorubicin on the cell cycle on UL-1 73
Figure 17. Effect of imatinib on the intracellular accumulation of doxorubicin in CLBL-1, CLBL1-8.0 and UL-1 cells 74
Figure 18. Effect of DOX and imatinib on the ABC transporters protein expression in CLBL1-8.0 in 24 and 48 hr 75
Figure 19. The effect of imatinib on the efflux of doxorubicin 76
Figure 20. The effect of imatinib on the passive uptake of doxorubicin 77
Figure 21. Effect of imatinib on p-Akt/Akt in CLBL1-8.0 in 24 and 48 hr 78
References 79
dc.language.isoen
dc.title藉由克服抗藥性以提升Doxorubicin在犬淋巴癌的抗癌效果zh_TW
dc.titleEnhance Anti-Tumor Effect of Doxorubicin in Canine Lymphoma by Overcoming Drug Resistanceen
dc.typeThesis
dc.date.schoolyear105-1
dc.description.degree碩士
dc.contributor.coadvisor林辰栖(Chen-Si Lin),李繼忠(Jih-Jong Lee)
dc.contributor.oralexamcommittee廖泰慶(Tai-Ching Liao),廖光文(Kuang-Wen Liao),蔡女滿(Nu-Man Tsai)
dc.subject.keyword犬淋巴癌,多重抗藥性,Doxorubicin,Imatinib,ABC transporter,P-glycoprotein,zh_TW
dc.subject.keywordCanine lymphoma,Multidrug resistance,Doxorubicin,Imatinib,ABC transporter,P-glycoprotein,en
dc.relation.page94
dc.identifier.doi10.6342/NTU201700159
dc.rights.note有償授權
dc.date.accepted2017-01-23
dc.contributor.author-college獸醫專業學院zh_TW
dc.contributor.author-dept分子暨比較病理生物學研究所zh_TW
顯示於系所單位:分子暨比較病理生物學研究所

文件中的檔案:
檔案 大小格式 
ntu-106-1.pdf
  目前未授權公開取用
1.79 MBAdobe PDF
顯示文件簡單紀錄


系統中的文件,除了特別指名其著作權條款之外,均受到著作權保護,並且保留所有的權利。

社群連結
聯絡資訊
10617臺北市大安區羅斯福路四段1號
No.1 Sec.4, Roosevelt Rd., Taipei, Taiwan, R.O.C. 106
Tel: (02)33662353
Email: ntuetds@ntu.edu.tw
意見箱
相關連結
館藏目錄
國內圖書館整合查詢 MetaCat
臺大學術典藏 NTU Scholars
臺大圖書館數位典藏館
本站聲明
© NTU Library All Rights Reserved