請用此 Handle URI 來引用此文件:
http://tdr.lib.ntu.edu.tw/jspui/handle/123456789/59949
完整後設資料紀錄
DC 欄位 | 值 | 語言 |
---|---|---|
dc.contributor.advisor | 陳文山(Wen-Shan Chen) | |
dc.contributor.author | Xiao-Cheng Zhu | en |
dc.contributor.author | 朱孝承 | zh_TW |
dc.date.accessioned | 2021-06-16T09:46:48Z | - |
dc.date.available | 2020-08-24 | |
dc.date.copyright | 2020-08-24 | |
dc.date.issued | 2020 | |
dc.date.submitted | 2020-08-16 | |
dc.identifier.citation | 吳樂群、王源(1989)臺灣嘉義地區澐水溪剖面上中新統至下更新統之沈積環境:地質,第9卷,第二期,第15-43頁。 洪奕星(1988)台湾西北部上部中新統至下部上新統之盆地分析。地質,第8卷,第1、2期合刊,第1-20頁。 陳文山、俞何興、俞震甫、鍾孫霖、林正洪、林啟文、王國龍(2016)臺灣地質概論。中華民國地質學會,共204頁。 鄭紹安(2020)利用解壓密方法探討末次最大冰期以來臺灣西南部褶皺逆衝斷層帶前緣與前陸盆地的構造特性。國立臺灣大學地質科學研究所碩士論文,共131頁。 楊志成(1997)台灣中部地區錦水頁岩、卓蘭層與頭嵙山層的沈積環境硏究。國立臺灣大學地質科學硏究所碩士論文,共120頁。 楊詠然(2016)末次最大冰期以來台灣西部平原的環境變遷。國立臺灣大學地質科學研究所碩士論文,共159頁。 潘遵友(2011)台灣西北部大漢溪剖面南莊層至楊梅層之沉積環境研究。國立中央大學地球物理硏究所碩士論文,共99頁。 葉家志(2017)晚中新世以來沉積岩岩象分析探討臺灣中北部山脈剝蝕歷史。國立臺灣大學地質科學研究所碩士論文,共104頁。 牧山鶴彥(1935b)中壢圖幅及說明書。台灣總督府殖產局,第692 號。 鳥居敬造(1935)東勢圖幅及說明書。台灣總督府殖產局,第732 號。 林啟文、張育仁(2014)五萬分之一臺灣地質圖-桃園圖幅及說明書(第二版)。經濟部中央地質調查所,共89頁。 塗明寬、邵屏華(2001)五萬分之一臺灣地質圖-中壢圖幅及說明書(第二版)。經濟部中央地質調查所,共47頁。 Allen, P. A. and Allen, J. R. (2013). Basin analysis: Principles and application to petroleum play assessment: John Wiley and Sons, 326-342. Ashley, G. M. (1990). Classification of large-scale subaqueous bedforms; a new look at an old problem. Journal of Sedimentary Research, 60(1), 160-172. Boyd, R., Dalrymple, R. and Zaitlin, B. (1992). Classification of clastic coastal depositional environments. Sedimentary Geology, 80(3-4), 139-150. Brown Jr, L. and Fisher, W. (1977). Seismic-stratigraphic interpretation of depositional systems: examples from brazilian rift and pull-apart basins: section 2. Application of seismic reflection configuration to stratigraphic interpretation, 213-248. Buatois, L. A. and Mángano, M. G. (2011). Ichnology: Organism-substrate interactions in space and time: Cambridge University Press, 1-358. Buatois, L. A., Uba, C. E., Mangano, M. G., Hulka, C., Heubeck, C. and Bromley, R. (2007a). Deep and intense bioturbation in continental environments: evidence from Miocene fluvial deposits of Bolivia. Special Publication-SEPM, 88, 123. Catuneanu, O. (2006). Principles of sequence stratigraphy: Elsevier, 1-375. Chen, W.-S., Ridgway, K. D., Horng, C.-S., Chen, Y.-G., Shea, K.-S. and Yeh, M.-G. (2001). Stratigraphic architecture, magnetostratigraphy, and incised-valley systems of the Pliocene-Pleistocene collisional marine foreland basin of Taiwan. GSA bulletin, 113(10), 1249-1271. Chen, W.-S., Yeh, J.-J. and Syu, S.-J. (2019). Late Cenozoic exhumation and erosion of the Taiwan orogenic belt: New insights from petrographic analysis of foreland basin sediments and thermochronological dating on the metamorphic orogenic wedge. Tectonophysics, 750, 56-69. Collinson, J. D. (1969). The sedimentology of the Grindslow shales and the Kinderscout grit; a deltaic complex in the Namurian of northern England. Journal of Sedimentary Research, 39(1), 194-221. Covey, M. (1984a) Lithofacies Analysis and Basin Reconstruction, Plio-Pleistocene WesternTaiwan Foredeep. Petroleum Geology of Taiwan, 20, 53-83. Dalrymple, R. W. and Choi, K. (2007). Morphologic and facies trends through the fluvial–marine transition in tide-dominated depositional systems: A schematic framework for environmental and sequence-stratigraphic interpretation. Earth-Science Reviews, 81(3-4), 135-174. Davis Jr, R. A. and Dalrymple, R. W. (2011). Principles of tidal sedimentology: Springer Science and Business Media, 1-621. Fisher, W. L. (1967). Depositional systems in the Wilcox Group of Texas and their relationship to occurrence of oil and gas. Virtual Landscapes of Texas. Frey, R. W., Pemberton, S. G. and Saunders, T. D. (1990). Ichnofacies and bathymetry: a passive relationship. Journal of Paleontology, 155-158. Genise, J. F., Bellosi, E. and Gonzalez, M. (2004). An approach to the description and interpretation of ichnofabrics in palaeosols. Geological Society, London, Special Publications, 228(1), 355-382. Genise, J. F., Mánganom, M. G., Buatois, L. A., Laza, J. H. and Verde, M. (2000). Insect trace fossil associations in paleosols: the Coprinisphaera ichnofacies. Palaios, 15(1), 49-64. Hansen, S. (1996). A compaction trend for Cretaceous and Tertiary shales on the Norwegian shelf based on sonic transit times. Petroleum Geoscience, 2(2), 159-166. Horng, C.-S. (2014). Age of the Tananwan formation in northern Taiwan: a reexamination of the magnetostratigraphy and calcareous nannofossil biostratigraphy. TAO: Terrestrial, Atmospheric and Oceanic Sciences, 25(2), 137. Kraus, M. J. (1999). Paleosols in clastic sedimentary rocks: their geologic applications. Earth-Science Reviews, 47(1-2), 41-70. Kvale, E. P. and Mastalerz, M. (1998). Evidence of Ancient Freshwater Tidal Deposits. In Tidalites, 95-107. Lin, A., Watts, A. and Hesselbo, S. (2003). Cenozoic stratigraphy and subsidence history of the South China Sea margin in the Taiwan region. Basin Research, 15(4), 453-478. Lisiecki, L. E. and Raymo, M. E. (2005). A Pliocene‐Pleistocene stack of 57 globally distributed benthic δ18O records, Paleoceanography, 20(1). Lock, J. (2007). Interpreting low-temperature thermochronometric data in fold-andthrust belts: An example from the Western Foothills, Taiwan[Ph. D. disseration], University of Washington. 196 pp. MacEachern, J. A. and Pemberton, S. G. (1992). Ichnological aspects of Cretaceous shoreface successions and shoreface variability in the Western Interior Seaway of North America. Maslin, M. A. and Brierley, C. M. (2015). The role of orbital forcing in the Early Middle Pleistocene Transition. Quaternary International, 389, 47-55. Miall, A. D. and Postma, G. (1997). The geology of fluvial deposits, sedimentary facies, basin analysis and petroleum geology, Sedimentary Geology, 110(1), 149. Miller, K., Mountain, G., Wright, J. and Browning, J. (2011). A 180-Million-Year Record of Sea Level and Ice Volume Variations from Continental Margin and Deep-Sea Isotopic Records. Oceanography, 24(2), 40-53. Mitchum Jr, R. (1977). Seismic stratigraphy and global changes of sea level: Part 11. Glossary of terms used in seismic stratigraphy: Section 2. Application of seismic reflection configuration to stratigraphic interpretation. Moslow, T. F. and Pemberton, S. G. (1988). An integrated approach to the sedimentological analysis of some Lower Cretaceous shoreface and delta front sandstone sequences, 373-386. Naish, T. and Kamp, P. J. J. (1997). Sequence stratigraphy of sixth-order (41 k.y.) Pliocene–Pleistocene cyclothems, Wanganui basin, New Zealand: A case for the regressive systems tract. Geological Society of America Bulletin, 109(8), 978-999. Nemec, W. and Steel, R. (1988). What is a fan delta and how do we recognize it. Fan Deltas: sedimentology and tectonic settings, 3-13. Netto, R. G. and Grangeiro, M. E. (2009). Neoichnology of the seaward side of Peixe Lagoon in Mostardas, southernmost Brazil: the Psilonichnus ichnocoenosis revisited. Revista Brasileira de Paleontologia, 12(3), 211-224. Pan, T.-Y., Lin, A. T.-S. and Chi, W.-R. (2015). Paleoenvironments of the evolving Pliocene to early Pleistocene foreland basin in northwestern Taiwan: An example from the Dahan River section. Island Arc, 24(3), 317-341. Posamentier, H. W. and Allen, G. P. (1999). Siliciclastic sequence stratigraphy: concepts and applications (Vol. 7): SEPM (Society for Sedimentary Geology) Tulsa, Oklahoma. Reineck, H. and Singh, I. (1980). Depositional Sedimentary Environments, second edition, Springer Verlagm Berlin, p.549. Reineck, H. E. and Wunderlich, F. (1968). Classification and origin of flaser and lenticular bedding. Sedimentology, 11(1‐2), 99-104. Scherer, C. M. S., Goldberg, K. and Bardola, T. (2015). Facies architecture and sequence stratigraphy of an early post-rift fluvial succession, Aptian Barbalha Formation, Araripe Basin, northeastern Brazil. Sedimentary Geology, 322, 43-62. Schwarzacher, W. (1993). Cyclostratigraphy and the Milankovitch theory: Elsevier. Sclater, J. G. and Christie, P. A. (1980). Continental stretching: An explanation of the post‐Mid‐Cretaceous subsidence of the central North Sea Basin. Journal of Geophysical Research: Solid Earth, 85(B7), 3711-3739. Shanley, K., McCabe, P., Flint, S. and Bryant, I. (1993). Alluvial architecture in a sequence stratigraphic framework: a case history from the Upper Cretaceous of southern Utah, USA. In The geological modelling of hydrocarbon reservoirs and outcrop analogues (Vol. 15, pp. 21-56): International Association of Sedimentologists. Shanley, K., McCabe, P. and Hettinger, R. (1992). Significance of tidal influence in fluvial deposits for interpreting sequence stratigraphy. Sedimentology, 39, 905-930. Taylor, A. and Goldring, R. (1993). Description and analysis of bioturbation and ichnofabric. Journal of the Geological Society, 150(1), 141-148. Teng, L. S. (1990). Geotectonic evolution of late Cenozoic arc-continent collision in Taiwan. Tectonophysics, 183(1), 57-76. Van Wagoner, J., Posamentier, H., Mitchum, R., Vail, P., Sarg, J., Loutit, T. and Hardenbol, J. (1988). An overview of the fundamentals of sequence stratigraphy and key definitions. Walker, R. G. and James, N. P. (1992). Facies models : response to sea level change, Geological Association of Canada, 1-454. Willis, B. J. (2005). Deposits of tide-influenced river deltas. | |
dc.identifier.uri | http://tdr.lib.ntu.edu.tw/jspui/handle/123456789/59949 | - |
dc.description.abstract | 晚中新世以來,弧陸碰撞使得臺灣形成一系列南北向造山帶,在其西側前緣發育一系列前陸盆地。前陸盆地具有高沉降速率及高沉積速率的特性,使得其沉積層序可反映小尺度的海水面變動。更新世的海水面升降受米蘭科維奇行星軌道影響,具有週期性變化。其中,臺灣西北部大漢溪剖面的卓蘭層與楊梅層,為更新世前陸盆地地層,沉積環境呈現海相轉為陸相,也導致卓蘭層上部至楊梅層,缺乏超微化石的資料而無法得知年代。因此,本研究透過岩相分析、岩相組合分析及層序地層分析,調查卓蘭層至楊梅層第五級的沉積層序,並對比至米蘭科維奇週期,建立卓蘭層至楊梅層的年代模式,再透過構造沉降速率及沉積速率的計算,探討沉積層序及北部前陸盆地的演化歷史。 卓蘭層至楊梅層共可分出45個沉積層序,具有4種型態的沉積層序,分別為遠濱型、河口型、分流河道型及陸相河道型。整個沉積層序及沉積環境呈現向上變淺,海相轉變為陸相。其中,沉積層序演化有兩種看法,關鍵在於層序編號42之後的沉積層序有明顯增厚的現象,第一種看法是認為受到構造沉降速率及沉積速率加速的影響,第二種看法除了構造沉降速率及沉積速率加速外,也受到100 ky週期的影響。兩種看法皆透過沉積速率及沉積速率的計算,顯示北部前陸盆地分別在1.86 Ma及0.98-0.87 Ma有增加的趨勢。在1.86 Ma,前陸盆地沉降速率及沉積速率增加,是受到雪山山脈及內麓山帶的抬升造成前陸盆地的沉降速率增加,同時造成雪山山脈及外麓山帶的沉積物大量剝蝕至盆地堆積,沉積速率因此而增加及沉積環境快速變淺。在0.98-0.87 Ma,沉降速率及沉積速率增幅大於1.86 Ma,顯示前陸盆地已經相當靠近斷層前緣,造成沉積速率及沉降速率大幅增加。 此外,將北部前陸盆地(大漢溪剖面)的演化史與西南部前陸盆地(曾文溪剖面)的演化史進行比較,發現西南部前陸盆地整體沉積速率都大於構造沉降速率,而北部前陸盆地整體沉積速率皆接近沉降速率。此差異來自於前陸盆地形成於不同的沉積環境。 | zh_TW |
dc.description.abstract | In late Miocene, the Taiwan orogeny belt is formed by the arc-continental collision. A series of foreland basin developed in western side of the orogeny belt and have characteristics of high subsidence rate and high sediment accumulation rate, so the depositional sequences in foreland basin strata reflect high-frequency sea level change. Especially, sea level change since Pleistocence is controlled by the Milankovitch cycle. In northwestern Taiwan, Cholan Formation and Yangmei Formation in the Dahan river section are Pleistocence foreland basin strata. The evolution of depositional environment from Cholan Formation to Yangmei Formation show marine to nonmarine setting. Thus, the age from the upper part Cholan Formation to Yengmei Formation are unclear, so this study use lithosfacies analysis, facies association and sequence stratigraphy to establish the 5th order depositional sequences from Cholan Formaton to Yengmei Formation and correlated to Milankovitch cycle to resolve age problem. Then, through the calculation of tectonic subsidence rate and sediment accumulation rate, this study would discuss the evolution of depositional sequence and the northern foreland basin in Taiwan. 45 depositional sequences can be recognized from Cholan Formation to Yangmei Formation and that contain 4 types of the depositional sequences which are offshore type, river mouth type, distributary channel type and fluvial channel type. Two models of evolution of the depositional sequences could be considered because above No. 42 depositional sequence in Yangmei Formation is thicker than below. The first model indicates the increase of tectonic subsidence rate and sediment accumulation rate. The second model indicates the increase of tectonic subsidence rate and sediment accumulation rate and the affect of 100 ky of Milankovitch cycle. The tectonic subsidence rate and sediment accumulation rate of two models show acceleration in 1.86 Ma and 0.98-0.87 Ma. In 1.86 Ma, the uplife of the Hsuehshan range and the Western Foothill cause the increase of tectonic subsidence rate and sediment accumulation rate and depositional environment shallow more quickly. In 0.98-0.87 Ma, tectonic subsidence rate and sediment accumulation rate increase again that is influenced by closing the fold-thrust belt of orogeny belt. Furthermore, comparison the foreland basin history of Chengwenchi section in southwestern Taiwan and Dahan river section in northern Taiwan. In the northern foreland basin, the increase of sediment accumulation rate is closed to the increase of tectonic subsidence rate, but in the southwestern foreland basin, the increase of sediment accumulation rate is higher than the increase of tectonic subsidence rate. The reason is that foreland basin is formed in different environment condition. | en |
dc.description.provenance | Made available in DSpace on 2021-06-16T09:46:48Z (GMT). No. of bitstreams: 1 U0001-1308202015264400.pdf: 15523290 bytes, checksum: 9befb9acbd7e92bd5c06098a8cefe489 (MD5) Previous issue date: 2020 | en |
dc.description.tableofcontents | 口試委員審定書…………………………………………….…………………………...I 誌謝…………………………………………………….……………………………......II 摘要………………………………………………....………………………………….III Abstract…………………………………………………………...……………………IV 目錄………………………………………………………………….………………....VI 圖目錄………………………………………………………………………………..VIII 表目錄…………………………………………………………………………………..X 第一章 緒論………………………………………………………….…………….1 1.1 研究動機及目的……………………………………………...…………….1 1.2 前人研究……………………………………………………………...…….2 1.3 地質背景…………………………………….………………...…..………..3 1.4 研究區域及地層……………………………………………………...…….4 第二章 研究方法…………………………………………………….…………….8 2.1 岩相及岩相組合分析………………………………………...………….....8 2.2 層序地層…………………………...……………...……………..………..10 2.3 年代對比…………………………………………………………………..13 2.4 構造沉降速率及沉積速率計算…………………….…………....….……14 第三章 岩相及岩相組合分析……………………...………………….…………16 3.1 岩相分析…………………………………………………………………..16 3.2 岩相組合分析……………………...…………………………………..….30 3.2.1 前三角洲…………………………………………...………....……30 3.2.2 三角洲前緣…………………………………..……………….……35 3.2.3 三角洲平原………………………………………..………….……38 3.2.4 海岸平原……………………………………………………..…….42 第四章 層序地層分析………………………………………………….…...……46 4.1 遠濱型(Type 1)…………………………………………………………46 4.2 河口型(Type 2)………………………….…………..……...…………...51 4.3 分流河道型(Type 3)……………………………………...….…………53 4.4 陸相河道型(Type 4)………………………………….……....………57 第五章 討論……………………………………………………..………………..48 5.1 本研究與前人研究之比較………………………………………..………61 5.2 自變循環(autocycle)與異變循環(allocycle)…………………..…..63 5.3 沉積層序類型的比較……………………………………………………..64 5.3.1 低水位體系域………………………………………………………...64 5.3.2 海進體系域…………………………………………………………...64 5.3.3 高水位體系域………………………………………………………...66 5.4 沉積層序演化……………………………………………………………..69 5.4.1 層序編號3至編號19………………………………………………..69 5.4.2 層序編號20至編號23………………………………………………69 5.4.3 層序編號24至編號32………………………………………………72 5.4.4 層序編號33至編號45………………………………………………72 5.5 前陸盆地構造沉降及沉積速率演化…………………………………..…76 5.5.1 沉降速率及沉積速率與沉積層序厚度之關係…………………...…76 5.5.2 沉降速率及沉積速率的變化點與構造演化………………………...80 5.6 北部與西南部前陸盆地構造與沉積速率之比較………………………..82 第六章 結論……………………………………………………………………....84 參考文獻………………………………………………………………………….……86 附錄……………………………………………………………………………...……..91 | |
dc.language.iso | zh-TW | |
dc.title | 探討大漢溪剖面更新世卓蘭層至楊梅層之沉積層序及前陸盆地演化 | zh_TW |
dc.title | Sequence stratigraphy and evolution of foreland basin from Cholan Formation to Yengmei Formation in Dahan River section | en |
dc.type | Thesis | |
dc.date.schoolyear | 108-2 | |
dc.description.degree | 碩士 | |
dc.contributor.oralexamcommittee | 吳樂群(Leh-Chyun Wu),游能悌(Neng-Ti Yu),楊志成(Chih-Cheng Yang) | |
dc.subject.keyword | 層序地層,前陸盆地,米蘭科維奇週期,更新世, | zh_TW |
dc.subject.keyword | Sequence stratigraphy,foreland basin,Milankovitch cycle,Pleistocence, | en |
dc.relation.page | 118 | |
dc.identifier.doi | 10.6342/NTU202003271 | |
dc.rights.note | 有償授權 | |
dc.date.accepted | 2020-08-17 | |
dc.contributor.author-college | 理學院 | zh_TW |
dc.contributor.author-dept | 地質科學研究所 | zh_TW |
顯示於系所單位: | 地質科學系 |
文件中的檔案:
檔案 | 大小 | 格式 | |
---|---|---|---|
U0001-1308202015264400.pdf 目前未授權公開取用 | 15.16 MB | Adobe PDF |
系統中的文件,除了特別指名其著作權條款之外,均受到著作權保護,並且保留所有的權利。