請用此 Handle URI 來引用此文件:
http://tdr.lib.ntu.edu.tw/jspui/handle/123456789/59947完整後設資料紀錄
| DC 欄位 | 值 | 語言 |
|---|---|---|
| dc.contributor.advisor | 陳俊任 | |
| dc.contributor.author | Kuei-Liang | en |
| dc.contributor.author | 陳奎良 | zh_TW |
| dc.date.accessioned | 2021-06-16T09:46:41Z | - |
| dc.date.available | 2022-02-16 | |
| dc.date.copyright | 2017-02-16 | |
| dc.date.issued | 2017 | |
| dc.date.submitted | 2017-01-23 | |
| dc.identifier.citation | 1. Sanodiya, B.S., et al., Ganoderma lucidum: a potent pharmacological macrofungus. Curr Pharm Biotechnol, 2009. 10(8): p. 717-42.
2. Bishop, K.S., et al., From 2000years of Ganoderma lucidum to recent developments in nutraceuticals. Phytochemistry, 2015. 114: p. 56-65. 3. Lin, Z.B., Cellular and molecular mechanisms of immuno-modulation by Ganoderma lucidum. J Pharmacol Sci, 2005. 99(2): p. 144-53. 4. Paterson, R.R., Ganoderma - a therapeutic fungal biofactory. Phytochemistry, 2006. 67(18): p. 1985-2001. 5. Lee, J.M., et al., Inhibition of lipid peroxidation and oxidative DNA damage by Ganoderma lucidum. Phytother Res, 2001. 15(3): p. 245-9. 6. Boh, B., et al., Ganoderma lucidum and its pharmaceutically active compounds. Biotechnol Annu Rev, 2007. 13: p. 265-301. 7. Yuen, J.W. and M.D. Gohel, Anticancer effects of Ganoderma lucidum: a review of scientific evidence. Nutr Cancer, 2005. 53(1): p. 11-7. 8. Avci, F.Y. and D.L. Kasper, How bacterial carbohydrates influence the adaptive immune system. Annu Rev Immunol, 2010. 28: p. 107-30. 9. Huie, C.W. and X. Di, Chromatographic and electrophoretic methods for Lingzhi pharmacologically active components. J Chromatogr B Analyt Technol Biomed Life Sci, 2004. 812(1-2): p. 241-57. 10. Wasser, S.P. and A.L. Weis, Therapeutic effects of substances occurring in higher Basidiomycetes mushrooms: a modern perspective. Crit Rev Immunol, 1999. 19(1): p. 65-96. 11. Cao, L.Z. and Z.B. Lin, Regulation on maturation and function of dendritic cells by Ganoderma lucidum polysaccharides. Immunol Lett, 2002. 83(3): p. 163-9. 12. Zhao, H., et al., Enteric mucosal immune response might trigger the immunomodulation activity of Ganoderma lucidum polysaccharide in mice. Planta Med, 2010. 76(3): p. 223-7. 13. Chien, C.M., et al., Polysaccharides of Ganoderma lucidum alter cell immunophenotypic expression and enhance CD56+ NK-cell cytotoxicity in cord blood. Bioorg Med Chem, 2004. 12(21): p. 5603-9. 14. Lin, K.I., et al., Reishi polysaccharides induce immunoglobulin production through the TLR4/TLR2-mediated induction of transcription factor Blimp-1. J Biol Chem, 2006. 281(34): p. 24111-23. 15. Pi, C.C., et al., Polysaccharides from Ganoderma formosanum function as a Th1 adjuvant and stimulate cytotoxic T cell response in vivo. Vaccine, 2014. 32(3): p. 401-8. 16. Wang, C.L., et al., Extracellular polysaccharides produced by Ganoderma formosanum stimulate macrophage activation via multiple pattern-recognition receptors. BMC Complement Altern Med, 2012. 12: p. 119. 17. Wang, C.L., et al., Polysaccharides purified from the submerged culture of Ganoderma formosanum stimulate macrophage activation and protect mice against Listeria monocytogenes infection. Biotechnol Lett, 2011. 33(11): p. 2271-8. 18. Wang, C.L., et al., Activation of antitumor immune responses by Ganoderma formosanum polysaccharides in tumor-bearing mice. Appl Microbiol Biotechnol, 2014. 98(22): p. 9389-98. 19. Garcia-Lora, A., I. Algarra, and F. Garrido, MHC class I antigens, immune surveillance, and tumor immune escape. J Cell Physiol, 2003. 195(3): p. 346-55. 20. Dranoff, G., Cytokines in cancer pathogenesis and cancer therapy. Nat Rev Cancer, 2004. 4(1): p. 11-22. 21. Olson, O.C. and J.A. Joyce, Microenvironment-mediated resistance to anticancer therapies. Cell Res, 2013. 23(2): p. 179-81. 22. Whiteside, T.L., The tumor microenvironment and its role in promoting tumor growth. Oncogene, 2008. 27(45): p. 5904-12. 23. Margadant, C. and A. Sonnenberg, Integrin-TGF-beta crosstalk in fibrosis, cancer and wound healing. EMBO Rep, 2010. 11(2): p. 97-105. 24. Cirri, P. and P. Chiarugi, Cancer-associated-fibroblasts and tumour cells: a diabolic liaison driving cancer progression. Cancer Metastasis Rev, 2012. 31(1-2): p. 195-208. 25. Franco, O.E., et al., Cancer associated fibroblasts in cancer pathogenesis. Semin Cell Dev Biol, 2010. 21(1): p. 33-9. 26. Martinez, F.O. and S. Gordon, The M1 and M2 paradigm of macrophage activation: time for reassessment. F1000Prime Rep, 2014. 6: p. 13. 27. Sica, A. and A. Mantovani, Macrophage plasticity and polarization: in vivo veritas. J Clin Invest, 2012. 122(3): p. 787-95. 28. Mills, C.D., et al., M-1/M-2 macrophages and the Th1/Th2 paradigm. J Immunol, 2000. 164(12): p. 6166-73. 29. Chanmee, T., et al., Tumor-associated macrophages as major players in the tumor microenvironment. Cancers (Basel), 2014. 6(3): p. 1670-90. 30. Mantovani, A., et al., Macrophage polarization: tumor-associated macrophages as a paradigm for polarized M2 mononuclear phagocytes. Trends Immunol, 2002. 23(11): p. 549-55. 31. Ding, L., et al., IL-10 inhibits macrophage costimulatory activity by selectively inhibiting the up-regulation of B7 expression. J Immunol, 1993. 151(3): p. 1224-34. 32. Kuang, D.M., et al., Activated monocytes in peritumoral stroma of hepatocellular carcinoma foster immune privilege and disease progression through PD-L1. J Exp Med, 2009. 206(6): p. 1327-37. 33. Kryczek, I., et al., B7-H4 expression identifies a novel suppressive macrophage population in human ovarian carcinoma. J Exp Med, 2006. 203(4): p. 871-81. 34. Pollard, J.W., Tumour-educated macrophages promote tumour progression and metastasis. Nat Rev Cancer, 2004. 4(1): p. 71-8. 35. Adeegbe, D.O. and H. Nishikawa, Natural and induced T regulatory cells in cancer. Front Immunol, 2013. 4: p. 190. 36. Qian, B.Z. and J.W. Pollard, Macrophage diversity enhances tumor progression and metastasis. Cell, 2010. 141(1): p. 39-51. 37. Yeo, E.J., et al., Myeloid WNT7b mediates the angiogenic switch and metastasis in breast cancer. Cancer Res, 2014. 74(11): p. 2962-73. 38. Diaz-Montero, C.M., et al., Increased circulating myeloid-derived suppressor cells correlate with clinical cancer stage, metastatic tumor burden, and doxorubicin-cyclophosphamide chemotherapy. Cancer Immunol Immunother, 2009. 58(1): p. 49-59. 39. Gabrilovich, D.I. and S. Nagaraj, Myeloid-derived suppressor cells as regulators of the immune system. Nat Rev Immunol, 2009. 9(3): p. 162-74. 40. Oyama, T., et al., Vascular endothelial growth factor affects dendritic cell maturation through the inhibition of nuclear factor-kappa B activation in hemopoietic progenitor cells. J Immunol, 1998. 160(3): p. 1224-32. 41. Serafini, P., et al., High-dose granulocyte-macrophage colony-stimulating factor-producing vaccines impair the immune response through the recruitment of myeloid suppressor cells. Cancer Res, 2004. 64(17): p. 6337-43. 42. Bunt, S.K., et al., Reduced inflammation in the tumor microenvironment delays the accumulation of myeloid-derived suppressor cells and limits tumor progression. Cancer Res, 2007. 67(20): p. 10019-26. 43. Zhao, X., et al., TNF signaling drives myeloid-derived suppressor cell accumulation. J Clin Invest, 2012. 122(11): p. 4094-104. 44. Obermajer, N., et al., PGE(2)-driven induction and maintenance of cancer-associated myeloid-derived suppressor cells. Immunol Invest, 2012. 41(6-7): p. 635-57. 45. Nefedova, Y., et al., Hyperactivation of STAT3 is involved in abnormal differentiation of dendritic cells in cancer. J Immunol, 2004. 172(1): p. 464-74. 46. Zhao, F., et al., S100A9 a new marker for monocytic human myeloid-derived suppressor cells. Immunology, 2012. 136(2): p. 176-83. 47. Sinha, P., et al., Proinflammatory S100 proteins regulate the accumulation of myeloid-derived suppressor cells. J Immunol, 2008. 181(7): p. 4666-75. 48. Asfaha, S., et al., Mice that express human interleukin-8 have increased mobilization of immature myeloid cells, which exacerbates inflammation and accelerates colon carcinogenesis. Gastroenterology, 2013. 144(1): p. 155-66. 49. Connolly, M.K., et al., Distinct populations of metastases-enabling myeloid cells expand in the liver of mice harboring invasive and preinvasive intra-abdominal tumor. J Leukoc Biol, 2010. 87(4): p. 713-25. 50. Toh, B., et al., Mesenchymal transition and dissemination of cancer cells is driven by myeloid-derived suppressor cells infiltrating the primary tumor. PLoS Biol, 2011. 9(9): p. e1001162. 51. Hestdal, K., et al., Characterization and regulation of RB6-8C5 antigen expression on murine bone marrow cells. J Immunol, 1991. 147(1): p. 22-8. 52. Youn, J.I., et al., Subsets of myeloid-derived suppressor cells in tumor-bearing mice. J Immunol, 2008. 181(8): p. 5791-802. 53. Bronte, V., et al., Boosting antitumor responses of T lymphocytes infiltrating human prostate cancers. J Exp Med, 2005. 201(8): p. 1257-68. 54. Rodriguez, P.C., et al., Arginase I production in the tumor microenvironment by mature myeloid cells inhibits T-cell receptor expression and antigen-specific T-cell responses. Cancer Res, 2004. 64(16): p. 5839-49. 55. Rodriguez, P.C., D.G. Quiceno, and A.C. Ochoa, L-arginine availability regulates T-lymphocyte cell-cycle progression. Blood, 2007. 109(4): p. 1568-73. 56. Harari, O. and J.K. Liao, Inhibition of MHC II gene transcription by nitric oxide and antioxidants. Curr Pharm Des, 2004. 10(8): p. 893-8. 57. Rivoltini, L., et al., Immunity to cancer: attack and escape in T lymphocyte-tumor cell interaction. Immunol Rev, 2002. 188: p. 97-113. 58. Huang, B., et al., Gr-1+CD115+ immature myeloid suppressor cells mediate the development of tumor-induced T regulatory cells and T-cell anergy in tumor-bearing host. Cancer Res, 2006. 66(2): p. 1123-31. 59. Centuori, S.M., et al., Myeloid-derived suppressor cells from tumor-bearing mice impair TGF-beta-induced differentiation of CD4+CD25+FoxP3+ Tregs from CD4+CD25-FoxP3- T cells. J Leukoc Biol, 2012. 92(5): p. 987-97. 60. Hoechst, B., et al., Myeloid derived suppressor cells inhibit natural killer cells in patients with hepatocellular carcinoma via the NKp30 receptor. Hepatology, 2009. 50(3): p. 799-807. 61. Wargo, J.A., et al., Monitoring immune responses in the tumor microenvironment. Curr Opin Immunol, 2016. 41: p. 23-31. 62. Hori, S., T. Nomura, and S. Sakaguchi, Control of regulatory T cell development by the transcription factor Foxp3. Science, 2003. 299(5609): p. 1057-61. 63. Curiel, T.J., et al., Specific recruitment of regulatory T cells in ovarian carcinoma fosters immune privilege and predicts reduced survival. Nat Med, 2004. 10(9): p. 942-9. 64. Tan, M.C., et al., Disruption of CCR5-dependent homing of regulatory T cells inhibits tumor growth in a murine model of pancreatic cancer. J Immunol, 2009. 182(3): p. 1746-55. 65. Toda, A. and C.A. Piccirillo, Development and function of naturally occurring CD4+CD25+ regulatory T cells. J Leukoc Biol, 2006. 80(3): p. 458-70. 66. Cao, X., et al., Granzyme B and perforin are important for regulatory T cell-mediated suppression of tumor clearance. Immunity, 2007. 27(4): p. 635-46. 67. Sojka, D.K., A. Hughson, and D.J. Fowell, CTLA-4 is required by CD4+CD25+ Treg to control CD4+ T-cell lymphopenia-induced proliferation. Eur J Immunol, 2009. 39(6): p. 1544-51. 68. Jain, N., et al., Dual function of CTLA-4 in regulatory T cells and conventional T cells to prevent multiorgan autoimmunity. Proc Natl Acad Sci U S A, 2010. 107(4): p. 1524-8. 69. Bracci, L., et al., Immune-based mechanisms of cytotoxic chemotherapy: implications for the design of novel and rationale-based combined treatments against cancer. Cell Death Differ, 2014. 21(1): p. 15-25. 70. Oberic, L., et al., Docetaxel- and 5-FU-concurrent radiotherapy in patients presenting unresectable locally advanced pancreatic cancer: a FNCLCC-ACCORD/0201 randomized phase II trial's pre-planned analysis and case report of a 5.5-year disease-free survival. Radiat Oncol, 2011. 6: p. 124. 71. Pinedo, H.M. and G.F. Peters, Fluorouracil: biochemistry and pharmacology. J Clin Oncol, 1988. 6(10): p. 1653-64. 72. Longley, D.B., D.P. Harkin, and P.G. Johnston, 5-fluorouracil: mechanisms of action and clinical strategies. Nat Rev Cancer, 2003. 3(5): p. 330-8. 73. Coustere, C., et al., A mathematical model of the kinetics of 5-fluorouracil and its metabolites in cancer patients. Cancer Chemother Pharmacol, 1991. 28(2): p. 123-9. 74. Papanastasopoulos, P. and J. Stebbing, Molecular basis of 5-fluorouracil-related toxicity: lessons from clinical practice. Anticancer Res, 2014. 34(4): p. 1531-5. 75. Lizee, G., et al., Harnessing the power of the immune system to target cancer. Annu Rev Med, 2013. 64: p. 71-90. 76. Weiner, G.J., Building better monoclonal antibody-based therapeutics. Nat Rev Cancer, 2015. 15(6): p. 361-70. 77. Dougan, M. and G. Dranoff, Immune therapy for cancer. Annu Rev Immunol, 2009. 27: p. 83-117. 78. Pardoll, D.M., The blockade of immune checkpoints in cancer immunotherapy. Nat Rev Cancer, 2012. 12(4): p. 252-64. 79. Melero, I., et al., Evolving synergistic combinations of targeted immunotherapies to combat cancer. Nat Rev Cancer, 2015. 15(8): p. 457-72. 80. Derer, A., et al., Immune-modulating properties of ionizing radiation: rationale for the treatment of cancer by combination radiotherapy and immune checkpoint inhibitors. Cancer Immunol Immunother, 2016. 65(7): p. 779-86. 81. Vincent, J., et al., 5-Fluorouracil selectively kills tumor-associated myeloid-derived suppressor cells resulting in enhanced T cell-dependent antitumor immunity. Cancer Res, 2010. 70(8): p. 3052-61. 82. Albeituni, S.H., et al., Yeast-Derived Particulate beta-Glucan Treatment Subverts the Suppression of Myeloid-Derived Suppressor Cells (MDSC) by Inducing Polymorphonuclear MDSC Apoptosis and Monocytic MDSC Differentiation to APC in Cancer. J Immunol, 2016. 196(5): p. 2167-80. 83. Tian, J., et al., beta-Glucan enhances antitumor immune responses by regulating differentiation and function of monocytic myeloid-derived suppressor cells. Eur J Immunol, 2013. 43(5): p. 1220-30. 84. Imai, H., et al., Depletion of CD4+CD25+ regulatory T cells enhances interleukin-2-induced antitumor immunity in a mouse model of colon adenocarcinoma. Cancer Sci, 2007. 98(3): p. 416-23. 85. Kline, J., et al., Homeostatic proliferation plus regulatory T-cell depletion promotes potent rejection of B16 melanoma. Clin Cancer Res, 2008. 14(10): p. 3156-67. 86. Santoni, M., et al., Emerging role of tumor-associated macrophages as therapeutic targets in patients with metastatic renal cell carcinoma. Cancer Immunol Immunother, 2013. 62(12): p. 1757-68. 87. Zhao, M., et al., MHC class II transactivator (CIITA) expression is upregulated in multiple myeloma cells by IFN-gamma. Mol Immunol, 2007. 44(11): p. 2923-32. 88. Wang, J., et al., 5-Fluorouracil targets thymidylate synthase in the selective suppression of TH17 cell differentiation. Oncotarget, 2016. 7(15): p. 19312-26. 89. Khallouf, H., et al., 5-Fluorouracil and interferon-alpha immunochemotherapy enhances immunogenicity of murine pancreatic cancer through upregulation of NKG2D ligands and MHC class I. J Immunother, 2012. 35(3): p. 245-53. 90. Nagaraj, S., J.I. Youn, and D.I. Gabrilovich, Reciprocal relationship between myeloid-derived suppressor cells and T cells. J Immunol, 2013. 191(1): p. 17-23. 91. Kumar, V., et al., The Nature of Myeloid-Derived Suppressor Cells in the Tumor Microenvironment. Trends Immunol, 2016. 37(3): p. 208-20. 92. Caramalho, I., et al., Regulatory T cells selectively express toll-like receptors and are activated by lipopolysaccharide. J Exp Med, 2003. 197(4): p. 403-11. 93. Kawashima, S., et al., beta-glucan curdlan induces IL-10-producing CD4+ T cells and inhibits allergic airway inflammation. J Immunol, 2012. 189(12): p. 5713-21. 94. Hong, F., et al., Mechanism by which orally administered beta-1,3-glucans enhance the tumoricidal activity of antitumor monoclonal antibodies in murine tumor models. J Immunol, 2004. 173(2): p. 797-806. 95. Corzo, C.A., et al., HIF-1alpha regulates function and differentiation of myeloid-derived suppressor cells in the tumor microenvironment. J Exp Med, 2010. 207(11): p. 2439-53. | |
| dc.identifier.uri | http://tdr.lib.ntu.edu.tw/jspui/handle/123456789/59947 | - |
| dc.description.abstract | 台灣紫芝(Ganoderma formosanum)為台灣特有靈芝品種,本實驗室利用液態深層醱酵培養法所生產的台灣紫芝胞外多醣體,進行膠體過濾層析純化可分離得PS-F1、PS-F2 和PS-F3 三個主要分劃。實驗室先前的研究發現在接種腫瘤前後持續給予小鼠PS-F2可活化其抗腫瘤免疫反應。本篇研究更進一步探討單獨給予小鼠PS-F2以及合併PS-F2和化療藥物5-FU,對於已形成之C26腫瘤的治療成效。研究結果發現,單獨給予C26腫瘤小鼠PS-F2仍然可抑制腫瘤的生長,而5-FU合併PS-F2的療程對於抑制腫瘤的生長具有加乘的效果。5-FU和PS-F2合併療法的抗腫瘤機制是藉由促進脾臟內的Th1細胞、毒殺型T細胞以及自然殺手細胞的活化,另一方面降低多型核骨髓衍生抑制細胞和調節型T細胞的比例。此外,合併療法也可有效降低腫瘤微環境內的具有免疫抑制能力的骨髓衍生抑制細胞和腫瘤相關巨噬細胞的比例。而在體外試驗中,發現PS-F2的刺激會單核型骨髓衍生抑制細胞對於T細胞增生的抑制能力。綜合以上結果,我們發現PS-F2和5-FU的合併療法可藉由活化體內的抗腫瘤免疫反應,同時削弱顯示免疫調節細胞的抑制免應系統的能力,以達到加乘性的抗腫瘤效果,因此也顯示了PS-F2可單獨做為抗腫瘤的免疫輔助療法,並且也可和化療藥物搭配施用而產生更強的抗腫瘤效果。 | zh_TW |
| dc.description.abstract | Ganoderma formosanum is a native species of Ganoderma, first isolated in Taiwan. The extracellular polysaccharides purified from the submerged culture of G. formosanum can be separated into three main fractions PS-F1, PS-F2 and PS-F3 according to their sizes by gel filtration. We have reported previously that PS-F2 can elicit antitumor immune responses when given to mice continuously before and after tumor grafting. In this study, we continued to investigate the antitumor efficacy of PS-F2 monotherapy and combined treatment of PS-F2 and chemotherapy drug 5-fluorouracil (5-FU) in mice with established colon 26 (C26) adenocarcinoma. We found that PS-F2 treatment alone could suppress the growth of established tumor, and combined treatment of PS-F2 and 5-FU could further suppress tumor growth synergistically. The inhibition of tumor growth by PS-F2 and 5-FU was associated with the activation of Th1 cells, cytotoxic T cells and natural killer (NK) cells in the spleen, while the accumulation of polymorphonuclear myeloid-derived suppressor cells (PMN-MDSCs) and regulatory T (Treg) cells was suppressed by the treatment. In the tumor, PS-F2 and 5-FU treatment effectively suppressed the accumulation of PMN-MDSCs, monocytic MDSCc (M-MDSCs), and tumor-associated macrophages (TAMs). In addition, PS-F2 treatment could decrease the immunosuppressive function of M-MDSCs in vitro. Overall, our data demonstrated that PS-F2 and 5-FU could synergistically suppress the growth of established tumor via activating antitumor immune responses and alleviating immunosuppressive effects of immunoregulatory cells, indicating that PS-F2 has the potential to be used in adjuvant immunotherapy alone or in combination with chemotherapy for the treatment of cancer. | en |
| dc.description.provenance | Made available in DSpace on 2021-06-16T09:46:41Z (GMT). No. of bitstreams: 1 ntu-106-R03b22045-1.pdf: 2192906 bytes, checksum: 9b3139f30665724a258fa3d9766d79b7 (MD5) Previous issue date: 2017 | en |
| dc.description.tableofcontents | 中文摘要 I
Abstract II 目錄 III 表目錄 V 圖目錄 VI 縮寫表 VII 一、緒論 1 1. 靈芝簡介 1 2. 靈芝多醣體 2 3. 腫瘤微環境 3 3.1 腫瘤相關纖維母細胞 3 3.2 腫瘤相關巨噬細胞 3 3.3 骨髓衍生型抑制細胞 4 3.4 調節型T細胞 6 4. 癌症治療 6 二、研究動機 8 三、材料與方法 9 1. 實驗菌株、細胞株和動物 9 2. 培養基配置 9 3. 台灣紫芝培養方法 10 4. PS-F2多醣體之回收及純化 10 5. 測定總醣含量 11 6. PS-F2結合化療藥物5-FU之抗腫瘤活性評估 11 7. 脾臟細胞製備 12 8. 脾臟細胞族群比例分析 13 9. 細胞內染 13 10. 腫瘤細胞製備 14 11. 腫瘤細胞族群比例分析 14 12. MDSCs免疫抑制活性測試 15 13. 統計與繪圖軟體之分析 15 四、實驗結果 16 1. PS-F2對於已形成腫瘤之治療效果以及合併施用化療藥物5-FU和 PS-F2的抗種瘤成效 16 2. 合併施用5-FU和PS-F2對於脾臟effector Th1細胞比例的影響 17 3. 合併施用5-FU和PS-F2對於脾臟effector CTLs比例的影響 17 4. 合併施用5-FU和PS-F2對於脾臟NK細胞比例的影響 18 5. 合併施用5-FU和PS-F2對於脾臟MDSCs比例的影響 18 6. 合併施用5-FU和PS-F2對於脾臟調節型T細胞比例的影響 19 7. 合併施用5-FU和PS-F2對於腫瘤MDSCs比例的影響 20 8. 合併施用5-FU和PS-F2對於腫瘤TAM比例的影響 20 9. PS-F2刺激M-MDSC會降低其抑制T細胞增生的能力 21 五、討論 22 六、圖表 26 七、參考文獻 49 | |
| dc.language.iso | zh-TW | |
| dc.subject | T細胞 | zh_TW |
| dc.subject | 多醣體 | zh_TW |
| dc.subject | 台灣紫芝 | zh_TW |
| dc.subject | 骨髓衍生抑制細胞 | zh_TW |
| dc.subject | 腫瘤相關巨噬細胞 | zh_TW |
| dc.subject | TAM | en |
| dc.subject | Ganoderma formosanum | en |
| dc.subject | polysaccharides | en |
| dc.subject | MDSCs | en |
| dc.subject | T cells | en |
| dc.title | 以C26腫瘤細胞之動物模式來探討台灣紫芝多醣體合併化學療法的抗腫瘤效果 | zh_TW |
| dc.title | The combined anti-tumor effect of Ganoderma formosanum polysaccharides and chemotherapy in C26 tumor-bearing mice | en |
| dc.type | Thesis | |
| dc.date.schoolyear | 105-1 | |
| dc.description.degree | 碩士 | |
| dc.contributor.oralexamcommittee | 江皓森,陳念榮 | |
| dc.subject.keyword | 台灣紫芝,多醣體,骨髓衍生抑制細胞,T細胞,腫瘤相關巨噬細胞, | zh_TW |
| dc.subject.keyword | Ganoderma formosanum,polysaccharides,MDSCs,T cells,TAM, | en |
| dc.relation.page | 56 | |
| dc.identifier.doi | 10.6342/NTU201700191 | |
| dc.rights.note | 有償授權 | |
| dc.date.accepted | 2017-01-24 | |
| dc.contributor.author-college | 生命科學院 | zh_TW |
| dc.contributor.author-dept | 生化科技學系 | zh_TW |
| 顯示於系所單位: | 生化科技學系 | |
文件中的檔案:
| 檔案 | 大小 | 格式 | |
|---|---|---|---|
| ntu-106-1.pdf 未授權公開取用 | 2.14 MB | Adobe PDF |
系統中的文件,除了特別指名其著作權條款之外,均受到著作權保護,並且保留所有的權利。
