Skip navigation

DSpace

機構典藏 DSpace 系統致力於保存各式數位資料(如:文字、圖片、PDF)並使其易於取用。

點此認識 DSpace
DSpace logo
English
中文
  • 瀏覽論文
    • 校院系所
    • 出版年
    • 作者
    • 標題
    • 關鍵字
    • 指導教授
  • 搜尋 TDR
  • 授權 Q&A
    • 我的頁面
    • 接受 E-mail 通知
    • 編輯個人資料
  1. NTU Theses and Dissertations Repository
  2. 醫學院
  3. 毒理學研究所
請用此 Handle URI 來引用此文件: http://tdr.lib.ntu.edu.tw/jspui/handle/123456789/59946
完整後設資料紀錄
DC 欄位值語言
dc.contributor.advisor康照洲(Jaw-Jou Kang)
dc.contributor.authorChe-Jui Liangen
dc.contributor.author梁哲睿zh_TW
dc.date.accessioned2021-06-16T09:46:37Z-
dc.date.available2027-01-26
dc.date.copyright2017-03-01
dc.date.issued2017
dc.date.submitted2017-01-23
dc.identifier.citation1 Bersten, D. C., Sullivan, A. E., Peet, D. J. & Whitelaw, M. L. bHLH-PAS proteins in cancer. Nature reviews. Cancer 13, 827-841, doi:10.1038/nrc3621 (2013).
2 Hankinson, O. The aryl hydrocarbon receptor complex. Annual review of pharmacology and toxicology 35, 307-340, doi:10.1146/annurev.pa.35.040195.001515 (1995).
3 Beischlag, T. V., Luis Morales, J., Hollingshead, B. D. & Perdew, G. H. The aryl hydrocarbon receptor complex and the control of gene expression. Critical reviews in eukaryotic gene expression 18, 207-250 (2008).
4 Busbee, P. B., Rouse, M., Nagarkatti, M. & Nagarkatti, P. S. Use of natural AhR ligands as potential therapeutic modalities against inflammatory disorders. Nutrition reviews 71, 353-369, doi:10.1111/nure.12024 (2013).
5 Fukunaga, B. N., Probst, M. R., Reisz-Porszasz, S. & Hankinson, O. Identification of functional domains of the aryl hydrocarbon receptor. The Journal of biological chemistry 270, 29270-29278 (1995).
6 Poland, A., Palen, D. & Glover, E. Tumour promotion by TCDD in skin of HRS/J hairless mice. Nature 300, 271-273 (1982).
7 Beischlag, T. V. et al. Recruitment of thyroid hormone receptor/retinoblastoma-interacting protein 230 by the aryl hydrocarbon receptor nuclear translocator is required for the transcriptional response to both dioxin and hypoxia. The Journal of biological chemistry 279, 54620-54628, doi:10.1074/jbc.M410456200 (2004).
8 Wang, S., Ge, K., Roeder, R. G. & Hankinson, O. Role of mediator in transcriptional activation by the aryl hydrocarbon receptor. The Journal of biological chemistry 279, 13593-13600, doi:10.1074/jbc.M312274200 (2004).
9 Hankinson, O. Role of coactivators in transcriptional activation by the aryl hydrocarbon receptor. Archives of biochemistry and biophysics 433, 379-386, doi:10.1016/j.abb.2004.09.031 (2005).
10 Denison, M. S. & Nagy, S. R. Activation of the aryl hydrocarbon receptor by structurally diverse exogenous and endogenous chemicals. Annual review of pharmacology and toxicology 43, 309-334, doi:10.1146/annurev.pharmtox.43.100901.135828 (2003).
11 Saeki, K. et al. Activation of the human Ah receptor by aza-polycyclic aromatic hydrocarbons and their halogenated derivatives. Biological & pharmaceutical bulletin 26, 448-452 (2003).
12 Anderson, G., Beischlag, T. V., Vinciguerra, M. & Mazzoccoli, G. The circadian clock circuitry and the AHR signaling pathway in physiology and pathology. Biochemical pharmacology 85, 1405-1416, doi:10.1016/j.bcp.2013.02.022 (2013).
13 Mulero-Navarro, S. et al. Immortalized mouse mammary fibroblasts lacking dioxin receptor have impaired tumorigenicity in a subcutaneous mouse xenograft model. The Journal of biological chemistry 280, 28731-28741, doi:10.1074/jbc.M504538200 (2005).
14 Sato, S. et al. Low-dose dioxins alter gene expression related to cholesterol biosynthesis, lipogenesis, and glucose metabolism through the aryl hydrocarbon receptor-mediated pathway in mouse liver. Toxicology and applied pharmacology 229, 10-19, doi:10.1016/j.taap.2007.12.029 (2008).
15 Lee, C. C. et al. Ligand independent aryl hydrocarbon receptor inhibits lung cancer cell invasion by degradation of Smad4. Cancer letters 376, 211-217, doi:10.1016/j.canlet.2016.03.052 (2016).
16 Li, C. H. et al. Benzo[a]pyrene inhibits angiogenic factors-induced alphavbeta3 integrin expression, neovasculogenesis, and angiogenesis in human umbilical vein endothelial cells. Toxicological sciences : an official journal of the Society of Toxicology 118, 544-553, doi:10.1093/toxsci/kfq279 (2010).
17 Lahvis, G. P. et al. Portosystemic shunting and persistent fetal vascular structures in aryl hydrocarbon receptor-deficient mice. Proceedings of the National Academy of Sciences of the United States of America 97, 10442-10447, doi:10.1073/pnas.190256997 (2000).
18 Kurita, H., Schnekenburger, M., Ovesen, J. L., Xia, Y. & Puga, A. The Ah receptor recruits IKKalpha to its target binding motifs to phosphorylate serine-10 in histone H3 required for transcriptional activation. Toxicological sciences : an official journal of the Society of Toxicology 139, 121-132, doi:10.1093/toxsci/kfu027 (2014).
19 Garrison, P. M., Rogers, J. M., Brackney, W. R. & Denison, M. S. Effects of histone deacetylase inhibitors on the Ah receptor gene promoter. Archives of biochemistry and biophysics 374, 161-171, doi:10.1006/abbi.1999.1620 (2000).
20 Wei, Y. D., Tepperman, K., Huang, M. Y., Sartor, M. A. & Puga, A. Chromium inhibits transcription from polycyclic aromatic hydrocarbon-inducible promoters by blocking the release of histone deacetylase and preventing the binding of p300 to chromatin. The Journal of biological chemistry 279, 4110-4119, doi:10.1074/jbc.M310800200 (2004).
21 Henikoff, S. & Matzke, M. A. Exploring and explaining epigenetic effects. Trends in genetics : TIG 13, 293-295 (1997).
22 Brien, G. L., Valerio, D. G. & Armstrong, S. A. Exploiting the Epigenome to Control Cancer-Promoting Gene-Expression Programs. Cancer cell 29, 464-476, doi:10.1016/j.ccell.2016.03.007 (2016).
23 Liu, M. Z. et al. Epigenetic perspectives on cancer chemotherapy response. Pharmacogenomics 15, 699-715, doi:10.2217/pgs.14.41 (2014).
24 Kouzarides, T. Chromatin modifications and their function. Cell 128, 693-705, doi:10.1016/j.cell.2007.02.005 (2007).
25 Sarkar, S. et al. Cancer development, progression, and therapy: an epigenetic overview. International journal of molecular sciences 14, 21087-21113, doi:10.3390/ijms141021087 (2013).
26 Ivanov, M., Kacevska, M. & Ingelman-Sundberg, M. Epigenomics and interindividual differences in drug response. Clinical pharmacology and therapeutics 92, 727-736, doi:10.1038/clpt.2012.152 (2012).
27 Baylin, S. B. & Jones, P. A. A decade of exploring the cancer epigenome - biological and translational implications. Nature reviews. Cancer 11, 726-734, doi:10.1038/nrc3130 (2011).
28 Fraga, M. F. et al. Loss of acetylation at Lys16 and trimethylation at Lys20 of histone H4 is a common hallmark of human cancer. Nature genetics 37, 391-400, doi:10.1038/ng1531 (2005).
29 Seligson, D. B. et al. Global histone modification patterns predict risk of prostate cancer recurrence. Nature 435, 1262-1266, doi:10.1038/nature03672 (2005).
30 Ovesen, J. L., Schnekenburger, M. & Puga, A. Aryl hydrocarbon receptor ligands of widely different toxic equivalency factors induce similar histone marks in target gene chromatin. Toxicological sciences : an official journal of the Society of Toxicology 121, 123-131, doi:10.1093/toxsci/kfr032 (2011).
31 Schnekenburger, M., Peng, L. & Puga, A. HDAC1 bound to the Cyp1a1 promoter blocks histone acetylation associated with Ah receptor-mediated trans-activation. Biochimica et biophysica acta 1769, 569-578, doi:10.1016/j.bbaexp.2007.07.002 (2007).
32 Schnekenburger, M., Talaska, G. & Puga, A. Chromium cross-links histone deacetylase 1-DNA methyltransferase 1 complexes to chromatin, inhibiting histone-remodeling marks critical for transcriptional activation. Molecular and cellular biology 27, 7089-7101, doi:10.1128/mcb.00838-07 (2007).
33 Capell, B. C. & Berger, S. L. Genome-wide epigenetics. The Journal of investigative dermatology 133, e9, doi:10.1038/jid.2013.173 (2013).
34 Unnikrishnan, A., Gafken, P. R. & Tsukiyama, T. Dynamic changes in histone acetylation regulate origins of DNA replication. Nature structural & molecular biology 17, 430-437, doi:10.1038/nsmb.1780 (2010).
35 Vo, N. & Goodman, R. H. CREB-binding protein and p300 in transcriptional regulation. The Journal of biological chemistry 276, 13505-13508, doi:10.1074/jbc.R000025200 (2001).
36 Taylor, G. C., Eskeland, R., Hekimoglu-Balkan, B., Pradeepa, M. M. & Bickmore, W. A. H4K16 acetylation marks active genes and enhancers of embryonic stem cells, but does not alter chromatin compaction. Genome research 23, 2053-2065, doi:10.1101/gr.155028.113 (2013).
37 Van Den Broeck, A. et al. Loss of histone H4K20 trimethylation occurs in preneoplasia and influences prognosis of non-small cell lung cancer. Clinical cancer research : an official journal of the American Association for Cancer Research 14, 7237-7245, doi:10.1158/1078-0432.ccr-08-0869 (2008).
38 Anderson, A. N., Roncaroli, F., Hodges, A., Deprez, M. & Turkheimer, F. E. Chromosomal profiles of gene expression in Huntington's disease. Brain : a journal of neurology 131, 381-388, doi:10.1093/brain/awm312 (2008).
39 Hodawadekar, S. C. & Marmorstein, R. Chemistry of acetyl transfer by histone modifying enzymes: structure, mechanism and implications for effector design. Oncogene 26, 5528-5540, doi:10.1038/sj.onc.1210619 (2007).
40 Wapenaar, H. & Dekker, F. J. Histone acetyltransferases: challenges in targeting bi-substrate enzymes. Clinical epigenetics 8, 59, doi:10.1186/s13148-016-0225-2 (2016).
41 Parthun, M. R., Widom, J. & Gottschling, D. E. The major cytoplasmic histone acetyltransferase in yeast: links to chromatin replication and histone metabolism. Cell 87, 85-94 (1996).
42 Ogryzko, V. V., Schiltz, R. L., Russanova, V., Howard, B. H. & Nakatani, Y. The transcriptional coactivators p300 and CBP are histone acetyltransferases. Cell 87, 953-959 (1996).
43 Bannister, A. J. & Kouzarides, T. The CBP co-activator is a histone acetyltransferase. Nature 384, 641-643, doi:10.1038/384641a0 (1996).
44 Shiama, N. The p300/CBP family: integrating signals with transcription factors and chromatin. Trends in cell biology 7, 230-236, doi:10.1016/s0962-8924(97)01048-9 (1997).
45 de Ruijter, A. J., van Gennip, A. H., Caron, H. N., Kemp, S. & van Kuilenburg, A. B. Histone deacetylases (HDACs): characterization of the classical HDAC family. The Biochemical journal 370, 737-749, doi:10.1042/bj20021321 (2003).
46 Gregoretti, I. V., Lee, Y. M. & Goodson, H. V. Molecular evolution of the histone deacetylase family: functional implications of phylogenetic analysis. Journal of molecular biology 338, 17-31, doi:10.1016/j.jmb.2004.02.006 (2004).
47 Marks, P. A. & Dokmanovic, M. Histone deacetylase inhibitors: discovery and development as anticancer agents. Expert opinion on investigational drugs 14, 1497-1511, doi:10.1517/13543784.14.12.1497 (2005).
48 Yang, X. J. & Seto, E. The Rpd3/Hda1 family of lysine deacetylases: from bacteria and yeast to mice and men. Nature reviews. Molecular cell biology 9, 206-218, doi:10.1038/nrm2346 (2008).
49 Marks, P. A. Histone deacetylase inhibitors: a chemical genetics approach to understanding cellular functions. Biochimica et biophysica acta 1799, 717-725, doi:10.1016/j.bbagrm.2010.05.008 (2010).
50 Haberland, M., Montgomery, R. L. & Olson, E. N. The many roles of histone deacetylases in development and physiology: implications for disease and therapy. Nature reviews. Genetics 10, 32-42, doi:10.1038/nrg2485 (2009).
51 Lagger, G. et al. Essential function of histone deacetylase 1 in proliferation control and CDK inhibitor repression. The EMBO journal 21, 2672-2681, doi:10.1093/emboj/21.11.2672 (2002).
52 Montgomery, R. L. et al. Histone deacetylases 1 and 2 redundantly regulate cardiac morphogenesis, growth, and contractility. Genes & development 21, 1790-1802, doi:10.1101/gad.1563807 (2007).
53 Knutson, S. K. et al. Liver-specific deletion of histone deacetylase 3 disrupts metabolic transcriptional networks. The EMBO journal 27, 1017-1028, doi:10.1038/emboj.2008.51 (2008).
54 Carafa, V., Nebbioso, A. & Altucci, L. Sirtuins and disease: the road ahead. Frontiers in pharmacology 3, 4, doi:10.3389/fphar.2012.00004 (2012).
55 Wang, A. H. et al. HDAC4, a human histone deacetylase related to yeast HDA1, is a transcriptional corepressor. Molecular and cellular biology 19, 7816-7827 (1999).
56 Chen, B. & Cepko, C. L. HDAC4 regulates neuronal survival in normal and diseased retinas. Science (New York, N.Y.) 323, 256-259, doi:10.1126/science.1166226 (2009).
57 Miska, E. A. et al. Differential localization of HDAC4 orchestrates muscle differentiation. Nucleic acids research 29, 3439-3447 (2001).
58 Vega, R. B. et al. Histone deacetylase 4 controls chondrocyte hypertrophy during skeletogenesis. Cell 119, 555-566, doi:10.1016/j.cell.2004.10.024 (2004).
59 Vega, R. B. et al. Protein kinases C and D mediate agonist-dependent cardiac hypertrophy through nuclear export of histone deacetylase 5. Molecular and cellular biology 24, 8374-8385, doi:10.1128/mcb.24.19.8374-8385.2004 (2004).
60 Lemercier, C. et al. mHDA1/HDAC5 histone deacetylase interacts with and represses MEF2A transcriptional activity. The Journal of biological chemistry 275, 15594-15599, doi:10.1074/jbc.M908437199 (2000).
61 Huang, E. Y. et al. Nuclear receptor corepressors partner with class II histone deacetylases in a Sin3-independent repression pathway. Genes & development 14, 45-54 (2000).
62 Kato, H., Tamamizu-Kato, S. & Shibasaki, F. Histone deacetylase 7 associates with hypoxia-inducible factor 1alpha and increases transcriptional activity. The Journal of biological chemistry 279, 41966-41974, doi:10.1074/jbc.M406320200 (2004).
63 Cohen, T. J. et al. The histone deacetylase HDAC4 connects neural activity to muscle transcriptional reprogramming. The Journal of biological chemistry 282, 33752-33759, doi:10.1074/jbc.M706268200 (2007).
64 Kovacs, J. J. et al. HDAC6 regulates Hsp90 acetylation and chaperone-dependent activation of glucocorticoid receptor. Molecular cell 18, 601-607, doi:10.1016/j.molcel.2005.04.021 (2005).
65 Hubbert, C. et al. HDAC6 is a microtubule-associated deacetylase. Nature 417, 455-458, doi:10.1038/417455a (2002).
66 Tong, J. J., Liu, J., Bertos, N. R. & Yang, X. J. Identification of HDAC10, a novel class II human histone deacetylase containing a leucine-rich domain. Nucleic acids research 30, 1114-1123 (2002).
67 Gao, L., Cueto, M. A., Asselbergs, F. & Atadja, P. Cloning and functional characterization of HDAC11, a novel member of the human histone deacetylase family. The Journal of biological chemistry 277, 25748-25755, doi:10.1074/jbc.M111871200 (2002).
68 Marmorstein, R. Structure of histone acetyltransferases. Journal of molecular biology 311, 433-444, doi:10.1006/jmbi.2001.4859 (2001).
69 Sengupta, N. & Seto, E. Regulation of histone deacetylase activities. Journal of cellular biochemistry 93, 57-67, doi:10.1002/jcb.20179 (2004).
70 Chakravarti, D. et al. Role of CBP/P300 in nuclear receptor signalling. Nature 383, 99-103, doi:10.1038/383099a0 (1996).
71 Kwok, R. P. et al. Nuclear protein CBP is a coactivator for the transcription factor CREB. Nature 370, 223-226, doi:10.1038/370223a0 (1994).
72 Bannister, A. J., Oehler, T., Wilhelm, D., Angel, P. & Kouzarides, T. Stimulation of c-Jun activity by CBP: c-Jun residues Ser63/73 are required for CBP induced stimulation in vivo and CBP binding in vitro. Oncogene 11, 2509-2514 (1995).
73 Dai, P. et al. CBP as a transcriptional coactivator of c-Myb. Genes & development 10, 528-540 (1996).
74 Janknecht, R. & Nordheim, A. Regulation of the c-fos promoter by the ternary complex factor Sap-1a and its coactivator CBP. Oncogene 12, 1961-1969 (1996).
75 Onate, S. A., Tsai, S. Y., Tsai, M. J. & O'Malley, B. W. Sequence and characterization of a coactivator for the steroid hormone receptor superfamily. Science (New York, N.Y.) 270, 1354-1357 (1995).
76 Luo, Y. et al. Trans-regulation of histone deacetylase activities through acetylation. The Journal of biological chemistry 284, 34901-34910, doi:10.1074/jbc.M109.038356 (2009).
77 Fischle, W. et al. Enzymatic activity associated with class II HDACs is dependent on a multiprotein complex containing HDAC3 and SMRT/N-CoR. Molecular cell 9, 45-57 (2002).
78 Marks, P. et al. Histone deacetylases and cancer: causes and therapies. Nature reviews. Cancer 1, 194-202, doi:10.1038/35106079 (2001).
79 Cress, W. D. & Seto, E. Histone deacetylases, transcriptional control, and cancer. Journal of cellular physiology 184, 1-16, doi:10.1002/(sici)1097-4652(200007)184:1<1::aid-jcp1>3.0.co;2-7 (2000).
80 Choi, J. H. et al. Expression profile of histone deacetylase 1 in gastric cancer tissues. Japanese journal of cancer research : Gann 92, 1300-1304 (2001).
81 Wilson, A. J. et al. Histone deacetylase 3 (HDAC3) and other class I HDACs regulate colon cell maturation and p21 expression and are deregulated in human colon cancer. The Journal of biological chemistry 281, 13548-13558, doi:10.1074/jbc.M510023200 (2006).
82 Minamiya, Y. et al. Expression of histone deacetylase 1 correlates with a poor prognosis in patients with adenocarcinoma of the lung. Lung cancer (Amsterdam, Netherlands) 74, 300-304, doi:10.1016/j.lungcan.2011.02.019 (2011).
83 Osada, H. et al. Reduced expression of class II histone deacetylase genes is associated with poor prognosis in lung cancer patients. International journal of cancer 112, 26-32, doi:10.1002/ijc.20395 (2004).
84 Rikimaru, T. et al. Clinical significance of histone deacetylase 1 expression in patients with hepatocellular carcinoma. Oncology 72, 69-74, doi:10.1159/000111106 (2007).
85 Duvic, M. et al. Phase 2 trial of oral vorinostat (suberoylanilide hydroxamic acid, SAHA) for refractory cutaneous T-cell lymphoma (CTCL). Blood 109, 31-39, doi:10.1182/blood-2006-06-025999 (2007).
86 Piekarz, R. L. et al. Phase II multi-institutional trial of the histone deacetylase inhibitor romidepsin as monotherapy for patients with cutaneous T-cell lymphoma. Journal of clinical oncology : official journal of the American Society of Clinical Oncology 27, 5410-5417, doi:10.1200/jco.2008.21.6150 (2009).
87 Ungerstedt, J. S. et al. Role of thioredoxin in the response of normal and transformed cells to histone deacetylase inhibitors. Proceedings of the National Academy of Sciences of the United States of America 102, 673-678, doi:10.1073/pnas.0408732102 (2005).
88 Ruefli, A. A. et al. The histone deacetylase inhibitor and chemotherapeutic agent suberoylanilide hydroxamic acid (SAHA) induces a cell-death pathway characterized by cleavage of Bid and production of reactive oxygen species. Proceedings of the National Academy of Sciences of the United States of America 98, 10833-10838, doi:10.1073/pnas.191208598 (2001).
89 Xu, W., Ngo, L., Perez, G., Dokmanovic, M. & Marks, P. A. Intrinsic apoptotic and thioredoxin pathways in human prostate cancer cell response to histone deacetylase inhibitor. Proceedings of the National Academy of Sciences of the United States of America 103, 15540-15545, doi:10.1073/pnas.0607518103 (2006).
90 Xu, W. S., Parmigiani, R. B. & Marks, P. A. Histone deacetylase inhibitors: molecular mechanisms of action. Oncogene 26, 5541-5552, doi:10.1038/sj.onc.1210620 (2007).
91 Shao, Y., Gao, Z., Marks, P. A. & Jiang, X. Apoptotic and autophagic cell death induced by histone deacetylase inhibitors. Proceedings of the National Academy of Sciences of the United States of America 101, 18030-18035, doi:10.1073/pnas.0408345102 (2004).
92 Dowling, M. et al. Mitotic spindle checkpoint inactivation by trichostatin a defines a mechanism for increasing cancer cell killing by microtubule-disrupting agents. Cancer biology & therapy 4, 197-206 (2005).
93 Rosato, R. R. & Grant, S. Histone deacetylase inhibitors: insights into mechanisms of lethality. Expert opinion on therapeutic targets 9, 809-824, doi:10.1517/14728222.9.4.809 (2005).
94 de Marinis, F. et al. A phase II study of the histone deacetylase inhibitor panobinostat (LBH589) in pretreated patients with small-cell lung cancer. Journal of thoracic oncology : official publication of the International Association for the Study of Lung Cancer 8, 1091-1094, doi:10.1097/JTO.0b013e318293d88c (2013).
95 Crisanti, M. C. et al. The HDAC inhibitor panobinostat (LBH589) inhibits mesothelioma and lung cancer cells in vitro and in vivo with particular efficacy for small cell lung cancer. Molecular cancer therapeutics 8, 2221-2231, doi:10.1158/1535-7163.mct-09-0138 (2009).
96 Anne, M., Sammartino, D., Barginear, M. F. & Budman, D. Profile of panobinostat and its potential for treatment in solid tumors: an update. OncoTargets and therapy 6, 1613-1624, doi:10.2147/ott.s30773 (2013).
97 Rosato, R. R. et al. Role of histone deacetylase inhibitor-induced reactive oxygen species and DNA damage in LAQ-824/fludarabine antileukemic interactions. Molecular cancer therapeutics 7, 3285-3297, doi:10.1158/1535-7163.mct-08-0385 (2008).
98 Qin, S. & Hou, D. X. Multiple regulations of Keap1/Nrf2 system by dietary phytochemicals. Molecular nutrition & food research 60, 1731-1755, doi:10.1002/mnfr.201501017 (2016).
99 Rotblat, B., Grunewald, T. G., Leprivier, G., Melino, G. & Knight, R. A. Anti-oxidative stress response genes: bioinformatic analysis of their expression and relevance in multiple cancers. Oncotarget 4, 2577-2590, doi:10.18632/oncotarget.1658 (2013).
100 Sporn, M. B. & Liby, K. T. NRF2 and cancer: the good, the bad and the importance of context. Nature reviews. Cancer 12, 564-571, doi:10.1038/nrc3278 (2012).
101 Taguchi, K., Motohashi, H. & Yamamoto, M. Molecular mechanisms of the Keap1-Nrf2 pathway in stress response and cancer evolution. Genes to cells : devoted to molecular & cellular mechanisms 16, 123-140, doi:10.1111/j.1365-2443.2010.01473.x (2011).
102 Yamamoto, T. et al. Physiological significance of reactive cysteine residues of Keap1 in determining Nrf2 activity. Molecular and cellular biology 28, 2758-2770, doi:10.1128/mcb.01704-07 (2008).
103 Suzuki, T. & Yamamoto, M. Molecular basis of the Keap1-Nrf2 system. Free radical biology & medicine 88, 93-100, doi:10.1016/j.freeradbiomed.2015.06.006 (2015).
104 Shin, S. et al. NRF2 modulates aryl hydrocarbon receptor signaling: influence on adipogenesis. Molecular and cellular biology 27, 7188-7197, doi:10.1128/mcb.00915-07 (2007).
105 Giard, D. J. et al. In vitro cultivation of human tumors: establishment of cell lines derived from a series of solid tumors. Journal of the National Cancer Institute 51, 1417-1423 (1973).
106 Kim, M. S. et al. Histone deacetylases induce angiogenesis by negative regulation of tumor suppressor genes. Nature medicine 7, 437-443, doi:10.1038/86507 (2001).
107 Ma, Q., Kinneer, K., Bi, Y., Chan, J. Y. & Kan, Y. W. Induction of murine NAD(P)H:quinone oxidoreductase by 2,3,7,8-tetrachlorodibenzo-p-dioxin requires the CNC (cap 'n' collar) basic leucine zipper transcription factor Nrf2 (nuclear factor erythroid 2-related factor 2): cross-interaction between AhR (aryl hydrocarbon receptor) and Nrf2 signal transduction. The Biochemical journal 377, 205-213, doi:10.1042/bj20031123 (2004).
108 Ren, D. et al. Brusatol enhances the efficacy of chemotherapy by inhibiting the Nrf2-mediated defense mechanism. Proceedings of the National Academy of Sciences of the United States of America 108, 1433-1438, doi:10.1073/pnas.1014275108 (2011).
109 Olayanju, A. et al. Brusatol provokes a rapid and transient inhibition of Nrf2 signaling and sensitizes mammalian cells to chemical toxicity-implications for therapeutic targeting of Nrf2. Free radical biology & medicine 78, 202-212, doi:10.1016/j.freeradbiomed.2014.11.003 (2015).
110 Mottamal, M., Zheng, S., Huang, T. L. & Wang, G. Histone deacetylase inhibitors in clinical studies as templates for new anticancer agents. Molecules (Basel, Switzerland) 20, 3898-3941, doi:10.3390/molecules20033898 (2015).
111 Dokmanovic, M., Clarke, C. & Marks, P. A. Histone deacetylase inhibitors: overview and perspectives. Molecular cancer research : MCR 5, 981-989, doi:10.1158/1541-7786.mcr-07-0324 (2007).
112 Wang, Z. et al. Overexpression of Cu/Zn-superoxide dismutase and/or catalase accelerates benzo(a)pyrene detoxification by upregulation of the aryl hydrocarbon receptor in mouse endothelial cells. Free radical biology & medicine 47, 1221-1229, doi:10.1016/j.freeradbiomed.2009.08.001 (2009).
113 Tang, T. et al. Overexpression of antioxidant enzymes upregulates aryl hydrocarbon receptor expression via increased Sp1 DNA-binding activity. Free radical biology & medicine 49, 487-492, doi:10.1016/j.freeradbiomed.2010.05.007 (2010).
114 Garrison, P. M. & Denison, M. S. Analysis of the murine AhR gene promoter. Journal of biochemical and molecular toxicology 14, 1-10 (2000).
115 Fitzgerald, C. T., Nebert, D. W. & Puga, A. Regulation of mouse Ah receptor (Ahr) gene basal expression by members of the Sp family of transcription factors. DNA and cell biology 17, 811-822, doi:10.1089/dna.1998.17.811 (1998).
116 FitzGerald, C. T., Fernandez-Salguero, P., Gonzalez, F. J., Nebert, D. W. & Puga, A. Differential regulation of mouse Ah receptor gene expression in cell lines of different tissue origins. Archives of biochemistry and biophysics 333, 170-178, doi:10.1006/abbi.1996.0378 (1996).
117 Ryu, H. et al. Sp1 and Sp3 are oxidative stress-inducible, antideath transcription factors in cortical neurons. The Journal of neuroscience : the official journal of the Society for Neuroscience 23, 3597-3606 (2003).
118 Hwang, T. S., Choi, H. K. & Han, H. S. Differential expression of manganese superoxide dismutase, copper/zinc superoxide dismutase, and catalase in gastric adenocarcinoma and normal gastric mucosa. European journal of surgical oncology : the journal of the European Society of Surgical Oncology and the British Association of Surgical Oncology 33, 474-479, doi:10.1016/j.ejso.2006.10.024 (2007).
119 Sun, Z., Chin, Y. E. & Zhang, D. D. Acetylation of Nrf2 by p300/CBP augments promoter-specific DNA binding of Nrf2 during the antioxidant response. Molecular and cellular biology 29, 2658-2672, doi:10.1128/mcb.01639-08 (2009).
120 Wang, B. et al. Histone deacetylase inhibition activates transcription factor Nrf2 and protects against cerebral ischemic damage. Free radical biology & medicine 52, 928-936, doi:10.1016/j.freeradbiomed.2011.12.006 (2012).
121 Jemal, A., Center, M. M., DeSantis, C. & Ward, E. M. Global patterns of cancer incidence and mortality rates and trends. Cancer epidemiology, biomarkers & prevention : a publication of the American Association for Cancer Research, cosponsored by the American Society of Preventive Oncology 19, 1893-1907, doi:10.1158/1055-9965.epi-10-0437 (2010).
122 Zhang, D. & Fan, D. New insights into the mechanisms of gastric cancer multidrug resistance and future perspectives. Future oncology (London, England) 6, 527-537, doi:10.2217/fon.10.21 (2010).
123 Weichert, W. et al. Association of patterns of class I histone deacetylase expression with patient prognosis in gastric cancer: a retrospective analysis. The Lancet. Oncology 9, 139-148, doi:10.1016/s1470-2045(08)70004-4 (2008).
124 Song, J. et al. Increased expression of histone deacetylase 2 is found in human gastric cancer. APMIS : acta pathologica, microbiologica, et immunologica Scandinavica 113, 264-268, doi:10.1111/j.1600-0463.2005.apm_04.x (2005).
125 Regel, I. et al. Pan-histone deacetylase inhibitor panobinostat sensitizes gastric cancer cells to anthracyclines via induction of CITED2. Gastroenterology 143, 99-109.e110, doi:10.1053/j.gastro.2012.03.035 (2012).
126 Siegel, R. L., Miller, K. D. & Jemal, A. Cancer statistics, 2015. CA: a cancer journal for clinicians 65, 5-29, doi:10.3322/caac.21254 (2015).
127 Greve, G. et al. The pan-HDAC inhibitor panobinostat acts as a sensitizer for erlotinib activity in EGFR-mutated and -wildtype non-small cell lung cancer cells. BMC cancer 15, 947, doi:10.1186/s12885-015-1967-5 (2015).
128 Kaypee, S. et al. Aberrant lysine acetylation in tumorigenesis: Implications in the development of therapeutics. Pharmacology & therapeutics 162, 98-119, doi:10.1016/j.pharmthera.2016.01.011 (2016).
129 Contador-Troca, M. et al. The dioxin receptor has tumor suppressor activity in melanoma growth and metastasis. Carcinogenesis 34, 2683-2693, doi:10.1093/carcin/bgt248 (2013).
130 Struhl, K. Histone acetylation and transcriptional regulatory mechanisms. Genes & development 12, 599-606 (1998).
131 Arif, M. et al. Nitric oxide-mediated histone hyperacetylation in oral cancer: target for a water-soluble HAT inhibitor, CTK7A. Chemistry & biology 17, 903-913, doi:10.1016/j.chembiol.2010.06.014 (2010).
132 Liu, B. L. et al. Global histone modification patterns as prognostic markers to classify glioma patients. Cancer epidemiology, biomarkers & prevention : a publication of the American Association for Cancer Research, cosponsored by the American Society of Preventive Oncology 19, 2888-2896, doi:10.1158/1055-9965.epi-10-0454 (2010).
133 Tzao, C. et al. Prognostic significance of global histone modifications in resected squamous cell carcinoma of the esophagus. Modern pathology : an official journal of the United States and Canadian Academy of Pathology, Inc 22, 252-260, doi:10.1038/modpathol.2008.172 (2009).
134 Manuyakorn, A. et al. Cellular histone modification patterns predict prognosis and treatment response in resectable pancreatic adenocarcinoma: results from RTOG 9704. Journal of clinical oncology : official journal of the American Society of Clinical Oncology 28, 1358-1365, doi:10.1200/jco.2009.24.5639 (2010).
135 Barlesi, F. et al. Global histone modifications predict prognosis of resected non small-cell lung cancer. Journal of clinical oncology : official journal of the American Society of Clinical Oncology 25, 4358-4364, doi:10.1200/jco.2007.11.2599 (2007).
136 Elsheikh, S. E. et al. Global histone modifications in breast cancer correlate with tumor phenotypes, prognostic factors, and patient outcome. Cancer research 69, 3802-3809, doi:10.1158/0008-5472.can-08-3907 (2009).
137 Segura-Pacheco, B., Avalos, B., Rangel, E., Velazquez, D. & Cabrera, G. HDAC inhibitor valproic acid upregulates CAR in vitro and in vivo. Genetic vaccines and therapy 5, 10, doi:10.1186/1479-0556-5-10 (2007).
138 Yamaguchi, M. et al. Histone deacetylase 1 regulates retinal neurogenesis in zebrafish by suppressing Wnt and Notch signaling pathways. Development (Cambridge, England) 132, 3027-3043, doi:10.1242/dev.01881 (2005).
139 Klisovic, D. D. et al. Depsipeptide (FR901228) inhibits proliferation and induces apoptosis in primary and metastatic human uveal melanoma cell lines. Investigative ophthalmology & visual science 44, 2390-2398 (2003).
140 Holmes, W. F. et al. Coordinate control and selective expression of the full complement of replication-dependent histone H4 genes in normal and cancer cells. The Journal of biological chemistry 280, 37400-37407, doi:10.1074/jbc.M506995200 (2005).
dc.identifier.urihttp://tdr.lib.ntu.edu.tw/jspui/handle/123456789/59946-
dc.description.abstract多環芳香烴受體 (aryl hydrocarbon receptor, AhR) 屬 basic-helix-loop-helix (bHLH)/PAS 家族,此家族參與許多生理反應,像是生理週期、代謝及缺氧狀態下的壓力反應。AhR 可以調解許多藥理及毒理效應,包含誘導藥物代謝酵素 CYP1A1、免疫抑制、腫瘤促進。AhR 主要分布於細胞質並與 molecular chaperone complex (Hsp90/XAP2/p23) 結合,當受到外來物質,如:PAHs 的刺激,AhR 活化後會進入細胞核內與芳香烴核轉位蛋白 (aryl hydrocarbon nuclear translocator, ARNT) 形成複合體,此複合體會結合在 XRE/DRE 片段上,進行下游基因的轉錄。附基因體機制包括 DNA 甲基化 (DNA Methylation)、組蛋白之間轉譯後修飾的改變 (post-translational modification of histone proteins) 以及微小 RNA 的表現 (microRNA expression)。組蛋白的轉譯後修飾是附基因體調控中很重要的調控機制之一,常見的轉譯後修飾有乙醯化 (acetlaytion)、甲基化 (methylation)。這些修飾會影響組蛋白間緊密程度,進而影響基因表現。組蛋白間的乙醯化會受到兩種互相結抗的酵素所調控,分別為組蛋白乙醯基轉移酶 (histone acetyltransferase, HATs) 及組蛋白去乙醯基酶 (histone deacetylases, HDACs)。近年來研究發現癌症的發生與進展也和附基因體的失常有關,已有文獻報導 HDAC 過度表現會抑制腫瘤抑制基因 p53 的表現,亦會引起缺氧誘導因子-1 的活化進而誘發血管新生。另一方面,文獻也指出 HDAC 抑制劑,LBH589 可以抑制癌細胞的血管新生作用,過去我們也發現 AhR 與血管新生有關。所以本研究的目的為探討附基因體藥物如何影響 HDAC 並探討 AhR 蛋白與 HDAC 之間如何互相調控。本研究利用胃癌細胞株 AGS 處理 HDAC 抑制劑 (LBH589),再利用西方點墨法分析組蛋白上的乙醯化程度,結果顯示抑制 HDAC 的活性會增加乙醯化 H4 與 H2BK5 蛋白表現,然後也看到 AhR 靜默的細胞株,乙醯化 H4 與 H2BK5 蛋白表現也明顯降低。細胞氧化壓力實驗發現,處理 LBH589 會造成細胞內氧化壓力產生。此外我們也發現 LBH589 處理不同時間及不同劑量後,AhR 及 Nrf2蛋白表現也隨之增加,具有劑量效應;且也發現隨著處理時間增加,AhR 蛋白具有時間效應,而 Nrf2 蛋白則是 3小時達到最多之後開始減少。參考先前文獻研究結果得知 HDACi 會產生氧化壓力殺死癌細胞,本實驗利用 ROS 抑制劑 NAC 發現 LBH589 所生成的 ROS 跟 AhR 及 Nrf2 蛋白的產生有關,加上使用 Nrf2 抑制劑 brusatol,證明 Nrf2 在 AhR 蛋白生成扮演重要角色。ChIP assay實驗結果發現,LBH589 會使 Nrf2 蛋白與 AhR promoter 結合。進一步利用核質分離實驗發現,LBH589 處理 24小時後會使 AhR 進核,且以 AhR 靜默組也具相同結果。HAT Activity Colorimetric Assay 及 HDAC-Glo I/II Assay 兩個活性實驗發現,A549 細胞之 AhR 靜默與控制組相比,HAT 活性沒有顯著差異;而 HDAC 活性則有明顯增加的趨勢。利用免疫沉澱法分析 AhR 與這些蛋白之間的交互作用,結果得知處理 LBH589 後,AhR 與 HDAC1、HDAC2 及 HDAC3 之間結合增加。免疫螢光染色法進一步證明 AhR 與 HDAC1、HDAC2 及 HDAC3 蛋白之間有進行交互作用。綜合以上結果,本研究發現 LBH589 會使細胞內產生 ROS 並造成 Nrf2 蛋白增加及進入細胞核與 AhR 的啟動子結合,造成 AhR 蛋白表現增加,此內生性機制之 AhR 表現會影響附基因體的調控並導致 HDAC 之負回饋抑制。zh_TW
dc.description.abstractAryl hydrocarbon receptor (AhR) is a ligand-activated protein, it can regulate many effects of pharmacology and toxicology. Recently, the novel function of AhR have been mentioned briefly. Current studies have revealed that changes in epigenetic regulation can alter AhR protein expression and contribute to healthy problem. Histone acetylation is one of the epigenetic modifications. This modification influence chromatin structure involved gene transcription. There are two enzymes, histone acetyltransferases (HATs) and histone deacetylases (HDACs), can regulate histone acetylation in this modification. However, the regulation mechanism between AhR and HDAC are not clear. In this study, we investigate the regulation between AhR and HDAC. We used gastric cancer cell lines (AGS) that treated HDACi (LBH589), assayed by Western blot to analyze acetylation of histone. Inhibition of HDACs activity can increase acetylation of histone H4 and H2BK5. Moreover, comparing between the normal AhR cells and the AhR gene knock down cells, we found that the higher acetylation of histone with higher AhR expression level. Cellular reactive oxygen species detection assay showed that LBH589 might produce ROS. Additionally, the result demonstrated that AhR and Nrf2 protein expression was up-regulation with LBH589 treatment in dose-dependent manner. Another result showed that AhR protein expression was up-regulation with LBH589 treatment in time course manner, but Nrf2 protein expression is largest in 3hours. Previous study revealed that HDACi may induce ROS to kill the cancer cell, therefore, we used ROS inhibitor, NAC, and found that increased AhR and Nrf2 protein was related to ROS with LBH589 treatment. Moreover, we utilized Nrf2 inhibitor brusatol to prove that Nrf2 is an important role in AhR production. ChIP assay proved that Nrf2 may bind with AhR promoter sequence with LBH589 treatment. Both of the HDAC-Glo I/II Assay and HAT Activity Colorimetric Assay discovered that activity of HDACs were up-regulation in shAhR A549 cells, but activity of HATs was not. Immunoprecipitation (IP) confirmed that LBH589 treatment increased AhR/HDAC1/HDAC2/HDAC3 complex. Finally, we applied the immunofluorescence staining (IF) to prove AhR can interact with HDAC1, HDAC2, and HDAC3. According to above results, we have acquired conclusion that LBH589 may induce ROS and cause Nrf2 protein bind with AhR promoter. Up-regulation of AhR may regulate epigenetic mechanism and inhibit HDACs activity.en
dc.description.provenanceMade available in DSpace on 2021-06-16T09:46:37Z (GMT). No. of bitstreams: 1
ntu-106-R03447007-1.pdf: 2817967 bytes, checksum: 93fc3f16f1f0c9548bcd28787d58c41c (MD5)
Previous issue date: 2017
en
dc.description.tableofcontents目錄 (contents)
口試委員會審定書..................................i
致謝......................................................ii
中文摘要.................................................iii
Abstract..................................................v
縮寫表..................................................vii
圖表目錄 (Figures and Tables)...........................xi
第一章、緒論 (Introduction)..............................1
1.1. 多環芳香烴受體 (Aryl hydrocarbon receptor).......1
1.2. 表關遺傳與AhR 調控途徑的關係 (The relationship between the epigenetic and AhR regulator pathway).......3
1.3. 組蛋白乙醯化及去乙醯化 (Histone acetylation and deacetylation)..........................................4
1.4. 組蛋白乙醯化及去乙醯化過程之相關酵素與複合體 (Histone acetylation- and deacetylation-related enzymes and complexes)..............................................6
1.4.1. 組蛋白乙醯基轉移酶 (Histone acetyltransferases, HATs)...................................................6
1.4.2. 組蛋白去乙醯酶 (Histone deacetylases, HDACs).....6
1.4.3. HDAC與HAT複合體 (HDAC and HAT complexes).........8
1.4.4. 組蛋白去乙醯酶抑制劑 (Histone deacetylase inhibitor, HDACi).......................................9
1.5. HDACi 對產生自由基及人體清除氧化壓力系統之關係 (The relationship between HDACi and production of free radicals as well as Nrf2-Keap1 system).................11
1.6. 研究動機........................................12
第二章、材料與方法 (Materials and Methods)...............13
2.1. 實驗材料........................................13
2.1.1. 細胞株 (Cell lines)............................13
2.1.2. 藥品與試劑 (Chemicals and Reagents).............13
2.1.2.1. 細胞培養................................13
2.1.2.2. 西方點墨法..............................13
2.1.2.3. 組蛋白去乙醯酶活性測定 (HDAC activity assay).................................................14
2.1.2.4. 組蛋白乙醯基轉移酶活性測定 (HAT activity assay).................................................14
2.1.2.5. 核質分離 (Nuclear extraction)...........14
2.1.2.6. 染色體免疫沉澱法 (Chromatin Immunoprecipitation, ChIP).............................15
2.1.2.7. 細胞氧化壓力偵測法 (Cellular reactive oxygen species detection assay)........................15
2.1.2.8. 免疫沉澱法 (Immunoprecipitation)........15
2.1.2.9. 其他...................................15
2.1.3. 抗體 (Antibodies)..............................15
2.1.4. 質體 (Plasmid).................................16
2.2. 方法...........................................16
2.2.1. 細胞培養 (Cell culture).........................16
2.2.2. 細胞存活率試驗 (Cell viability assay)...........17
2.2.3. 質體萃取(Plasmid DNA purification)............17
2.2.4. 慢病毒製備與感染 (Lentivirus production and infection).............................................17
2.2.5. 細胞總蛋白質液收集 (Cell lysate collection)......18
2.2.6. 西方墨點法 (Western blotting analysis)..........18
2.2.7. 免疫沉澱法 (Immunoprecipitation)................19
2.2.8. 細胞核質分離 (Nuclear and cytoplasmic fraction).19
2.2.9. 細胞免疫螢光染色法 (Immunofluorescence analysis).20
2.2.10. 組蛋白乙醯基轉移酶活性測定 (HAT activity assay)...20
2.2.11. 組蛋白去乙醯酶活性測定 (HDAC activity assay).....21
2.2.12. 染色體免疫沉澱法 (Chromatin Immunoprecipitation, ChIP)..................................................21
2.2.13. 細胞氧化壓力偵測法 (Cellular reactive oxygen species detection).....................................21
2.2.14. 細胞RNA 萃取 (RNA extraction)...................21
2.2.15. 反轉錄聚合酶鏈鎖反應 (Reverse transcription polymerase chain reaction, RT-PCR).....................22
2.3. 統計分析........................................23
第三章、結果 (Results)..................................24
3.1. 組蛋白去乙醯酶抑制作用對於胃癌細胞株之細胞存活率與細胞型態之影響..............................................24
3.2. 組蛋白去乙醯酶抑制作用會使 AGS 細胞內產生氧化壓力...24
3.3. 組蛋白去乙醯酶抑制作用誘導 AhR 及 Nrf2 蛋白表現增加.....................................................25
3.4. 組蛋白去乙醯酶抑制作用所產生的氧化壓力會誘使 Nrf2 及 AhR 蛋白表現增加........................................25
3.5. 組蛋白去乙醯酶抑制作用誘使 Nrf2 增加不是透過轉錄生成.....................................................26
3.6. Nrf2 與 AhR 基因轉錄之關係.......................26
3.7. Nrf2 會與 AhR 啟動子結合........................27
3.8. AhR 參與組蛋白乙醯化過程.........................27
3.9. 組蛋白去乙醯酶抑制作用誘導 AhR 進入細胞核內........28
3.10. AhR 對組蛋白乙醯轉移酶 (Histone acetyltransferases, HATs) 及組蛋白去乙醯酶 (Histone deacetylases, HDACs) 活性之影響...................................................28
3.11. AhR 與 HDAC 和 CBP 的交互作用...................29
3.12. 免疫螢光染色證明 AhR 與 HDAC 的交互作用...........30
第四章、討論 (Discussion)...............................31
4.1 ROS 的產生與AhR 生合成之關係.....................31
4.2 LBH589 對於胃癌與肺癌的治療......................33
4.3 組蛋白乙醯化與癌症之關係..........................35
4.4 LBH589 讓總組蛋白 4 蛋白表現增加.................36
第五章、結論 (Conclusion)...............................37
參考文獻 (References)...................................38
圖表 (Figures and Tables)..............................51
圖表目錄 (Figures and Tables)
Figure I. AhR signaling pathway……………………………………………….…....1
Figure II. Histone acetylation is generally linked to transcriptional activation......5
Figure III. Multiple HDAC inhibitors (HDACi)-activated antitumor pathways...10
Figure IV. Structure of panobinostat………………………………………….……10
Figure 1. The cell viability and cell morphology in AGS gastric cancer cell lines with LBH589 treatment………………………...……………………………………51
Figure 2. HDACi, LBH589, can induce intracellular ROS……….……………….53
Figure 3. The expression of AhR and Nrf2 protein in dose-dependent and time course manner…………………………………………………….………………….54
Figure 4. HDACi, LBH589, can induce intracellular ROS and increase the expression of AhR protein………………………………………………..………….56
Figure 5. The mRNA expression of Nrf2 increased is due to degradation cessation………………………………………………………………………………58
Figure 6. Nrf2 can induce the expression of AhR protein With LBH589 treatment……………………………………………………………………...………59
Figure 7. Nrf2 may bind to AhR promoter in human AGS gastric cancer cell lines with LBH589 treatment……………………………………………..…………….…61
Figure 8. HDACi, LBH589, induced histone acetylation in gastric cancer cell lines…………………………………………………………………………...……….62
Figure 9. The expression of AhR proteins in A549 and shAhR cells with LBH589 treatment in cytoplasma and nucleus……………………………………...………..63
Figure 10. The pan-HDAC activity and pan-HAT activity in A549 and shAhR A549 cells……………………………………………………………..………………64
Figure 11. AhR may interact with HDACs in A549 normal and shAhR cell with LBH589 treatment………………………………………………………..………….65
Figure 12. AhR may increase interaction with HDAC protein with LBH589 treatment……………………………………………………………………….……..67
Figure 13. Schema of pathway by which HDACi induces AhR expression that plays a role in histone acetylation………………………………………..…….……68
Table 1. Primer sequences used for RT-PCR…………………………...…………..69
Table 2. AhR promoter primer for ChIP assay……………………..…...…………70
dc.language.isozh-TW
dc.subject氧化壓力zh_TW
dc.subject組蛋白去乙醯?抑制劑zh_TW
dc.subject多環芳香烴受體zh_TW
dc.subject組蛋白乙醯化zh_TW
dc.subjectNF-E2 相關因子 2zh_TW
dc.subject組蛋白去乙醯?zh_TW
dc.subjectHDACen
dc.subjectHistone acetylationen
dc.subjectNrf2en
dc.subjectHDACien
dc.subjectAhRen
dc.subjectROSen
dc.title多環芳香烴受體對組蛋白乙醯化修飾之探討zh_TW
dc.titleThe Role of Aryl Hydrocarbon Receptor in Acetylation Modification of Histoneen
dc.typeThesis
dc.date.schoolyear105-1
dc.description.degree碩士
dc.contributor.oralexamcommittee譚賢明(Bertrand Tan),李珍珍(Chen-Chen Lee)
dc.subject.keyword多環芳香烴受體,組蛋白去乙醯?抑制劑,NF-E2 相關因子 2,組蛋白乙醯化,氧化壓力,組蛋白去乙醯?,zh_TW
dc.subject.keywordAhR,HDACi,Nrf2,Histone acetylation,ROS,HDAC,en
dc.relation.page70
dc.identifier.doi10.6342/NTU201700155
dc.rights.note有償授權
dc.date.accepted2017-01-24
dc.contributor.author-college醫學院zh_TW
dc.contributor.author-dept毒理學研究所zh_TW
顯示於系所單位:毒理學研究所

文件中的檔案:
檔案 大小格式 
ntu-106-1.pdf
  未授權公開取用
2.75 MBAdobe PDF
顯示文件簡單紀錄


系統中的文件,除了特別指名其著作權條款之外,均受到著作權保護,並且保留所有的權利。

社群連結
聯絡資訊
10617臺北市大安區羅斯福路四段1號
No.1 Sec.4, Roosevelt Rd., Taipei, Taiwan, R.O.C. 106
Tel: (02)33662353
Email: ntuetds@ntu.edu.tw
意見箱
相關連結
館藏目錄
國內圖書館整合查詢 MetaCat
臺大學術典藏 NTU Scholars
臺大圖書館數位典藏館
本站聲明
© NTU Library All Rights Reserved