請用此 Handle URI 來引用此文件:
http://tdr.lib.ntu.edu.tw/jspui/handle/123456789/59916
完整後設資料紀錄
DC 欄位 | 值 | 語言 |
---|---|---|
dc.contributor.advisor | 黃念祖(Nien-Tsu Huang) | |
dc.contributor.author | Pin-Fan Chen | en |
dc.contributor.author | 陳品帆 | zh_TW |
dc.date.accessioned | 2021-06-16T09:44:53Z | - |
dc.date.available | 2021-08-13 | |
dc.date.copyright | 2020-09-15 | |
dc.date.issued | 2020 | |
dc.date.submitted | 2020-08-14 | |
dc.identifier.citation | 1. Overview of ELISA. Available from: https://www.thermofisher.com/tw/zt/home/life-science/protein-biology/protein-biology-learning-center/protein-biology-resource-library/pierce-protein-methods/overview-elisa.html. 2. General Sandwich ELISA Protocol. Available from: https://www.thermofisher.com/tw/zt/home/references/protocols/cell-and-tissue-analysis/elisa-protocol/general-elisa-protocol.html. 3. ELISA principle. Available from: https://www.abcam.com/kits/elisa-principle. 4. Wong, H.R., et al., Testing the prognostic accuracy of the updated pediatric sepsis biomarker risk model. PloS one, 2014. 9(1): p. e86242-e86242. 5. Ortega-Mendoza, J.G., et al., Optical Fiber Sensor Based on Localized Surface Plasmon Resonance Using Silver Nanoparticles Photodeposited on the Optical Fiber End. Sensors, 2014. 14(10): p. 18701-18710. 6. Rivero, P.J., et al., A Lossy Mode Resonance optical sensor using silver nanoparticles-loaded films for monitoring human breathing. Sensors and Actuators B: Chemical, 2013. 187: p. 40-44. 7. Rivero, P.J., et al., Optical fiber resonance-based pH sensors using gold nanoparticles into polymeric layer-by-layer coatings. Microsystem Technologies, 2016. 22(7): p. 1821-1829. 8. Lin, T.-J. and M.-F. Chung, Detection of cadmium by a fiber-optic biosensor based on localized surface plasmon resonance. Biosensors and Bioelectronics, 2009. 24(5): p. 1213-1218. 9. Paul, D., S. Dutta, and R. Biswas, LSPR enhanced gasoline sensing with a U-bent optical fiber. Journal of Physics D: Applied Physics, 2016. 49(30): p. 305104. 10. Soares, L., et al., Localized surface plasmon resonance (LSPR) biosensing using gold nanotriangles: detection of DNA hybridization events at room temperature. Analyst, 2014. 139(19): p. 4964-4973. 11. Khateb, H., et al., Development of a Label-Free LSPR-Apta Sensor for Staphylococcus aureus Detection. ACS Applied Bio Materials, 2020. 3(5): p. 3066-3077. 12. Oh, S.Y., et al., Development of a Cuvette-Based LSPR Sensor Chip Using a Plasmonically Active Transparent Strip. Frontiers in Bioengineering and Biotechnology, 2019. 7(299). 13. Inci, F., et al., Nanoplasmonic quantitative detection of intact viruses from unprocessed whole blood. ACS nano, 2013. 7(6): p. 4733-4745. 14. OpenSPR. Available from: https://nicoyalife.com/products/spr-instruments/openspr/. 15. NanoSPR103 – Localized surface plasmon resonance spectrometer. Available from: https://nanospr.com/nanospr103-localized-surface-plasmon-resonance-spectrometer/. 16. Cannon, J.G., Inflammatory Cytokines in Nonpathological States. News Physiol Sci, 2000. 15: p. 298-303. 17. Tertis, M., et al., Impedimetric aptasensor for the label-free and selective detection of Interleukin-6 for colorectal cancer screening. Biosensors and Bioelectronics, 2019. 137: p. 123-132. 18. Liu, Y., et al., Aptamer-Based Electrochemical Biosensor for Interferon Gamma Detection. Analytical Chemistry, 2010. 82(19): p. 8131-8136. 19. van den Hurk, R. and S. Evoy, Deflection cantilever detection of interferon gamma. Sensors and Actuators B: Chemical, 2013. 176: p. 960-965. 20. Dutta, P., et al., Nanostructured cantilevers as nanomechanical immunosensors for cytokine detection. NanoBiotechnology, 2005. 1(3): p. 237-244. 21. Huang, T., P.D. Nallathamby, and X.-H.N. Xu, Photostable Single-Molecule Nanoparticle Optical Biosensors for Real-Time Sensing of Single Cytokine Molecules and Their Binding Reactions. Journal of the American Chemical Society, 2008. 130(50): p. 17095-17105. 22. Chen, P., et al., Multiplex Serum Cytokine Immunoassay Using Nanoplasmonic Biosensor Microarrays. ACS Nano, 2015. 9(4): p. 4173-4181. 23. Oh, B.-R., et al., Multiplexed Nanoplasmonic Temporal Profiling of T-Cell Response under Immunomodulatory Agent Exposure. ACS Sensors, 2016. 1(7): p. 941-948. 24. Zhu, C., et al., Real-Time Monitoring and Detection of Single-Cell Level Cytokine Secretion Using LSPR Technology. Micromachines, 2020. 11: p. 107. 25. Li, X., et al., Label-Free Optofluidic Nanobiosensor Enables Real-Time Analysis of Single-Cell Cytokine Secretion. Small, 2018. 14(26): p. 1800698. 26. Zhu, J., et al., An integrated adipose-tissue-on-chip nanoplasmonic biosensing platform for investigating obesity-associated inflammation. Lab on a Chip, 2018. 18(23): p. 3550-3560. 27. Jia, K., et al., Large Scale Fabrication of Gold Nano-Structured Substrates Via High Temperature Annealing and Their Direct Use for the LSPR Detection of Atrazine. Plasmonics, 2012. 8. 28. Lin, H., et al., A Large-Area Nanoplasmonic Sensor Fabricated by Rapid Thermal Annealing Treatment for Label-Free and Multi-Point Immunoglobulin Sensing. Nanomaterials, 2017. 7: p. 100. 29. Hiep, H., et al., A localized surface plasmon resonance based immunosensor for the detection of casein in milk. Science and Technology of Advanced Materials, 2007. 8: p. 331-338. 30. Willets, K.A. and R.P. Van Duyne, Localized Surface Plasmon Resonance Spectroscopy and Sensing. Annual Review of Physical Chemistry, 2007. 58(1): p. 267-297. 31. Li, H., et al., Ag dots array fabricated using laser interference technique for biosensing. Sensors and Actuators B: Chemical, 2008. 134(2): p. 940-944. 32. Lin, C., et al. A Nanodisk Array Based Localized Surface Plasmon Resonance (LSPR) Sensor Fabricated by Laser Interference Lithography. in 2019 IEEE 14th International Conference on Nano/Micro Engineered and Molecular Systems (NEMS). 2019. 33. Rodriguez, A., et al. Interference lithography processes with high-power laser pulses. in Proc.SPIE. 2009. 34. Nishikawa, T., et al. Development of New Localized Surface Plasmon Resonance Sensor with Nanoimprinting Technique. in 2006 1st IEEE International Conference on Nano/Micro Engineered and Molecular Systems. 2006. 35. Lucas, B., et al., Nanoimprint Lithography Based Approach for the Fabrication of Large-Area, Uniformly-Oriented Plasmonic Arrays. Advanced Materials, 2008. 20. 36. Dongxu, W., S.R. Nitul, and L. Xichun, Nanoimprint Lithography - the Past, the Present and the Future. Current Nanoscience, 2016. 12(6): p. 712-724. 37. Horák, M., et al., Comparative study of plasmonic antennas fabricated by electron beam and focused ion beam lithography. Scientific Reports, 2018. 8(1): p. 9640. 38. Lin, Y., et al., E-Beam Patterned Gold Nanodot Arrays on Optical Fiber Tips for Localized Surface Plasmon Resonance Biochemical Sensing. Sensors, 2010. 10(10). 39. Kasani, S., K. Curtin, and N. Wu, A review of 2D and 3D plasmonic nanostructure array patterns: fabrication, light management and sensing applications. Nanophotonics, 2019. 8. 40. Mie, G., Beiträge zur Optik trüber Medien, speziell kolloidaler Metallösungen. Annalen der Physik, 1908. 330(3): p. 377-445. 41. Gans, R., Über die Form ultramikroskopischer Goldteilchen. Annalen der Physik, 1912. 342(5): p. 881-900. 42. Jung, M., J.-H. Kim, and Y.-W. Choi, Preparation of Anodic Aluminum Oxide Masks with Size-Controlled Pores for 2D Plasmonic Nanodot Arrays. Journal of Nanomaterials, 2018. 2018: p. 6249890. 43. Zheng, P., et al., Tailoring plasmonic properties of gold nanohole arrays for surface-enhanced Raman scattering. Physical Chemistry Chemical Physics, 2015. 17(33): p. 21211-21219. 44. Tabatabaei, M., et al., Optical Properties of Silver and Gold Tetrahedral Nanopyramid Arrays Prepared by Nanosphere Lithography. The Journal of Physical Chemistry C, 2013. 117(28): p. 14778-14786. 45. Kasani, S., P. Zheng, and N. Wu, Tailoring Optical Properties of a Large-Area Plasmonic Gold Nanoring Array Pattern. The Journal of Physical Chemistry C, 2018. 122(25): p. 13443-13449. 46. Aćimović, S.S., et al., LSPR Chip for Parallel, Rapid, and Sensitive Detection of Cancer Markers in Serum. Nano Letters, 2014. 14(5): p. 2636-2641. 47. Kim, S., et al., High-throughput automated microfluidic sample preparation for accurate microbial genomics. Nature Communications, 2017. 8(1): p. 13919. 48. Yavas, O., et al., On-a-chip Biosensing Based on All-Dielectric Nanoresonators. Nano Letters, 2017. 17(7): p. 4421-4426. 49. Gómez-Sjöberg, R., et al., Versatile, Fully Automated, Microfluidic Cell Culture System. Analytical Chemistry, 2007. 79(22): p. 8557-8563. 50. Wang, Y.-Y., et al., A particle-based microfluidic molecular separation integrating surface-enhanced Raman scattering sensing for purine derivatives analysis. Microfluidics and Nanofluidics, 2019. 23(4): p. 48. 51. Oliverio, M., et al., Chemical functionalization of plasmonic surface biosensors: a tutorial review on issues, strategies, and costs. ACS applied materials interfaces, 2017. 9(35): p. 29394-29411. 52. Karyakin, A.A., et al., Oriented immobilization of antibodies onto the gold surfaces via their native thiol groups. Analytical chemistry, 2000. 72(16): p. 3805-3811. 53. Jung, Y., J.Y. Jeong, and B.H. Chung, Recent advances in immobilization methods of antibodies on solid supports. Analyst, 2008. 133(6): p. 697-701. 54. Palazon, F., et al., Orthogonal chemical functionalization of patterned gold on silica surfaces. Beilstein journal of nanotechnology, 2015. 6(1): p. 2272-2277. 55. Briand, E., et al., Chemical modifications of Au/SiO2 template substrates for patterned biofunctional surfaces. Langmuir, 2011. 27(2): p. 678-685. 56. Smith, E.A. and R.M. Corn, Surface plasmon resonance imaging as a tool to monitor biomolecular interactions in an array based format. Appl Spectrosc, 2003. 57(11): p. 320a-332a. 57. Whitney, A.V., et al., Localized Surface Plasmon Resonance Nanosensor: A High-Resolution Distance-Dependence Study Using Atomic Layer Deposition. The Journal of Physical Chemistry B, 2005. 109(43): p. 20522-20528. 58. Kelly, K.L., et al., The Optical Properties of Metal Nanoparticles: The Influence of Size, Shape, and Dielectric Environment. The Journal of Physical Chemistry B, 2003. 107(3): p. 668-677. 59. Jung, L.S., et al., Quantitative interpretation of the response of surface plasmon resonance sensors to adsorbed films. Langmuir, 1998. 14(19): p. 5636-5648. 60. Ameling, R., et al., Cavity-enhanced localized plasmon resonance sensing. Applied Physics Letters, 2010. 97(25): p. 253116. 61. Vashist, S.K., Comparison of 1-Ethyl-3-(3-Dimethylaminopropyl) Carbodiimide Based Strategies to Crosslink Antibodies on Amine-Functionalized Platforms for Immunodiagnostic Applications. Diagnostics, 2012. 2: p. 23-33. 62. Agarwal, S. and C. Cunningham-Rundles, Assessment and clinical interpretation of reduced IgG values. Annals of Allergy, Asthma Immunology, 2007. 99(3): p. 281-283. 63. Oxelius, V.A., Immunoglobulin G (IgG) subclasses and human disease. Am J Med, 1984. 76(3a): p. 7-18. 64. Idriss, H.T. and J.H. Naismith, TNF alpha and the TNF receptor superfamily: structure-function relationship(s). Microsc Res Tech, 2000. 50(3): p. 184-95. 65. Nelson, S.K., et al., In vitro TNF-alpha release from THP-1 monocytes in response to dental casting alloys exposed to lipopolysaccharide. J Prosthet Dent, 2001. 85(5): p. 466-71. | |
dc.identifier.uri | http://tdr.lib.ntu.edu.tw/jspui/handle/123456789/59916 | - |
dc.description.abstract | 局域表面電漿共振(LSPR)是奈米金屬內透過電磁波作用使電子雲產生振盪的現象。由於具有即時,快速和免標籤檢測等優點,LSPR已應用於各種信號測量,例如生物感測。細胞激素是一組細胞之間溝通的信號分子,在免疫和炎症反應中有重要作用。而在感染期間,細胞激素的濃度會迅速增加。利用LSPR技術的各項優點,我們可以快速建構細胞激素的圖譜,達到即時的疾病診斷。首先,為了製造具有良好性能和效率的LSPR感測器,我們使用兩種奈米製程策略:快速熱退火(RTA)和電子束微影(EBL)。RTA感測器的靈敏度為196 nm / RIU,FOM為0.46,面積大(能夠達到公分等級),而這種大面積的感測器能夠有更多的應用,像是多種抗原的檢測。另外,我們製造了具有優異性能的不同幾何形狀(正方形,三角形和圓形)的電子束感測器,靈敏度分別為270、219和230 nm / RIU,FOM分別為4.91、4.51和6.16。之後,我們將LSPR感測器與微流道,自動化微流控制系統和光學平台互相整合。最後,我們成功地應用於生物分子測量,像是IgG和我們目標的細胞激素TNF-α。因此,我們的LSPR傳感器和平台可以克服傳統技術的缺點,並在生物感測應用上能有顯著的貢獻。 | zh_TW |
dc.description.abstract | Localized surface plasmon resonance (LSPR) is a phenomenon of oscillation of electron cloud irradiated by the light within noble metal nanoparticles. Due to the advantages such as real-time, rapid, and label-free detection, LSPR has been applied to various signals measurements such as biosensing. Cytokines, a group of cell-signaling molecules, play an important role in immunological and inflammatory responses. Moreover, during the infection, the concentration of cytokines can rapidly increase. Therefore, combining with the LSPR technique, we can rapidly construct the cytokine profiles. First, to fabricate an LSPR sensor with good performance and efficiency, we use two kinds of nanofabrication strategy; rapid thermal annealing (RTA) and electron beam lithography (EBL). The RTA sensor acquired a sensitivity 196 nm/RIU and FOM 0.46 and extremely large area with a cm scale. This large area sensor can have different applications such as multiple analyte measurements. Moreover, we fabricate different geometry (square, triangle, and circle) of the e-beam sensor with excellent performance, the sensitivity is 270, 219, and 230 nm/RIU, and FOM are 4.91, 4.51, and 6.16 respectively. Then, after acquiring an LSPR sensor, we combined the LSPR with microchannel, automatic microfluidics control system, and our optical platform. Finally, we successfully applied to biomolecule measurements such as IgG and our targeted cytokine TNF-α. We believe our LSPR sensor and platform have the potential to overcome the drawbacks of conventional techniques and show promising contributions in biosensing applications. | en |
dc.description.provenance | Made available in DSpace on 2021-06-16T09:44:53Z (GMT). No. of bitstreams: 1 U0001-1308202015435400.pdf: 4068758 bytes, checksum: 95730822afbe55dfb16ba3f21e3d19ed (MD5) Previous issue date: 2020 | en |
dc.description.tableofcontents | 誌謝 i Content iv 中文摘要 ii Abstract iii LIST OF FIGURES iv LIST OF TABLES x Chapter 1 Introduction 1 1.1 Enzyme-linked immunosorbent assay (ELISA) 1 1.2 Localized surface plasmon resonance application 2 1.3 Literature review 3 1.3.1 Label-free biosensor for cytokine detection 4 1.3.2 LSPR sensing for cellular phenotyping 7 1.3.3 LSPR sensors fabrication strategy 9 1.3.4 Metal nanostructure arrays contribution to LSPR 13 1.3.5 Automated microfluidics parallel flow system 16 1.3.6 Functionalization of plasmonic biosensors 19 1.4 Research motivation 22 1.5 Thesis structure 22 Chapter 2 LSPR theory 23 Chapter 3 Materials and methods 26 3.1 Nanoplasmonic sensor fabrication 26 3.1.1 Rapid thermal annealing (RTA) sensor 26 3.1.2 E-beam sensor 28 3.2 Microfluidic device fabrication 31 3.3 The automatic microfluidics control system 32 3.4 Optical platform 34 3.5 LSPR sensor surface modification protocol 35 Chapter 4 Simulation 38 4.1 Cavity sensor simulation 38 4.1.1 Simulation model 38 4.1.2 Simulation results and discussion 39 4.2 Nanodisk sensor simulation 43 4.2.1 Simulation model 43 4.2.2 Simulation results and discussion 43 Chapter 5 Results and discussion 49 5.1 Rapid thermal annealing sensor characteristics 49 5.1.1 Sensor optimization and spectroscopy analysis 49 5.1.2 Discussion 52 5.2 E-beam sensor characteristics 53 5.2.1 Cavity sensor spectroscopy analysis morphology analysis 53 5.2.2 Nanodisk sensor spectroscopy analysis morphology analysis 55 5.3 Biomolecule detection 60 5.3.1 Immunoglobulin G detection by nanodisk sensor 60 5.3.2 Cytokine detection by nanodisk sensor 61 5.4 Cytokine detection from THP-1 by ELISA 63 Chapter 6 Conclusion 65 Chapter 7 Future work 66 References 68 | |
dc.language.iso | en | |
dc.title | 以電子束微影技術製作之奈米電漿感測器整合自動化微流道控制系統進行生物分子檢測 | zh_TW |
dc.title | Nanoplasmonic Sensor Fabricated by Electron Beam Lithography Integrated with Automated Microfluidic Control System for Biomolecule Detection | en |
dc.type | Thesis | |
dc.date.schoolyear | 108-2 | |
dc.description.degree | 碩士 | |
dc.contributor.oralexamcommittee | 張祐嘉(You-Chia Chang),陳奕帆(Yih-Fan Chen),王倫(Lon A. Wang) | |
dc.subject.keyword | 局域表面電漿共振,電子束微影,生物分子測量, | zh_TW |
dc.subject.keyword | Localized surface plasmon resonance,Electron beam lithography,Biosensing, | en |
dc.relation.page | 83 | |
dc.identifier.doi | 10.6342/NTU202003278 | |
dc.rights.note | 有償授權 | |
dc.date.accepted | 2020-08-14 | |
dc.contributor.author-college | 電機資訊學院 | zh_TW |
dc.contributor.author-dept | 生醫電子與資訊學研究所 | zh_TW |
顯示於系所單位: | 生醫電子與資訊學研究所 |
文件中的檔案:
檔案 | 大小 | 格式 | |
---|---|---|---|
U0001-1308202015435400.pdf 目前未授權公開取用 | 3.97 MB | Adobe PDF |
系統中的文件,除了特別指名其著作權條款之外,均受到著作權保護,並且保留所有的權利。