請用此 Handle URI 來引用此文件:
http://tdr.lib.ntu.edu.tw/jspui/handle/123456789/59908完整後設資料紀錄
| DC 欄位 | 值 | 語言 |
|---|---|---|
| dc.contributor.advisor | 張建成(Chien-Cheng Chang) | |
| dc.contributor.author | Yao-Te Tsai | en |
| dc.contributor.author | 蔡耀德 | zh_TW |
| dc.date.accessioned | 2021-06-16T09:44:26Z | - |
| dc.date.available | 2020-02-16 | |
| dc.date.copyright | 2017-02-16 | |
| dc.date.issued | 2017 | |
| dc.date.submitted | 2017-01-25 | |
| dc.identifier.citation | [1] Lijie Ci, Li Song, Chuanhong Jin, Deep Jariwala, Dangxin Wu, Yongjie Li, Anchal Srivastava, ZF Wang, Kevin Storr, Luis Balicas, et al. Atomic layers of hybridized boron nitride and graphene domains. Nature materials, 9(5):430–435, 2010.
[2] Long-Wei Yin, Yoshio Bando, Dmitri Golberg, Alexandre Gloter, Mu-Sen Li, Xi- aoli Yuan, and Takashi Sekiguchi. Porous bcn nanotubular fibers: growth and spa- tially resolved cathodoluminescence. Journal of the American Chemical Society, 127(47):16354–16355, 2005. [3] WeiweiLei,SiQin,DanLiu,DavidPortehault,ZongwenLiu,andYingChen.Large scale boron carbon nitride nanosheets with enhanced lithium storage capabilities. Chemical communications, 49(4):352–354, 2013. [4] CaijinHuang,ChengChen,MingwenZhang,LihuaLin,XinxinYe,SenLin,Markus Antonietti, and Xinchen Wang. Carbon-doped bn nanosheets for metal-free photore- dox catalysis. Nature communications, 6, 2015. [5] Jiong Lu, Kai Zhang, Xin Feng Liu, Han Zhang, Tze Chien Sum, Antonio H Castro Neto, and Kian Ping Loh. Order–disorder transition in a two-dimensional boron– carbon–nitride alloy. Nature communications, 4, 2013. [6] Yin-Chung Chen, Shang-Chin Lee, Te-Huan Liu, and Chien-Cheng Chang. Ther- mal conductivity of boron nitride nanoribbons: Anisotropic effects and boundary scattering. International Journal of Thermal Sciences, 94:72–78, 2015. [7] Yoshiyuki Miyamoto, Angel Rubio, Marvin L Cohen, and Steven G Louie. Chiral tubules of hexagonal bc 2 n. Physical Review B, 50(7):4976, 1994. [8] Amy Y Liu, Renata M Wentzcovitch, and Marvin L Cohen. Atomic arrangement and electronic structure of bc 2 n. Physical Review B, 39(3):1760, 1989. [9] Jonathan da Rocha Martins and Helio Chacham. Disorder and segregation in b- c- n graphene-type layers and nanotubes: tuning the band gap. ACS nano, 5(1):385–393, 2010. [10]KoretakaYuge.Phasestabilityofboroncarbonnitrideinaheterographenestructure: A first-principles study. Physical review B, 79(14):144109, 2009. [11] Cheng-Kai Chang, Satender Kataria, Chun-Chiang Kuo, Abhijit Ganguly, Bo-Yao Wang, Jeong-Yuan Hwang, Kay-Jay Huang, Wei-Hsun Yang, Sheng-Bo Wang, Cheng-Hao Chuang, et al. Band gap engineering of chemical vapor deposited graphene by in situ bn doping. Acs Nano, 7(2):1333–1341, 2013. [12] Soo Min Kim, Allen Hsu, PT Araujo, Yi-Hsien Lee, Tomas Palacios, Mildred Dres- selhaus, Juan-Carlos Idrobo, Ki Kang Kim, and Jing Kong. Synthesis of patched or stacked graphene and hbn flakes: A route to hybrid structure discovery. Nano letters, 13(3):933–941, 2013. [13]LijiaLiu,TsunKongSham,andWeiqiangHan.Investigationontheelectronicstruc- ture of bn nanosheets synthesized via carbon-substitution reaction: the arrangement of b, n, c and o atoms. Physical Chemistry Chemical Physics, 15(18):6929–6934, 2013. [14]AmirPakdel,XuebinWang,ChunyiZhi,YoshioBando,KentaroWatanabe,Takashi Sekiguchi, Tomonobu Nakayama, and Dmitri Golberg. Facile synthesis of vertically aligned hexagonal boron nitride nanosheets hybridized with graphitic domains. Jour- nal of Materials Chemistry, 22(11):4818–4824, 2012. [15] CY Zhi, JD Guo, XD Bai, and EG Wang. Adjustable boron carbonitride nanotubes. Journal of applied physics, 91(8):5325–5333, 2002. [16] Shubin Yang, Yongji Gong, Jinshui Zhang, Liang Zhan, Lulu Ma, Zheyu Fang, Robert Vajtai, Xinchen Wang, and Pulickel M Ajayan. Exfoliated graphitic carbon nitride nanosheets as efficient catalysts for hydrogen evolution under visible light. Advanced materials, 25(17):2452–2456, 2013. [17] Andre K Geim and Irina V Grigorieva. Van der waals heterostructures. Nature, 499(7459):419–425, 2013. [18] Narjes Ansari, Fariba Nazari, and Francesc Illas. Theoretical study of electronic and tribological properties of h-bnc 2/graphene, h-bnc 2/h-bn and h-bnc 2/h-bnc 2 bilayers. Physical Chemistry Chemical Physics, 17(19):12908–12918, 2015. [19] Wei Xie, Takashi Yanase, Taro Nagahama, and Toshihiro Shimada. Carbon-doped hexagonal boron nitride: Analysis as π-conjugate molecules embedded in two di- mensional insulator. C, 2(1):2, 2016. [20] Adithya Prakash and Kalpathy B Sundaram. Studies on electrical properties of rf sputtered deposited boron carbon nitride thin films. ECS Journal of Solid State Sci- ence and Technology, 4(5):N25–N29, 2015. [21] Baleeswaraiah Muchharla, Arjun Pathak, Zheng Liu, Li Song, Thushari Jayasekera, Swastik Kar, Robert Vajtai, Luis Balicas, Pulickel M Ajayan, Saikat Talapatra, et al. Tunable electronics in large-area atomic layers of boron–nitrogen–carbon. Nano letters, 13(8):3476–3481, 2013. [22] CL Tien, BF Armaly, and PS Jagannathan. Thermal conductivity of thin metallic films and wires at cryogenic temperatures. PAPER FROM THERMAL CONDUC- TIVITY, PLENUM PRESS, NEW YORK. 1969, 13-19, 1969. [23] EK Sichel, RE Miller, MS Abrahams, and CJ Buiocchi. Heat capacity and thermal conductivity of hexagonal pyrolytic boron nitride. Physical review B, 13(10):4607, 1976. [24] Alexander A Balandin. Thermal properties of graphene and nanostructured carbon materials. Nature materials, 10(8):569–581, 2011. [25] Cem Sevik, Alper Kinaci, Justin B Haskins, and Tahir Cağın. Characterization of thermal transport in low-dimensional boron nitride nanostructures. Physical Review B, 84(8):085409, 2011. [26] Alper Kınacı, Justin B Haskins, Cem Sevik, and Tahir Cağın. Thermal conductivity of bn-c nanostructures. Physical Review B, 86(11):115410, 2012. [27] L Lindsay and DA Broido. Optimized tersoff and brenner empirical potential pa- rameters for lattice dynamics and phonon thermal transport in carbon nanotubes and graphene. Physical Review B, 81(20):205441, 2010. [28] Zhixin Guo, Dier Zhang, and Xin-Gao Gong. Thermal conductivity of graphene nanoribbons. Applied physics letters, 95(16):163103, 2009. [29] Jiuning Hu, Xiulin Ruan, and Yong P Chen. Thermal conductivity and thermal rectification in graphene nanoribbons: a molecular dynamics study. Nano letters, 9(7):2730–2735, 2009. [30] Tao Ouyang, Yuanping Chen, Yuee Xie, Kaike Yang, Zhigang Bao, and Jianxin Zhong. Thermal transport in hexagonal boron nitride nanoribbons. Nanotechnol- ogy, 21(24):245701, 2010. [31] Moran Wang and Zeng-Yuan Guo. Understanding of temperature and size de- pendences of effective thermal conductivity of nanotubes. Physics Letters A, 374(42):4312–4315, 2010. [32]XiangfanXu,LuizFCPereira,YuWang,JingWu,KaiwenZhang,XiangmingZhao, Sukang Bae, Cong Tinh Bui, Rongguo Xie, John TL Thong, et al. Length-dependent thermal conductivity in suspended single-layer graphene. Nature communications, 5, 2014. [33] Gang Zhang, Nuo Yang, Gang Wu, and Baowen Li. Anomalous heat conduction, diffusion and heat rectification in nanoscale structures. In ASME 2009 Second In- ternational Conference on Micro/Nanoscale Heat and Mass Transfer, pages 25–35. American Society of Mechanical Engineers, 2009. [34] Ning Wei, Lanqing Xu, Hui-Qiong Wang, and Jin-Cheng Zheng. Strain engineer- ing of thermal conductivity in graphene sheets and nanoribbons: a demonstration of magic flexibility. Nanotechnology, 22(10):105705, 2011. [35] William J Evans, Lin Hu, and Pawel Keblinski. Thermal conductivity of graphene ribbons from equilibrium molecular dynamics: Effect of ribbon width, edge rough- ness, and hydrogen termination. Applied Physics Letters, 96(20):203112, 2010. [36] Xue-Kun Chen, Zhong-Xiang Xie, Wu-Xing Zhou, Li-Ming Tang, and Ke-Qiu Chen. Thermal rectification and negative differential thermal resistance behaviors in graphene/hexagonal boron nitride heterojunction. Carbon, 100:492–500, 2016. [37] Changgu Lee, Xiaoding Wei, Jeffrey W Kysar, and James Hone. Measurement of the elastic properties and intrinsic strength of monolayer graphene. science, 321(5887):385–388, 2008. [38] Konstantin N Kudin, Gustavo E Scuseria, and Boris I Yakobson. C 2 f, bn, and c nanoshell elasticity from ab initio computations. Physical Review B, 64(23):235406, 2001. [39]FScarpa,SAdhikari,andASrikanthaPhani.Effectiveelasticmechanicalproperties of single layer graphene sheets. Nanotechnology, 20(6):065709, 2009. [40] Dmitri Golberg, Pedro MFJ Costa, Oleg Lourie, Masanori Mitome, Xuedong Bai, Keiji Kurashima, Chunyi Zhi, Chengchun Tang, and Yoshio Bando. Direct force measurements and kinking under elastic deformation of individual multiwalled boron nitride nanotubes. Nano Letters, 7(7):2146–2151, 2007. [41] Li Song, Lijie Ci, Hao Lu, Pavel B Sorokin, Chuanhong Jin, Jie Ni, Alexander G Kvashnin, Dmitry G Kvashnin, Jun Lou, Boris I Yakobson, et al. Large scale growth and characterization of atomic hexagonal boron nitride layers. Nano letters, 10(8):3209–3215, 2010. [42] Mehmet Topsakal and Salim Ciraci. Elastic and plastic deformation of graphene, silicene, and boron nitride honeycomb nanoribbons under uniaxial tension: A first- principles density-functional theory study. Physical Review B, 81(2):024107, 2010. [43] Kang Xia, Haifei Zhan, Ye Wei, and Yuantong Gu. Tensile properties of a boron/nitrogen-doped carbon nanotube–graphene hybrid structure. Beilstein jour- nal of nanotechnology, 5(1):329–336, 2014. [44] Jie Yu and EG Wang. Carbon nitride and boron carbon nitride nanostructures. In BCN nanotubes and related nanostructures, pages 195–221. Springer, 2009. [45] Martin T Dove. Introduction to lattice dynamics, volume 4. Cambridge university press, 1993. [46] Melville S Green. Markoff random processes and the statistical mechanics of time- dependent phenomena. ii. irreversible processes in fluids. The Journal of Chemical Physics, 22(3):398–413, 1954. [47] Ryogo Kubo. Statistical-mechanical theory of irreversible processes. i. general the- ory and simple applications to magnetic and conduction problems. Journal of the Physical Society of Japan, 12(6):570–586, 1957. [48] FlorianMuller-Plathe.Asimplenonequilibriummoleculardynamicsmethodforcal- culating the thermal conductivity. The Journal of chemical physics, 106(14):6082– 6085, 1997. [49] Te-HuanLiu,Shang-ChinLee,Chun-WeiPao,andChien ChengChang.Anomalous thermal transport along the grain boundaries of bicrystalline graphene nanoribbons from atomistic simulations. Carbon, 73:432–442, 2014. [50] Gang Wu and Baowen Li. Thermal rectification in carbon nanotube intramolecu- lar junctions: Molecular dynamics calculations. Physical Review B, 76(8):085424, 2007. [51] Steve Plimpton. Fast parallel algorithms for short-range molecular dynamics. Jour- nal of computational physics, 117(1):1–19, 1995. | |
| dc.identifier.uri | http://tdr.lib.ntu.edu.tw/jspui/handle/123456789/59908 | - |
| dc.description.abstract | 二維材料被視為是下一代半導體元件的材料。自石墨烯被發現後, 其優異的電學性質已經使科學家對它提出了許多構想,而後氮化硼問 世後,類似絕緣體的性質也使二維材料有了更多的應用。氮化硼碳與 石墨烯與氮化硼同樣結構,而其性質隨著內部原子比例不同而改變, 因此具有許多的可調變性,對於其中熱傳的特性為本論文深入探討的主題。
本論文使用非平衡分子動力學計算氮化碳硼的熱學以及力學性質, 除了計算隨原子比例改變後材料的熱傳性質之外,在奈米尺度下尺寸 效應也會使熱傳導係數改變,越長或越寬的奈米帶會使得熱傳導係數 上升,而最終會趨於一定值。改變手性角結構發現熱傳導係數在手性 角為 0 度時最高,而手性角介於 8 度到 10 度間與 20 到 25 度間其熱傳 導係數會最低,並分析其邊緣粗糙度發現其與手性角與熱傳導係數的變化有很大的關係,邊緣粗糙度對於手性角的曲線與熱傳導係數對於手性角的曲線非常接近。 模擬結果分析了摻雜、溫度、尺寸、手性角與邊緣對於熱傳的影 響,發現摻雜對於熱傳導率的調變性非常大。在摻雜後可以降低其熱 傳導,在石墨烯中摻雜 10% 的硼氮分子對,其熱傳導係數可以降低達 76%,這樣的性質可以拿來應用於熱電材料上,使其熱電優值提升。 | zh_TW |
| dc.description.abstract | 2D-Materials are considered to play an important role in next-generation semiconductor devices. These materials may have outstanding properties in such as electron mobility and mechanical flexibility. Boron carbon nitride (BCN), with the same structures of graphene and boron nitride but totally different properties depending on the interior atomic contents, may give various tunable properties.
In this study, we investigate the mechanical and thermal properties of BCN ribbons by applying the Non-Equilibrium Molecular Dynamics (Muller-Plathe method and directly measure method). At the scales of nanometers, the thermal property may change significantly with varying the size (width by length) of the ribbon. Hence, besides varying the composition, issues involved with nanoribbon structures such as the width, length as well as the chiral angle and edge roughness are addressed. By increasing the width of nanoribbon, the heat conductivity rises up as well and reaches a fix value finally. The roughness is an important factor of decreasing heat conductivity by rotating the chiral angle, and we found that the conductivity-chiral angel curve is similar to the edge roughness-chiral angel curve. In particular, by replacing 10% of carbon atoms with boron & nitrides in graphene, the thermal conductivity can reduce by 76%. The BCN has the highest thermal conductivity at zero chiral angle, whilst having the lowest at the angles between 8 & 10 and 20 & 25. The findings provide direction/useful information for better design of thermoelectric materials. | en |
| dc.description.provenance | Made available in DSpace on 2021-06-16T09:44:26Z (GMT). No. of bitstreams: 1 ntu-106-R03543069-1.pdf: 11139214 bytes, checksum: b325c782988d831638f90d489ca5d63c (MD5) Previous issue date: 2017 | en |
| dc.description.tableofcontents | 摘要........................ i
Abstract...................... ii 目錄........................iv 圖目錄 ........................................ vii 表目錄 ........................................ x 第一章緒論.................................... 1 1.1 前言..................................... 1 1.2 氮化碳硼介紹 ............................... 2 1.2.1 原子結構.............................. 2 1.2.2 製造方法.............................. 3 1.3 其它性質與應用.............................. 6 1.4 文獻回顧.................................. 6 1.4.1 電學性質.............................. 6 1.4.2 熱學與力學性質.......................... 10 1.5 研究目的.................................. 13 第二章 分子動力學及模擬方法.......................... 15 2.1 分子動力學................................. 15 2.1.1 簡介 ................................ 15 2.1.2 模擬流程.............................. 15 2.1.3 力場簡述.............................. 17 2.1.4 運動方程式與Verlet積分..................... 18 2.1.5 系綜 ................................ 19 2.1.6 熱浴與控溫方法.......................... 24 2.1.7 共軛梯度法 ............................ 29 2.1.8 聲子頻帶結構........................... 31 2.1.9 聲子態密度 ............................ 33 2.2 其他計算方法 ............................... 34 2.2.1 分子動力學計算熱傳導係數之方法 ............... 34 2.2.2 波茲曼傳輸方程式計算熱傳導係數之方法 ........... 35 2.2.3 熱傳導係數方法比較 ....................... 37 第三章 模擬方法.................................. 39 3.1 熱學參數.................................. 39 3.1.1 熱傳導係數 ............................ 39 3.1.2 熱傳導係數模擬流程 ....................... 44 3.2 力學參數.................................. 46 3.2.1 維里應力.............................. 46 3.2.2 彈性係數.............................. 46 3.3 模擬軟體.................................. 46 第四章 氮化碳硼力學與熱學參數計算結果................... 48 4.1 簡介..................................... 48 4.2 摻雜濃度對於氮化碳硼熱傳導係數的影響 ............... 49 4.2.1 摻雜方法簡介........................... 49 4.2.2 比較隨機摻雜與超晶格堆疊方法之差異 ............ 51 4.2.3 摻雜濃度對於氮化碳硼熱傳導係數的影響 ........... 53 4.3 尺寸對於氮化碳硼熱傳導係數的影響.................. 55 4.3.1 改變長度計算結果 ........................ 55 4.3.2 改變寬度計算結果 ........................ 57 4.4 手性角對於氮化碳硼熱傳導係數的影響................. 58 4.4.1 週期性邊界 ............................ 58 4.4.2 非週期性邊界........................... 60 4.4.3 邊緣租糙度 ............................ 62 4.5 溫度對於氮化碳硼熱傳導係數的影響.................. 65 4.5.1 計算結果.............................. 65 4.6 缺陷與摻雜程度對於熱傳導係數的影響................. 68 4.6.1 缺陷生成簡介........................... 69 4.6.2 計算結果.............................. 69 4.7 氮化碳硼的力學性質計算......................... 72 4.7.1 計算結果.............................. 72 第五章 結論與未來展望.............................. 75 5.1 結論..................................... 75 5.2 未來展望.................................. 76 參考文獻....................................... 78 | |
| dc.language.iso | zh-TW | |
| dc.subject | 二維材料 | zh_TW |
| dc.subject | 氮化硼 | zh_TW |
| dc.subject | 石墨烯 | zh_TW |
| dc.subject | 氮化碳硼 | zh_TW |
| dc.subject | 摻雜 | zh_TW |
| dc.subject | 奈米帶 | zh_TW |
| dc.subject | 非平衡分子動力學 | zh_TW |
| dc.subject | 熱傳導係數 | zh_TW |
| dc.subject | 2D-Material | en |
| dc.subject | Thermal Conductivity | en |
| dc.subject | Nanoribbon | en |
| dc.subject | Non-Equilibrium Molecular Dynamics | en |
| dc.subject | Doping | en |
| dc.subject | Boron Carbon Nitride | en |
| dc.subject | Graphene | en |
| dc.subject | Boron Nitride | en |
| dc.title | 二維氮化碳硼之力學與熱學性質的分子動力學研究 | zh_TW |
| dc.title | An Investigation of Mechanical and Thermal Properties of Two-dimensional Boron Carbon Nitride
by Molecular Dynamics | en |
| dc.type | Thesis | |
| dc.date.schoolyear | 105-1 | |
| dc.description.degree | 碩士 | |
| dc.contributor.oralexamcommittee | 朱錦洲(Chin-Chou Chu),張家歐(Chia-Ou Chang),黃世霖(Shih-Lin Huang),葉建志(Chien-Chin Yeh) | |
| dc.subject.keyword | 二維材料,氮化硼,石墨烯,氮化碳硼,摻雜,奈米帶,非平衡分子動力學,熱傳導係數, | zh_TW |
| dc.subject.keyword | 2D-Material,Boron Nitride,Graphene,Boron Carbon Nitride,Doping,Nanoribbon,Non-Equilibrium Molecular Dynamics,Thermal Conductivity, | en |
| dc.relation.page | 84 | |
| dc.identifier.doi | 10.6342/NTU201700239 | |
| dc.rights.note | 有償授權 | |
| dc.date.accepted | 2017-01-25 | |
| dc.contributor.author-college | 工學院 | zh_TW |
| dc.contributor.author-dept | 應用力學研究所 | zh_TW |
| 顯示於系所單位: | 應用力學研究所 | |
文件中的檔案:
| 檔案 | 大小 | 格式 | |
|---|---|---|---|
| ntu-106-1.pdf 未授權公開取用 | 10.88 MB | Adobe PDF |
系統中的文件,除了特別指名其著作權條款之外,均受到著作權保護,並且保留所有的權利。
