Skip navigation

DSpace

機構典藏 DSpace 系統致力於保存各式數位資料(如:文字、圖片、PDF)並使其易於取用。

點此認識 DSpace
DSpace logo
English
中文
  • 瀏覽論文
    • 校院系所
    • 出版年
    • 作者
    • 標題
    • 關鍵字
  • 搜尋 TDR
  • 授權 Q&A
    • 我的頁面
    • 接受 E-mail 通知
    • 編輯個人資料
  1. NTU Theses and Dissertations Repository
  2. 理學院
  3. 物理學系
請用此 Handle URI 來引用此文件: http://tdr.lib.ntu.edu.tw/jspui/handle/123456789/59872
完整後設資料紀錄
DC 欄位值語言
dc.contributor.advisor郭光宇(Guang-Yu Guo)
dc.contributor.authorMing-Chun Jiangen
dc.contributor.author江明寯zh_TW
dc.date.accessioned2021-06-16T09:42:26Z-
dc.date.available2020-12-31
dc.date.copyright2020-08-24
dc.date.issued2020
dc.date.submitted2020-08-17
dc.identifier.citation[1] I. Zutic, J. Fabian, and S. D. Sarma, Spintronics: Fundamentals and applications, Rev. Mod. Phys. 76, 323 (2004).
[2] S. A. Wolf, D. D. Awschalom, R. A. Buhrman, J. M. Daughton, S. von Molnar, M. L. Roukes, A. Y. Chtchelkanova, and D. M. Treger, Spintronics: A Spin-Based Electronics Vision for the Future, Science 294, 1488 (2001).
[3] S. V. Rotkin and K. Hess, Possibility of a metallic field-effect transistor, Appl. Phys. Lett. 84, 3139 (2004).
[4] K. S. Novoselov, A. K. Geim, S. V. Morozov, D. Jiang, Y. Zhang, S. V. Dubonos, I. V. Grigorieva, A. A. Firsov2, Electric Field Effect in Atomically Thin Carbon Films, Science 306, 666 (2004).
[5] R. Mas-Balleste, C. Gomez-Navarro, J. Gomez-Herrero, and F. Zamora, 2D materials: to graphene and beyond, Nanoscale 3, 20 (2011).
[6] A. K. Geim, I. V. Grigorieva, Van der Waals heterostructures, Nature 499, 419 (2013).
[7] K. S. Novoselov, A. Mishchenko, A. Carvalho, A. H. Castro Neto, 2D materials and van der Waals heterostrucutres, Science 353, aac9439 (2016).
[8] N. D. Mermin and H. Wagner, Absence of ferromagnetism or antiferromagnetism in one- or two-dimensional isotropic Heisenberg models, Phys. Rev. Lett. 17, 1133 (1966).
[9] B. Huang, G. Clark, E. Navarro-Moratalla, D. R. Klein, R. Cheng, K. L. Seyler, D. Zhong, E. Schmidgal, M. A. McGuire, D. H. Cobden, W. Yao, D. Xiao, P. Jarillo-Herrero, and X. Xu, Layer-dependent ferromagnetism in a van der Waals crystal down to monolayer limit, Nature 546, 270 (2017).
[10] C. Gong, L. Li, Z. Li, H. Ji, A. Stern, Y. Xia, T. Cao, W. Bao, C. Wang, Y. Wang, Z. Q. Qiu, R. J. Cava, S. G. Louie, J. Xia, and X. Zhang, Discovery of intrinsic ferromagnetism in two-dimensional van der Waals crystals, Nature 546, 265 (2017).
[11] M. Gibertini, M. Koperski, A. F. Morpurgo, and K. S. Novoselov, Magnetic 2D materials and heterostructures, Nat. Nanotechnol. 14, 408 (2019)
[12] Z. Fei, B. Huang, P. Malinowski1, W. Wang, T. Song, J. Sanchez1, W. Yao, D. Xiao, X. Zhu, A. F. May, W. Wu,D. H. Cobden, J.H. Chu, and X. Xu, Two-dimensional itinerant ferromagnetism atomically thin Fe3GeTe2, Nat. Mat. 17, 778 (2018).
[13] Y. Deng, Y. Yu, Y. Song, J. Zhang, N. Z. Wang, Z. Sun, Y. Yi,Y. Z. Wu, S. Wu, J. Zhu, J. Wang, X. H. Chen, and Y. Zhang, Gate-tunable room-temperature ferromagnetism in two-dimensional Fe3GeTe2, Nature 563, 94 (2018).
[14] M. Bonilla, S. Kolekar, Y. Ma, H. C. Diaz, V. Kalappattil, R. Das, T. Eggers, H. R. Gutierrez, M.H.Phan, and M. Batzill, Strong room-temperature ferromagnetism in VSe2 monolayers on van der Waals substrates, Nat. Nanotechnol. 13, 289 (2018).
[15] W. Yu, J. Li, T. S. Herng, Z. Wang, X. Zhao, X. Chi, W. Fu, I. Abdelwahab, J. Zhou, J. Dan, Z. Chen, Z. Chen, Z. Li, J. Lu, S. J. Pennycook, Y. P. Feng, J. Ding, and K. P. Loh, Chemically Exfoliated VSe2 Monolayers with Room-Temperature Ferromagnetism, Adv. Mater. 31, 1903779 (2019).
[16] A. O. Fumega, M. Gobbi, P. Dreher, W. Wan, C. González-Orellana, M. Peña-Díaz, C. Rogero, J. Herrero-Martín, P. Gargiani, M. Ilyn, M. M. Ugeda, Victor Pardo, S. Blanco-Canosa, Absence of Ferromagnetism in VSe2 Caused by Its Charge Density Wave Phase, J. Phys. Chem. C 123, 27802 (2019).
[17] G.Y. Guo, W. M. Temmerman, and H. ebert, First-principles determination of the magnetization direction of Fe monolayer in noble metals, J. Phys.: Condens. Matter 3, 8205 (1991).
[18] J. C. Tung, and G.Y. Guo, Systematic ab initio study of the magnetic and electronic properties of all 3d transition metal linear and zigzag nanowires, Phys. Rev. B 76, 094413 (2007).
[19] V. Antonov, B. Harmon, and A. Yaresko, Electronic structure and magneto-optical properties of solids, Springer Science Business Media, (2004).
[20] H. L. Zhuang, P. R. C. Kent, and R. G. Hennig, Strong anisotropy and magnetostriction in the two-dimensional Stoner ferromagnet Fe3GeTe2, Phys. Rev. B 93, 134407 (2016).
[21] S. Y. Park, D. S. Kim, Y. Lin, J. Hwang, Y. Kim, W. Kim, J.Y. Kim, C. Petrovic, C. Hwang, S.K. Mo, H.j. Kim, B.C. Min, H. C. Koo, J. Chang, C. Jang, J. W. Choi, and H. Ryu, Controlling the Magnetic Anisotropy of the van der Waals Ferromagnet Fe3GeTe2 through Hole Doping, Nano Lett. 20, 95, (2020).
[22] Y.P. Wang, X.Y. Chen, and M.Q. Long, Modifications of magnetic anisotropy of Fe3GeTe2 by the electric field effect, Appl. Phys. Lett. 116, 092404 (2020).
[23] E. H. Hall, On the ”Rotational Coefficient” in nickel and cobalt, Philos. Mag. B 12, 157 (1881).
[24] M. I. D’yakonov and V. I. Perel, Spin orientation of electrons associated with the interband absorption of light in semiconductor, Sov. Phys. JETP 33, 1053 (1971).
[25] N. Nagaosa, J. Sinova, S. Onoda, A. H. MacDonald, N. P. Ong, Anomalous Hall effect, Rev. Mod. Phys. 82, 1539 (2010).
[26] W. Nernst, Ann. Phys. 267, 760 (1887).
[27] J. Sinova, S. O. Valenzuela, J. Wunderich, C. H. Back, T. Jungwirth, Spin Hall effects, Rev. Mod. Phys. 87, 1213 (2015).
[28] D. Xiao, Y. Yao, Z. Fang, and Q. Niu, Berry-Phase Effect in Anomalous Thermoelectric Transport, Phys. Rev. Lett. 97, 026603 (2006).
[29] P. M. Oppeneer, Chapter 1 Magneto-optical Kerr Spectra, pp. 229422, in Handbook of Magnetic Materials, edited by K. H. J. Buschow. Elsevier, Amsterdam, (2001).
[30] M. Mansuripur, The Principles of Magneto-Optical Recording, (Cambridge University Press, Cambridge, 1995).
[31] J. P. Castera, in Magneto-optical Devices, Vol. 9 of Encyclopedia of Applied Physics, edited by G. L. Trigg (Wiley-VCH, New York, 1996), p. 133.
[32] G.Y. Guo, H. Ebert, Band-theoretical investigation of the magneto-optical Kerr effect in Fe and Co mulitlayers, Phys. Rev. B 51, 12633 (1995).
[33] G.Y. Guo, H. Ebert, On the origins of the enhanced magneto-optical Kerr effect in ultrathin Fe and Co multilayers, J. Magn. Magn. Mater. 156, 173 (1996).
[34] Y. Feng, S. Wu, Z.Z. Zhu, and G.Y. Guo, Large magneto-optical effects and magnetic anisotropy energy in two-dimensional Cr2Ge2Te6, Phys. Rev. B 98, 125416 (2018).
[35] V. K. Gudelli, and G.Y. Guo, Magnetism and magneto-optical effects in bulk and fewlayer CrI3 : a theoretical GGA + U study, New J. Phys. 21, 053012 (2019).
[36] X. Lin and J. Ni, Layer-dependent intrinsic anomalous Hall effect in Fe3GeTe2, Phys. Rev. B 100, 085403 (2019).
[37] C. Kittel, Introduction to Solid State Physics. 8, Wiley, (2004).
[38] V. Fock, Näherungsmethode zur Lösung des quantenmechanischen Mehrkörperproblems., Z. Physik 61, 126 (1930).
[39] P. Hohenberg, and W. Kohn, Inhomogeneous Electron Gas, Phys. Rev. 136, B864 (1964).
[40] W. Kohn, and L. J. Sham, Self-Consistent Equations Including Exchange and Correlation Effects, Phys. Rev. 140, A1133 (1965).
[41] J. P. Perdew and A. Zunger, Self-interaction correction to density-functional approximations for many-electron systems, Phys. Rev. B 23, 5048 (1981).
[42] J. P. Perdew, and Y. Wang, Accurate and simple analytic representation of the electron-gas correlation energy, Phys. Rev. B 45, 13244 (1992).
[43] Z. Wang, C. Tang, R. Sachs, Y. Barlas, and J. Shi, Proximity-Induced Ferromagnetism in Graphene Revealed by the Anomalous Hall Effect, Phys. Rev. Lett. 114, 016603 (2015).
[44] D. Ghazaryan, M. T. Greenaway, Z. Wang, V. H. Guarochico-Moreira, I. J. VeraMarun, J. Yin, Y. Liao, S. V. Morozov, O. Kristanovski, A. I. Lichtenstein, M. I. Katsnelson, F. Withers, A. Mishchenko, L. Eaves, A. K. Geim, K. S. Novoselov, and A. Misra, Magnon-assisted tunnelling in van der Waals heterostructures based on CrBr3, Nat. Electron 1, 344 (2018).
[45] A. Avsar, H. Ochoa, F. Guinea, B. Ozyilmaz, B. J. van Wees, I. J. Vera-Marun, Colloquium: Spintronics in graphene and other two-dimensional materials, arXiv 1909.09188 (2020).
[46] H.J. Deiseroth, K. Aleksandrov, C. Reiner, L. Kienle, and R. K. Kremer, Fe3GeTe2 and Ni3GeTe2 –Two New Layered Transition-Metal Compounds: Crystal Structures, HRTEM Investigations, and Magnetic and Electrical Properties, Eur. J. Inorg. Chem. 2006, 1561 (2006).
[47] B. Chen, J.H. Yang, H.D. Wang, M. Imai, H. Ohta, C. Michioka, K. Yoshimura, and M.H. Fang, Magnetic Properties of Layered Itinerant Electron Ferromagnet Fe3GeTe2, J. Phys. Soc. Jpn. 82, 124711 (2013).
[48] M. Alghamdi, M. Lohmann, J. Li, P. R. Jothi, Q. Shao, M. Aldosary, T. Su, B. P. T. Fokwa, and J. Shi, Highly Efficient Spin-Orbit Torque and Switching of Layered Ferromagnet Fe3GeTe2, Nano Lett. 19, 4400 (2019).
[49] Y. Wang, C. Xian, J. Wang, B. Liu, L. Ling, L. Zhang, L. Cao, Z. Qu, and Y. Xiong, Anisotropic anomalous Hall effect in triangular itinerant ferromagnet Fe3GeTe2, Phys. Rev. B 96, 134428 (2017).
[50] K. Kim, J. Seo, E. Lee, K.T.Ko, B. S. Kim, B. G. Jang, J. M. Ok, J. Lee, Y. J. Jo, W. Kang, J. H. Shim, C. Kim, H. W. Yeom, B. I. Min, B.J. Yang , and J. S. Kim, Large anomalous Hall current induced by topological nodal lines in a ferromagnetic van der Waals semimetal, Nat. Mater. 17, 794 (2018).
[51] X. Wang, Z. Li, M. Zhang, T. Hou, J. Zhao, L. Li, A. Rahman, Z. Xu, J. Gong, Z. Chi, R. Dai, Z. Wang, Z. Qiao, and Z. Zhang, Pressure-induced modification of the anomalous Hall effect in layered Fe3GeTe2, Phys. Rev. B 100, 014407 (2019).
[52] J. Xu, W. A. Phelan, and C.L. Chien, Large Anomalous Nernst Effect in a van der Waals Ferromagnet Fe3GeTe2, Nano Lett. 19, 8250 (2019).
[53] C. Fang, C. H. Wan, C. Y. Guo, C. Feng, X. Wang, Y. W. Xing, M. K. Zhao, J. Dong, G. Q. Yu, Y. G. Zhao, and X. F. Hen, Observation of large anomalous Nernst effect in 2D layered materials Fe3GeTe2, Appl. Phys. Lett. 115, 212402 (2019).
[54] P. E. Blochl, Projector augmented-wave method, Phys. Rev. B 50, 17953 (1994).
[55] G. Kresse and J. Hafner, Ab initio molecular dynamics for liquid metals, Phys. Rev. B 47, 558 (1993).
[56] G. Kresse and J. Furthmuller, Efficient interactive schemes for ab initio total-energy calculations using a plane-wave basis set, Phys. Rev. B 54, 11169 (1996).
[57] J. P. Perdew, K. Burke, and M. Ernzerhof, Generalized Gradient Approximation Made Simple, Phys. Rev. Lett. 77, 3865 (1996).
[58] O. Jepson and O. K. Anderson, The electronic structure of h.c.p Ytterbium, Solid State Commun. 9, 1763 (1971).
[59] D. Xiao, M.C. Chang, Q. Niu, Berry phase effects on electronic properties, Rev. Mod. Phys. 82, 1959 (2010).
[60] G. Y. Guo, Q. Niu, and N. Nagaosa, Anomalous Nernst and Hall effects in magnetized platinum and palladium, Phys. Rev. B 89, 214406 (2014).
[61] G.Y. Guo, S. Murakami, T.W. Chen, and N. Nagaosa, Intrinsic Spin Hall Effect in Platinum: First-Principles Calculations, Phys. Rev. Lett. 100, 096401 (2008).
[62] G. Y. Guo, Y. Yao, Q. Niu, Ab initio Calculation of the Intrinsic Spin Hall Effect in Semiconductors, Phys. Rev. Lett. 94, 226601 (2005).
[63] G.Y. Guo and T.C. Wang, Large anomalous Nernst and spin Nernst effects in the noncollinear antiferromagnets Mn3X (X=Sn,Ge,Ga), Phys. Rev. B 96, 224415 (2017); Phys. Rev. B 100, 169907 (E) (2019).
[64] B. Adolph, J. Furthmuller, and F. Bechstedt, Optical properties of semiconductors using projectoraugmented waves, Phys. Rev. B 63, 125108 (2001).
[65] Y. Yao, L. Kleinman, A. H. MacDonald, J. Sinova, T. Jungwirth, D.S. Wang, E. Wang, and Q. Niu, First Principles Calculation of Anomalous Hall Conductivity in Ferromagnetic bcc Fe, Phys. Rev. Lett. 92, 037204 (2004)
[66] C. S. Wang and J. Callaway, Band structure of nickel: Spin-orbit coupling, the Fermi surface, and the optical conductivity, Phys. Rev. B 9, 4897 (1974).
[67] P. M. Oppeneer, T. Maurer, J. Sticht, and J. K¨ubler, An initio calculated magneto-optical Kerr effect of ferromagnetic metals: Fe and Ni, Phys. Rev. B 45, 10924 (1992).
[68] W. Feng, G.Y. Guo, J. Zhou, Y. Yao, and Q. Niu, Large magneto-optical Kerr effect in noncollinear antiferromagnets Mn3 X (X=Rh, Ir, Pt), Phys. Rev. B 92, 144426 (2015).
[69] W. M. Temmerman, P. A. Sterne, G.Y. Guo, and Z. Szotek, Electronic Structure Calculations of High Tc Materials, Mol. Simul. 63, 153 (1989).
[70] G.Y. Guo, K. C. Chu, D.s. Wang, and C.g. Duan, Linear and nonlinear optical properties of carbon nanotubes from first-principles calculations, Phys. Rev. B 69, 205416 (2004).
[71] G.Y. Guo, and H. Ebert, Theoretical investigation of the orientation dependence of the magneto-optical Kerr effect in Co, Phys. Rev. B 50, 10377(R), 1994.
[72] Y. Suzuki, T. Katayama, S. Yoshida, K. Tanaka, and K. Sato, New Magneto-Optical Transition in Ultrathin Fe(100) Films, Phys. Rev. Lett. 68, 3355 (1992).
[73] N. Sivadas, S. Okamoto, and D. Xiao, Gate-Controllable Magneto-optic Kerr Effect in Layered Collinear Antiferromagnets, Phys. Rev. Lett. 117, 267203 (2016).
[74] W. Feng, G.Y. Guo, and Y. Yao, Tunable magneto-optical effects in hole-doped group-IIIA metal-monochalcogenide monolayers, 2D Mater. 4, 015017 (2017).
[75] P. Ravindran, A. Delin, P. James, B. Johansson, J. M. Wills, R. Ahuja, and O. Eriksson, Phys. Rev. B 59, 15680 (1999).
[76] S. Grimme, Semiempirical GGA-Type Density Functional Constructed with a Long-Range Dispersion Correction, J. Comput. Chem. 27, 1787 (2006).
[77] V. Y. Verchenko, A. A. Tsirlin, A. V. Sobolev, I. A. Presniakov, and A. V. Shevelkov, Ferromagnetic Order, Strong Magnetocrystalline Anisotropy, and Magnetocaloric Effect in the Layered Telluride Fe3−δGeTe2, Inorg. Chem. 54, 8598 (2015).
[78] A. F. May, S. Calder, C. Cantoni, H. Cao, and M. A. McGuire, Magnetic structure and phase stability of the van der Waals bonded ferromagnet Fe3−xGeTe2, Phys. Rev. B 93, 014411 (2016).
[79] J.X.Zhu, M. Janoschek, D. S. Chaves, J. C. Cezar, T. Durakiewicz, F. Ronning, Y. Sassa, M. Mansson, B. L. Scott, N. Wakeham, E. D. Bauer, and J. D. Thompson, Electronic correlation and magnetism in the ferromagnetic metal Fe3GeTe2, Phys. Rev. B 93, 144404 (2016).
[80] N. LeonBrito, E. D. Bauer, F. Ronning, J. D. Thompson, and R. Movshovich, Magnetic microstructure and magnetic properties of uniaxial itinerant ferromagnet Fe3GeTe2, J. Appl. Phys. 120, 083903 (2016).
[81] S. J. Luo, G.Y. Guo, and A. Laref, Magnetism of 3d-Transition Metal (Fe, Co, and Ni) Nanowires on w-BN (0001), J. Phys. Chem. C 113, 14615 (2009).
[82] X. Xu, Y. W. Li, S. R. Duan, S. L. Zhang, Y. J. Chen, L. Kang, A. J. Liang, C. Chen, W. Xia, Y. Xu, P. Malinowski, X. D. Xu, J.H. Chu, G. Li, Y. F. Guo, Z. K. Liu, L. X. Yang, and Y. L. Chen, Signature for non-Stoner ferromagnetism in the van der Waals ferromagnet Fe3GeTe2, Phys. Rev. B 101, 201104(R) (2020).
[83] G.Y. Guo, W. M. Temmerman, and H. Ebert, A relativistic spin-polarized band theoretical study of magnetic properties of nickel and iron, Physica B Condens. Matter 172, 61 (1991).
[84] P. M. Oppeneer, Magneto-optical spectroscopy in the valence-band energy regime: relationship to the magnetocrystalline anisotropy, J. Magn. Magn. Mater. 188, 275 (1998).
[85] J. Gao, Q. Wu, C. Persson and Z. Wang, Irvsp: to obtain irreducible representations of electronic states in the VASP, arXiv 2002.04032 (2020).
[86] H. T. Stokes, D. M. Hatch, and B. J. Campbell, FINDSYM, ISOTROPY Software Suite, iso.byu.edu.
[87] H. T. Stokes and D. M. Hatch, ”Program for Identifying the Space Group Symmetry of a Crystal”, J. Appl. Cryst. 38, 237238 (2005).
[88] M. Seemann, D. Kodderitzsch, S. Wimmer, and H. Elbert, Symmetry-imposed shape of linear response tensors, Phys. Rev. B 92, 155138 (2015).
[89] Y. Yen, and G. Y. Guo, Tunable large spin Hall and spin Nernst effects in the Dirac semimetals ZrXY (X=Si, Ge; Y=S, Se, Te), Phys. Rev. B 101, 064430 (2020).
[90] D.s. Wang, R. Wu, and A. J. Freeman, First-principles theory of surface magnetocrystalline anisotropy and the diatomic-pair model, Phys. Rev. B 47, 14932 (1993).
[91] H. Takayama, K.P. Bohnen, and P. Fulde, Magnetic surface anisotropy of transition metals, Phys. Rev. B 14, 2287 (1976).
[92] M. Ikhlas, T. Tomita, T. Koretsune, M.T. Suzuki, D. Nishio-Hamane, R. Arita, Y. Otani, and S. Nakatsuji, Large anomalous Nernst effect at room temperature in a chiral antiferromagnet, Nat. Phys. 13, 1085 (2017).
[93] A. K. Nayak, J. E. Fischer, Y. Sun, B. Yan, J. Karel, A. C. Komarek, C. Shekhar, N. Kumar, W. Schnelle, J. Kübler, C. Felser, and S. S. P. Parkin, Large anomalous Hall effect driven by a nonvanishing Berry curvature in the noncolinear antiferromagnet Mn3Ge, Sci. Adv. 2, e1501870 (2016).
[94] X. Li, L. Xu, L. Ding, J. Wang, M. Shen, X. Lu, Z. Zhu, and K. Behnia, Anomalous Nernst and Righi-Leduc Effects in Mn3Sn: Berry Curvature and Entropy Flow, Phys. Rev. Lett. 119, 056601 (2017).
[95] S. Meyer, Y.T. Chen, S. Wimmer, M. Althammer, T. Wimmer, R. Schlitz, S. Geprägs, H. Huebl, D. Ködderitzsch, H. Ebert, G. E. W. Bauer, R. Gross, and S. T. B. Goennenwein, Observation of spin Nernst effect, Nat. Mater. 16, 977 (2017).
[96] K.I. Uchida, T. Kikkawa, T. Seki, T. Oyake, J. Shiomi, Z. Qiu, K. Takanashi, and E. Saitoh, Enhancement of anomalous Nernst effects in metallic multilayers free from proximity-induced magnetism, Phys. Rev. B 92, 094414 (2015).
[97] M. Jiang, H. Asahara, S. Sato, T. Kanaki, H. Yamasaki, S. Ohya, and M. Tanaka, Efficient full spin–orbit torque switching in a single layer of a perpendicularly magnetized single-crystalline ferromagnet, Nat. Commun. 10, 2590 (2019)
[98] V.P. Amin, Junwen Li, M. D. Stiles, and P. M. Haney, Intrinsic spin currents in ferromagnets, Phys. Rev. B 99, 220405(R) (2019)
[99] Y. Zhang, Y. Sun, H. Yang, J. Zelezny, S. P. P. Parkin, C. Felser, and B. Yan, Strong anisotropic anomalous Hall effect and spin Hall effect in the chiral antiferromagnetic compounds Mn3X (X = Ge, Sn, Ga, Ir, Rh, and Pt), Phys. Rev. B 95, 075128 (2017).
[100] X. Wang, j. R. Yates, I. Souza, and D. Vanderbeit, Ab initio calculation of the anomalous Hall conductivity by Wannier interpolation, Phys. Rev. B 74, 195118 (2006).
[101] P. Hosur, and X. Qi, Recent developments in transport phenomena in Weyl semimetals, Comptes Rendus Physique 14, 857 (2013).
[102] X. Yang, and A. Kamenev, Symmetry-Protected Topological Metals, Phys. Rev. Lett. 121, 086810 (2018).
[103] G. F. Koster, J. O. Dimmock, R. G. Wheeler, and H. Statz, Properties of the thirty two point groups (Cambridge, Mass.: M.I.T. Press., 1963)
[104] M. S. Dresselhaus, G. Dresselhaus, and A. Jorio, Group Theory Applications to the Physics of Condensed Matter (Springer-Verlag, Berlin, 2008).
[105] P. G. van Engen, K. H. J. Buschow, R. Jongebreur, and M. Erman, PtMnSb, a material with very high magneto-optical Kerr effect, Appl. Phys. Lett. 42, 202 (1983).
[106] G. Q. Di, and S. Uchiyama, Optical and magneto-optical properties of MnBi film, Phys. Rev. B 53, 3327 (1996).
[107] T. Higo, H. Man, D. B. Gopman, L. Wu, T. Koretsune, O. M. J. van 't Erve, Y. P. Kabanov, D. Rees, Y. Li, M.T. Suzuki, S. Patankar, M. Ikhlas, C. L. Chien, R. Arita, R. D. Shull, J. Orenstein, and S. Nakatsuji, Large magneto-optical Kerr effect and imaging of magnetic octupole domains in an antiferromagnetic metal, Nat. Photonics 12, 73 (2018).
[108] S. Tomita, T. Kato, S. Tsunashima, S. Iwata, M. Fujii, and S. Hayashi, Magneto-Optical Kerr Effects of Yttrium Iron Garnet Thin Films Incorporating Gold nanoparticles, Phys. Rev. Lett. 96, 167402 (2006).
[109] W.K. Li, and G.Y. Guo, A First Principle Study on Magneto-Optical Effects and Magnetism in Ferromagnetic Semiconductors Y3Fe5O12 and Bi3Fe5O12, arXiv, 2005.14133 (2020).
[110] R. Lang, A. Winter, H. Pascher, H. Krenn, X. Liu, and J. K. Furdyna, Polar Kerr effect studies of Ga1−xMnxAs epitaxial films, Phys. Rev. B 72, 024430 (2005).
dc.identifier.urihttp://tdr.lib.ntu.edu.tw/jspui/handle/123456789/59872-
dc.description.abstract二維材料Fe3GeTe2 的薄膜在近期被實驗成功撕出並且其鐵磁性也被成功證實。這提供了研究低維度磁性和發展自旋相關科技或是磁性奈米裝置一個極佳的平台。本碩士論文將系統地研究各個層數之下Fe3GeTe2 的磁性性質以及三個磁性引導出的現象: 首先是自旋相關的傳輸性質如反常霍爾效應,反常能斯特效應,自旋霍爾效應,自旋能斯特效應; 再來是磁性異相能,最後是磁光效應。在鐵磁性基態之下,我們發現了Fe3GeTe2 存在極大的磁晶異相能,從1 至5 層直到塊材,皆存在大約3(毫電子伏特/化學式) 的磁晶異相能。這表示Fe3GeTe2在二維情況下可以存在穩定的鐵磁性。接下來,我們發現了與層數相關的反常霍爾電導率,反常能斯特電導率,自旋霍爾電導率,自旋能斯特電導率。其中單層Fe3GeTe2 具有最大的反常霍爾電導率247(歐姆/公分),以及在180 凱爾文下的反常能斯特電導率0.67(安培/公尺凱爾文)。此等反常能斯特電導率超過非共線反鐵磁Mn3Sn,甚至可與傳統上有較大反常能斯特係數的金屬導體,例如多層鉑鐵合金或是金屬鐵,競爭。甚者,我們還發現不僅僅反常霍爾電導率和反常能斯特電導率,自旋霍爾電導率和自旋能斯特電導率可以藉由調動費米能級來使其有較大的變化,例如在單層Fe3GeTe2,經過上調費米能級我們可以在實驗可行的摻雜範圍內得到提升的反常霍爾電導率337(歐姆/公分) 和在180 凱爾文下的反常能斯特電導率2.28(安培/公尺凱爾文)。在沒有磁性,室溫300 凱爾文下,1 至4 層的Fe3GeTe2 在自旋能斯特效應比起鐵磁性下更顯著,有著0.3(¯h/e)(安培/公尺凱爾文)。藉由貝瑞曲率分析,我們發現了在Fe3GeTe2 系統中存在的兩種貝瑞區率源頭。在偶數層Fe3GeTe2,我們發現由自旋軌到偶合所產生的能帶間隙所產生的貝瑞區率峰值。另一種則是在奇數層Fe3GeTe2 發現由兩條相近並且共同穿過費米能級後得到較小的貝瑞區率值但是較大的積分面積所產生對於霍爾電導率的巨大貢獻。另外,我們藉由對稱性分析發現了單層Fe3GeTe2 的巨大反常霍爾和能斯特電導率緣於一圈連續的貝瑞區率,並且這環是由兩條被對稱性所保護而成,並未因為自旋軌道偶合而被破壞。這形成了一個節環並且還給予了電導率等等巨大的貢獻。最後,在光學分析方面,在可見光區間,我們發現了三層的Fe3GeTe2 最大到約2.7 度的磁光克爾旋轉角。這個大小的磁光克爾旋轉角與歷史上有名的3d 過度金屬合金MnBi 或是被大量實驗運用的半導體Y3Fe5O12 都還要大。另外Fe3GeTe2 也有極大的磁光法拉第旋轉角,尤其單層的Fe3GeTe2 有約156 度/微米的磁光法拉第旋轉角,這個數值三倍大於Bi3Fe5O12,也大於其他最近被報導的二維磁性半導體Cr2Ge2Te6 或CrI3。綜合來說這份研究使我們預測Fe3GeTe2 可以成為好的磁性自旋,光電,電熱相關科技的優良載體,並且我們提出了一個新的對稱性保護拓樸金屬的可能性。zh_TW
dc.description.abstractAtomically thin Fe3GeTe2 was recently prepared and confirmed to be ferromagnetic. This provides a platform to study two-dimensional magnetism and also stimulate the application to spintronics and magnetic nanodevices. In this master thesis, we systematically study the magnetism, magnetic anisotropy energy(MAE), the spin transport properties including anomalous Hall effect (AHE), anomalous Nernst effect (ANE), spin Hall effect (SHE) and spin Nernst effect (SNE), as well as the magneto-optical(MO) effects for few layers Fe3GeTe2 by first principle calculation. The ferromagnetic state is calculated and a large magnetocrystalline anisotropy energy of nearly 3 (meV/f.u.) is found for 1-5 layers and also bulk Fe3GeTe2. Such large MAE stabilizes the magnetism till two-dimensional limit. For anomalous Hall conductivity (AHC), monolayer Fe3GeTe2 has the largest AHC of 247(S/cm). The AHC decreases as the number of layer increases which eventually converges to bulk Fe3GeTe2 with AHC 167(S/cm). Nonetheless, monolayer Fe3GeTe2 also has a large anomalous Nernst conductivity (ANC) of 0.67 (A/m-K) at 180 K. Such ANC is larger than that of noncollinear antiferromagnet Mn3Sn, and is comparable to that of metallic conductors Pt/Fe multilayers or metal iron with large anomalous Nernst coefficient. Furthermore, we discover not only the AHC and ANC but also spin Hall conductivity (SHC) and spin Nernst conductivity (SNC) of Fe3GeTe2 to be highly tunable via slightly changing the Fermi level. Big enhancement for ML Fe3GeTe2 can be performed up to 337 (S/cm) for AHC by electron doping of 0.50 e/f.u., and 2.28 (A/m-K) for ANC by electron doping of 0.26 e/f.u. These doping level are within possible experimental doping level (1.6 e/f.u.). For nonmagnetic Fe3GeTe2, SNC is of value of roughly 0.3 (¯h /e)(A/m-K) for 1-4 layers Fe3GeTe2 in 300 K, which is larger than that in ferromagnetic state (0.009 -0.24 (¯h /e)(A/m-K)). Via Berry curvature analysis, we discover two different origins of large AHC in Fe3GeTe2 with an odd number and even number of layers, respectively. In the case of even-number-layers, Fermi level crosses multiple spin-orbit-coupling-induced band-gaps, thus results in large Berry curvature peaks in the Brillouin zone. On the other hand, in the case of odd-number-layers, pairs of neighbouring bands straddle the Fermi level. Therefore, large-area Berry curvature plateaus appear in the Brillouin zone, which gives large AHC in total. Surprisingly, we identify especially the origin of the continuous Berry curvature plateau around Γ point for monolayer Fe3GeTe2 to be a mirror symmetry protected gapless nodal ring. On the other hand, through linear optics response calculation, in visible frequency range, huge Kerr rotation angle up to ∼2.7◦ for trilayer Fe3GeTe2 is found, and the value is larger than famous 3d transition alloy MnBi. Also, a large Faraday rotation angle is predicted for all considered Fe3GeTe2 structures. Especially, monolayer Fe3GeTe2 has a Faraday rotation angle of 156◦/μm, which is three times larger than famous Bi3Fe5O12 or recently reported 2D magnetic semiconductors Cr2Ge2Te6 and CrI3. Our work not only suggests atomically thin Fe3GeTe2 to become candidate for two-dimensional magnetic or MO nanodevice, and spin caloritronics, but also proposes a new possibility of two dimensional symmetry protected topological metal.en
dc.description.provenanceMade available in DSpace on 2021-06-16T09:42:26Z (GMT). No. of bitstreams: 1
U0001-1308202016263200.pdf: 11648522 bytes, checksum: 2bbe493da55899aef0c40f4d4ad74b36 (MD5)
Previous issue date: 2020
en
dc.description.tableofcontentsContents
誌謝 iii
摘要 ... v
Abstract ... vii
1 Introduction ... 1
1.1 Spintronics, two-dimensional materials, and Fe3GeTe2 . . . . . . . . . . 1
1.2 Magnetic anisotropy energy . . . . . . . . . . . . . . . . . . . . . . . . 2
1.3 Anomalous Hall/ Nernst effects and spin Hall/Nernst effects . . . . . . . 3
1.4 Magneto-optical effects . . . . . . . . . . . . . . . . . . . . . . . . . . . 4
2 Theoretical Background ... 7
2.1 Bloch theorem, Brillouin zone and band structures . . . . . . . . . . . . . 7
2.2 Density functional theory . . . . . . . . . . . . . . . . . . . . . . . . . . 9
2.3 Spin-density functional theory and approximations for exchange-correlations ... 11
2.4 Ferromagnetism . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 12
2.5 Mermin-Wagner theory and two-dimensional magnetism . . . . . . . . . 15
3 Properties of Fe3GeTe2 and computational method ... 19
3.1 Introduction . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 19
3.2 Structure and symmetry . . . . . . . . . . . . . . . . . . . . . . . . . . . 20
3.3 Physics properties and current state in research . . . . . . . . . . . . . . 21
3.4 Computational method . . . . . . . . . . . . . . . . . . . . . . . . . . . 22
3.4.1 Electronic structure . . . . . . . . . . . . . . . . . . . . . . . . . 22
3.4.2 Magnetic anisotropy energy . . . . . . . . . . . . . . . . . . . . 22
3.4.3 Anomalous Hall/ Nernst effects and spin Hall/Nernst effects . . . 23
3.4.4 Magneto-optical effects . . . . . . . . . . . . . . . . . . . . . . 25
4 Results and discussion ... 29
4.1 Optimized structure . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 29
4.2 Magnetism and magnetic anisotropy energy . . . . . . . . . . . . . . . . 30
4.3 Electronic structure . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 34
4.3.1 Symmetry analysis . . . . . . . . . . . . . . . . . . . . . . . . . 34
4.3.2 Band structures . . . . . . . . . . . . . . . . . . . . . . . . . . . 35
4.3.3 Density of states . . . . . . . . . . . . . . . . . . . . . . . . . . 43
4.4 Spin transport property . . . . . . . . . . . . . . . . . . . . . . . . . . . 50
4.4.1 Group theory analysis . . . . . . . . . . . . . . . . . . . . . . . 50
4.4.2 Anomalous Hall and anomalous Nernst effects . . . . . . . . . . 54
4.4.3 Spin Hall and spin Nernst effects . . . . . . . . . . . . . . . . . . 65
4.4.4 Temperature dependence of anomlaous Nernst conductivity and spin Nernst conductivity . . . . . . . . . . . . . . . . . . . . . . 73
4.4.5 Berry curvature analysis . . . . . . . . . . . . . . . . . . . . . . 75
4.5 Magneto-optical effects . . . . . . . . . . . . . . . . . . . . . . . . . . . 82
4.5.1 Optical conductivity . . . . . . . . . . . . . . . . . . . . . . . . 82
4.5.2 Magneto-optical Kerr and Faraday effect . . . . . . . . . . . . . 86
5 Conclusion ... 91
Bibliography ... 93
dc.language.isoen
dc.title第一原理計算研究多層鐵磁Fe3GeTe2 之磁光效應及類霍爾電荷和自旋傳導zh_TW
dc.titleAn Ab Initio Study of Magneto-optical Effects, Hall-like Charge and Spin Transports in Few Layers Ferromagnetic Fe3GeTe2en
dc.typeThesis
dc.date.schoolyear108-2
dc.description.degree碩士
dc.contributor.oralexamcommittee蔡政達(Jeng-Da Chai),黃斯衍(Ssu-Yen Huang),胡崇德(Chong Der Hu)
dc.subject.keyword自旋電子學,二維磁學,磁晶異象能,磁性偶極異象能,反常霍爾效應,反常能斯特效應,自旋霍爾效應,自旋能斯特效應,磁光克爾效應,磁光法拉第效應,二維材料,第一原理計算,zh_TW
dc.subject.keywordSpintronics,two-dimensional magnetism,magnetocrystalline anisotropy energy,magnetic dipolar anisotropy energy,anomalous Hall effect,anomalous Nernst effect,spin Hall effect,spin Nernst effect,magneto-optical Kerr effect,magneto-optical Faraday effect,two-dimensional material,first-principle calculation,en
dc.relation.page103
dc.identifier.doi10.6342/NTU202003290
dc.rights.note有償授權
dc.date.accepted2020-08-18
dc.contributor.author-college理學院zh_TW
dc.contributor.author-dept物理學研究所zh_TW
顯示於系所單位:物理學系

文件中的檔案:
檔案 大小格式 
U0001-1308202016263200.pdf
  目前未授權公開取用
11.38 MBAdobe PDF
顯示文件簡單紀錄


系統中的文件,除了特別指名其著作權條款之外,均受到著作權保護,並且保留所有的權利。

社群連結
聯絡資訊
10617臺北市大安區羅斯福路四段1號
No.1 Sec.4, Roosevelt Rd., Taipei, Taiwan, R.O.C. 106
Tel: (02)33662353
Email: ntuetds@ntu.edu.tw
意見箱
相關連結
館藏目錄
國內圖書館整合查詢 MetaCat
臺大學術典藏 NTU Scholars
臺大圖書館數位典藏館
本站聲明
© NTU Library All Rights Reserved