Skip navigation

DSpace

機構典藏 DSpace 系統致力於保存各式數位資料(如:文字、圖片、PDF)並使其易於取用。

點此認識 DSpace
DSpace logo
English
中文
  • 瀏覽論文
    • 校院系所
    • 出版年
    • 作者
    • 標題
    • 關鍵字
    • 指導教授
  • 搜尋 TDR
  • 授權 Q&A
    • 我的頁面
    • 接受 E-mail 通知
    • 編輯個人資料
  1. NTU Theses and Dissertations Repository
  2. 生物資源暨農學院
  3. 農藝學系
請用此 Handle URI 來引用此文件: http://tdr.lib.ntu.edu.tw/jspui/handle/123456789/5986
完整後設資料紀錄
DC 欄位值語言
dc.contributor.advisor黃文達(Wen-Dar Huang)
dc.contributor.authorPo-Ling Linen
dc.contributor.author林柏齡zh_TW
dc.date.accessioned2021-05-16T16:19:05Z-
dc.date.available2013-08-20
dc.date.available2021-05-16T16:19:05Z-
dc.date.copyright2013-08-20
dc.date.issued2013
dc.date.submitted2013-08-12
dc.identifier.citation江忠穎。2007。不同葉色甘藷的葉綠素螢光及葉片反射光譜特性。國立中興大學 
生命科學系碩士論文。
姚銘輝、陳守泓、漆匡時。2007。利用葉綠素螢光估算作物之光合作用。台灣農
業研究。56:224-236。
許明晃。2003。甘藷葉片色素含量與反射光譜關係之研究。國立台灣大學農藝系
博士論文。
楊志維。2001。衛星遙測與灰系統理論應用於水稻(Oryza sativa L.)營養生長期之監
測。國立台灣大學農藝系碩士論文。
Asada K (1999) The water-water cycle in chloroplasts: Scavenging of active oxygens
and dissipation of excess photons. Annu. Rev. Plant Physiol. Plant Mol. Biol.
50:601–639.
Buschmann, C. and Nagel, E. (1993) In vivo spectroscopy and internal optics of
leaves as basis for remote sensing of vegetation. Int. J. Remote Sens.
14:711-722.
Chappelle, E. W., Kim, M. S. and McMurtrey III, J. E. (1992) Ratio analysis of
reflectance spectra (RARS): An algorithm for the remote estimation of the
concentrations of chlorophyll a chlorophyll b, and carotenoids in soybean leaves.
Remote Sens. Environ. 39:239-247.
Chen, H. Y., Lu, Y. K., Chou, C. H. and Yang, C. M. (1996) Analysis of pigment
degradation in exocarp of papaya during late ripening. J. Chinese Agric. Chem.
Soc. 34:460-468.
Demmig-Adams, B., and Adams, III W.W. (1996) Xanthophyll cycle and light stress in
nature: uniform response to excess direct sunlight among highter plant species.
Planta 198:460-470.
Demmig-Adams, B. (2003) Linking the xanthophylls cycle with thermal energy
dissipation. Photosynthesis Research 76:73-80.
Evain, S., Flexas, J., and Moya, I. (2004) A new instrument for passive remote sensing :
2 Measurement of leaf and canopy reflectance changes at 531 nm and their
relationship with photosynthesis and chlorophyll fluorescence. Remote Sensing of
Environment 91:175-185.
Feng, Y.L., Cao, K.F., and Feng, Z.L. (2002) Thermal dissipation, leaf rolling and
inactivation of PSII reaction centres in Amomum villosum. Journal of Tropical
Ecology 18:865–876.
Filella ,I., Serrano.L., Serra,J. and Peñuelas,J.(1995) Evaluating Wheat Nitrogen Status
with Canopy Reflectance Indices and Discriminant Analysis.Crop Sci. 35:1400-5.
Gamon, J.A., Peñuelas, J., and Field, C.B. (1992) A narrow-waveband spectral
Index that tracks diurnal changes in photosynthetic efficiency. Remote Sensing of
Environment 41:35-44.
Gamon, J.A., Serrano, L., and Surfus, J.S. (1997) The photochemical reflectance index:
an optical indicator of photosymthetic radiation use efficiency across species,
functional types, and nutrient levels. Oecologia 112:492-501.
Gamon, J.A., and Surfus, J.S. (1999) Assessing leaf pigment content and activity with a
reflectometer. New Phytologist 143:105-117.
Gitelson, A. A. and Merzlyak, M. N. (1994) Quantitative estimation of Chlorophyll a
using reflectance spectra: Experiments with autumn chestnut and maple leaves.
J. Photochem. Photobiol. (B) 22:247-252.
Gitelson, A. A. and Merzlyak, M. N. (1996) Signature analysis of leaf reflectance
spectra: algorithm development for remote sensing of chlorophyll. J. Plant
Physiol. 148:494-500.
Gitelson, A. A. and Merzlyak, M. N. (1997) Remote estimation of chlorophyll content
in higher plant leaves. Int. J. Remote Sens. 18:2691-2697.
Guo, Y.H., and Cao, K.F. (2004) Effect of night chilling on photosynthesis of two
coffee species grown under different irradiances. Journal of horticultural Science
Biotechnology 79:713-716.
Havaux, M., Bonfils, J. P., Lutz, C., and Niyogi, K.K. (2000) Photodamage of the
photosynthetic apparatus and its dependence on the leaf developmental stage in
the npq1 Arabidopsis mutant deficient in the xanthophylls cycle enzyme
violaxanthin de-epoxidase. Plant Physiology 124:273-284.
Hendry, G. A. F., Houghton, J. D. and Brown, S. B. (1987) The degradation of
chlorophyll–a biological enigma. New Phytol. 107:255-302.
Holm, G. (1954) Chlorophyll mutations in barley. Acta Agric. Scand. 4:457-461.
Hsu, J. C., Lu, Y. K. and Yang, C. M. (1995) Analysis on pigments in the exocarp of
orange fruit. Taiwania 40:83-90.
Kahn, V. M., Avivi-Bieise, N. and von Wettstein, D. (1976) Genetic regulation of chlorophyll synthesis analyzed with doule mutants in barley. In: Bhuchler, T. (ed.). Genetics and Biogenesis of chloroplasts and Mitochondria: 119-131.
Kato, M.C., Hikosaka, K., Hirotsu, N., Makino, A., and Hirose, T. (2003) The excess
light energy that in neither utilized in photosynthesis nor dissipated by
photoprotective mechanisms determines the rate of photoinactivation in
photosystem II. Plant cell physiology 44:318-325.
Kochubey, S. M., Kobets, N.I. and Shadchina T.M.(1990)Spectral properties of plants as
a base of distant diagnostic methods.Kyiv:Naukova Dumka.
Kochubey, S. M., and T. A. Kazantsev (2007) Changes in the first derivatives of leaf
reflectance spectra of various plants induced by varitations of chlorophyll content.
Journal of plant Physiology 164(12):1648-1655.
Kumar S., Chaube A., Jain S.K. (2011) Post Copenhagen Summit Scenario: Attainment of Sustainable Energy Regime in India by Jatropha Biodiesel. Energy & Environment 22:877-889.
Lamb, D.W., M.Steyn-Ross, P. Schaares, M.M. Hanna, W. Silverster, A. Steyn-
Ross.(2002) Estimating leaf nitrogen concentration in ryegrass. Int. J. Remote
Sens.23:3619-48.
Lichtenthaler,H. K. (1987) Chlorophylls and carotenoids: pigments of photosynthetic biomembrane. Methods Enzymol. 148: 350-382.
Logan, B.A., Demmig-Adams, B., Adams, WW Ⅲ., and Grace, S.C. (1998)
Antioxidant and Xanthophyll cycle-dependent energy dissipation in Cucurbita
pepo L. and Vinca major L. acclimated to four growth PPFDs in the field. Journal
of Experimental Botany 49:1869-1879.
Matile, P., Hortensteiner, S., Thomas, H. and Krautler, B. (1996) Chlorophyll
breakdown in senescent leaves. Plant Physiol. 112:1403-1409.
Matos,F.S.,Oliveria, L.R.,Galão, F.,Evaristo,A.B.,Missio,R.F.,Olivia, C.,Santos,L.A.
(2012) Physiological characterization of leaf senescence of Jatropha curcas L.
populations.biomass and bioenrgy 45(2012):57-64.
Maxwell, K., and Johnson, G.N. (2000) Chlorophyll fluorescence-a practical guide.
Journal of Experimental Botany 51:659-668.
Mayfield, S. P. and Taylor, W. C. (1984) Carotenoid-deficient maize seedling fail to
accumulate light-harvesting chlorophyll a/b binding protein (LHCP) mRNA. Eur.
J. Biochem. 144:79-84.
McFeeters, R. F., Chichester,C.O. and Whitaker, J.R. (1971) Purification and properties of chlorophyllase from Ailanthus altissima (Tree-of-Heaven). Plant Physiol. 47:609-618.
Méthy, M. (2000) Analysis of phytosynthetic activity at the leaf and canopy levels from
reflectance measurements: a case study. Photosynthetica 38(4):505-512.
Naoki H, Amane M, Ayuko U and Tadahiko M (2004) Changes in the thermal
dissipation and the electron flow in the water–water cycle in rice grown under
conditions of physiologically low temperature. Plant Cell Physiol. 45: 635–644.
Niyogi, K.K. (1999) Photoprotection revisted: Genetic and molecular approaches.
Annual Review of Plan Physiology 50:333-359.
Oelmullar, R. and Mohr, H. (1985) Carotenoid composition in milo (Sorghum vulgare)
shoots as affected by phytochrome and chlorophyll. Planta 164:390-395.
Peñuelas, J., Filella, I., and Gamon, J.A. (1995) Assessment of photosynthetic radiation
use efficiency with spectral reflectance. New Phytology 131:291-296.
Peñuelas, J., Filella, I., Llusià, J., Siscart, D., and Piñol, J. (1998) Comparative field
study of spring and summer leaf gas exchang and photobiology of the
Mediterranean trees Quercus ilex and Phillyrea latifolia. Journal of Experimental
Botany 49(319):229-238.
Pfündel, E., and Bilger, W. (1994) Regulation and the possible function of the
violaxanthin cycle. Photosynthesis Research 42:89-109.
Porra, R.J., Thompson, W.A. and Kriedelman, P.E.(1989)Determination of accurate extraction and simultaneously equation for assaying chlorophyll a and b extracted with different solvents: verification of the concentration of chlorophyll standards by atomic absorption spectroscopy. Biochim. Biophys. Acta 975: 384-394.
Shioi, Y. and Sasa, T. (1986) Purification of solubilized chlorophyllase from Chlorella protothecoides. Methods Enzymol. 123: 421-427.
Silva EN, Silva SLF, Fontenele ADV, Ribeiro RV, Viegas RA, Silveira JAG(2010)
Photosynthetic changes and protective mechanisms against oxidative damage
subjected to isolated and combined drought and heat stresses in Jatropha curcas
plants. Journal of Plant Physiology 167 (2010),pp:60-67.
Sims,D.A. and Gamon, J.A. (2002) Relationships between leaf pigment content and spectral reflectance across a wide range of species, leaf structures and development stages. Remote Sensing Environment 81: 337-354.
Stylinski, C.D., Gamon, J.A., and Oechel, W.C. (2002) Seasonal patterns of reflectance
indices, carotenoid pigments and photosynthesis of evergreen chaparral species.
Oecologia 131:366-374.
Taiz, L., and Zeiger, E. (2002) plant physiology 3rd ed. pp 114, 137-162.Sinaure
Associates Inc., Sunderland, Massaxhusetts.
Weng, J.H., Liao, T.-S., Hwang, M.Y., Chung, C.C., Lin, C.P., and Chu, C.H. (2006)
Seaasonal variation in photosystem II efficiency and photochemical reflectance
index of evergreen trees and perennial grasses growing at low and high elevations
in subtropical Taiwan. Tree Physiology 26:1097-1104.
Winkel, T., Méthy, M., and Thénot, F. (2002) Radiation use efficiency, chlorophyll
fluorescence, and reflectance indices associated with ontogenic changes in
water-limited Chenopodium quinoa leaves. Photosynthetica 40(2):227-232.
Yang, C.M.,Chang, K. W.,Yin, M.H.and Huang, H.M.(1998)Methods for determination
of the chlorophylls and their derivatives.Tawania 43(2):116-122.
Yoder, B.J. and Waring, R.H. (1994) The normalized difference vegetation index of
small Douglas-fir canopies with varying chlorophyll concentration. Remote
Sensing Environment 49: 81-91.
Zarco-Tejada, P.J.,Pushnik, J.C., Dobrowski, S., Ustin, S.L.(2003) Steady-state
chlorophyll a fluorescence detection from canopy derivative reflectance and
double-peak red-edge effects. Remote Sensing of Environment 84 (2003)
283–294.
dc.identifier.urihttp://tdr.lib.ntu.edu.tw/jspui/handle/123456789/5986-
dc.description.abstract痲瘋樹(Jatropha curcas L.),為目前世界上認為最具開發潛力之新興能源作物,為大戟科痲瘋樹屬落葉灌木或小喬木,性喜光,原產熱帶美洲,今廣泛分佈在亞洲、非洲之熱帶及亞熱帶地區,因此冬季與早春低溫仍會抑制其生長與發育。為了瞭解痲瘋樹在不同溫度下受光抑制脅迫之生理反應,本論文以痲瘋樹扦插繁殖幼苗為材料,研擬步驟,逐一探討,包括調查低溫寒害對痲瘋樹色素生合成與植生相關指數之影響;探討不同溫度強光脅迫下,對痲瘋樹螢光相關參數、光化學反射指數以及植生指數之影響;另探討高低溫持續期與強光脅迫對痲瘋樹光生理指標之影響。
結果顯示低溫寒害造成痲瘋樹葉片老化,葉色由綠轉黃而褐,葉片葉綠素及類胡蘿蔔素(Car)含量逐漸減少。反射光譜顯示葉片寒害過程中,可見光波段反射率呈現增加,而近紅外光波段反射率呈現減少的趨勢。以近紅外光波段如750 nm反射率與紅光臨界705 nm反射率來計算植生指數,並與葉片葉綠素含量進行迴歸分析,可得到葉綠素含量估算模式(R2 > 0.9);以531、570 nm反射率計算光反射指數PRI則與Car含量有顯著相關(R2 > 0.85)。
痲瘋樹幼株在不同溫度處理後強光脅迫下,除外觀表現差異,在葉片反射光譜上亦有明顯變化,如綠光波段與近紅外光、光生理指數等;另一方面,葉片之葉綠素螢光(chlorophyll fluorescence),亦可反應植株當時的生理狀態。本研究進行痲瘋樹幼株不同溫度試驗(7、14、21、28、35、42℃),處理24小時後測定以反射光譜計算常態化差異植生指數(NDVI, normalized difference vegetation index)、並於1,800 μmolm-2s-1 PPFD光強照光前、後計算光化學反射指數(PRI,photo-chemical reflectance index)及葉綠素螢光,以期瞭解痲瘋樹於不同溫度下其光生理指標之變化。試驗結果顯示,不同溫度處理下其NDVI值約為0.7~0.8,無顯著差異;而42℃高溫處理組,照光前PSII最大光化學潛能(Fv/Fm)、ΦPSII、ETR、qP與PRI值均顯著下降,NPQ值顯著上升,其中PSII最大光化學潛能下降幅度更達40~50%,而7℃低溫處理組各螢光參數在照光後的趨勢大致與42℃相似。高低溫持續期後強光脅迫實驗則延續前項不同溫度實驗,將7、42℃處理天數持續期改為1、2、3天,並測量葉綠素螢光參數、光飽和曲線參數、手持式光生理指數,結果顯示,三天內NDVI值皆無差異,三天內照光前後PRI值變動量以42℃較多,7℃的淨同化速率(Pn)在第二天即近於0,而42℃則在第三天才顯著下降,整體表現以42℃之耐受性較高,又綠素螢光之ΦPSII和Pn有高度相關性(R2 > 0.754, P < 0.0001)。
總結本研究顯示利用反射光譜計算植生指數及光化學反射指數,非破壞性地估算痲瘋樹葉片葉綠素、類胡蘿蔔素含量之變化,為有效可行的方法,並且以迅速又方便的葉綠素螢光亦可代表淨同化速率(Pn)變化趨勢,進而快速監測痲瘋樹在不同溫度環境之生理狀況。
zh_TW
dc.description.abstractPhysic nut (Jatropha curcas L.) is one of the main crops which could provide biodiesel as an energy crop. It origins from tropical America and widely distributes in tropical and subtropical areas of Asia and Africa. Low temperatures in winter and early spring will inhibit the growth and development of physic nut. To understand the physiological responses such as photoinhibition of physic nut at different temperatures with high light intensity, cut stems of physic nut were used for propagation in this research.
First, the pigment contents and the reflectance spectral properties of yellowing leaves subjected to winter cold stress. Second, chlorophyll fluorescence, photochemical reflectance index and vegetation index at different temperatures with high light intensity were evaluated. Third, photo-physiological indexes of young plants of physic nut treated at 7 or 42℃ for 1,2 and 3 days was tested.
In the first experiment, the regression analysis of pigment contents and vegetation indexes by spectral reflectance was applied.When the leaves were senescent and yellow, the Chl and Car contents decreased significantly with the yellowing levels. The reflectance spectra showed that the reflectance of visible band was increased and the reflectance of NIR band was decreased. The normalized difference vegetation index (NDVI) was calculated by reflectance at 705 nm and 750 nm and significantly correlated with Chl concentrations (correlation R2 > 0.9). The photo-chemical reflectance index (PRI) was calculated by reflectance at 531 nm and 570 nm and significantly correlated with Car concentrations (correlation R2 > 0.85).
Second, the young plants of physic nut under different temperatures with high light intensity would show different morphologies, photo-physiological index, reflectance spectral properties, and chlorophyll fluorescence also could represent different physiological status. In this study the physic nut plants were treated in dark environment at 7,14,21,28,35 and 42℃ for one day. The NDVI calculated by reflectance spectra showed no difference between all temperature treatments with the values between 0.7 to 0.8. The PRI calculated by reflectance spectra and chlorophyll fluorescence were measured before and after 1,800 μmolm-2s-1 PPFD light treatment. The results showed that levels of Fv/Fm,ΦPSII,ETR,qP and PRI decreased, and NPQ increased significantly at 42℃ before light treatment. Levels of Fv/Fm were decreased significantly to 40 to 50%. The trend of chlorophyll fluorescence of physic nut at 7℃ under 1,800 PPFD equals to those tested at 42℃.
Third, young plants of physic nut were tested at 7 or 42℃ treatment for 1,2 and 3 days. The results showed that NDVI had no difference between all temperatures and day durations. The PRI variation before and after illumination were higher in the 42℃ treatment for 1,2 and 3 days than those in the 7℃ treatments. The net CO2 assimilation rate (Pn) approached zero at 7℃ for the second day, and the Pn decreased significantly at 42℃ for the third day. Physic nut was more tolerant at 42℃ than 7℃. The ΦPSII of chlorophyll fluorescence was significantly correlated with Pn (R2 > 0.754, P < 0.0001).
From the results, we could use the NDVI and PRI, calculated by reflectance spectra, to estimate the contents of Chl and Car in the young plants of physic nut. We could also quickly monitor the physiological status of physic nut plants at different temperatures by the levels of chlorophyll fluorescence for the high correlation between ΦPSII and Pn.
en
dc.description.provenanceMade available in DSpace on 2021-05-16T16:19:05Z (GMT). No. of bitstreams: 1
ntu-102-R97621105-1.pdf: 1750577 bytes, checksum: 600163fa9e82ca388cf2d3a67c6b881b (MD5)
Previous issue date: 2013
en
dc.description.tableofcontents口試委員會審定書 #
誌謝 i
摘要 ii
Summary iv
目錄 vi
圖目錄 viii
表目錄 xi
第一章 前言 1
第二章 材料與方法 4
一、低溫寒害對痲瘋樹幼苗之影響 4
二、不同溫度後強光脅迫之影響 4
三、高、低溫持續期後強光脅迫之影響 5
四、分析方法 5
第三章 結果 9
一、 低溫寒害對痲瘋樹幼苗之影響 9
(一)葉綠素生合成崩解途徑產物 9
(二)葉片反射光譜 11
二、 不同溫度後強光脅迫之影響 14
(一)葉綠素螢光參數 14
(二)葉片反射光譜 16
三、 高、低溫後強光脅迫之影響 18
(一)葉綠素螢光參數 18
(二)光生理指標 20
(三)光飽和曲線參數 20
第四章 討論 24
第五章 總論與展望 33
第六章 參考文獻 34
dc.language.isozh-TW
dc.title溫度誘導光抑制對痲瘋樹幼苗光生理指標之影響zh_TW
dc.titleThe effects of temperature-induced photoinhibition on photophysiology indexes of Jatropha curcas L.en
dc.typeThesis
dc.date.schoolyear101-2
dc.description.degree碩士
dc.contributor.coadvisor楊棋明(Chi-Ming Yang)
dc.contributor.oralexamcommittee許明晃,楊志維
dc.subject.keyword痲瘋樹,溫度,光抑制,光生理指標,zh_TW
dc.subject.keywordphysic nut,temperature,photoinhibition,photophysiology index,en
dc.relation.page77
dc.rights.note同意授權(全球公開)
dc.date.accepted2013-08-13
dc.contributor.author-college生物資源暨農學院zh_TW
dc.contributor.author-dept農藝學研究所zh_TW
顯示於系所單位:農藝學系

文件中的檔案:
檔案 大小格式 
ntu-102-1.pdf1.71 MBAdobe PDF檢視/開啟
顯示文件簡單紀錄


系統中的文件,除了特別指名其著作權條款之外,均受到著作權保護,並且保留所有的權利。

社群連結
聯絡資訊
10617臺北市大安區羅斯福路四段1號
No.1 Sec.4, Roosevelt Rd., Taipei, Taiwan, R.O.C. 106
Tel: (02)33662353
Email: ntuetds@ntu.edu.tw
意見箱
相關連結
館藏目錄
國內圖書館整合查詢 MetaCat
臺大學術典藏 NTU Scholars
臺大圖書館數位典藏館
本站聲明
© NTU Library All Rights Reserved