請用此 Handle URI 來引用此文件:
http://tdr.lib.ntu.edu.tw/jspui/handle/123456789/59862完整後設資料紀錄
| DC 欄位 | 值 | 語言 |
|---|---|---|
| dc.contributor.advisor | 劉扶東 | |
| dc.contributor.author | Wen-Chan Huang | en |
| dc.contributor.author | 黃文嬋 | zh_TW |
| dc.date.accessioned | 2021-06-16T09:41:53Z | - |
| dc.date.available | 2018-03-01 | |
| dc.date.copyright | 2017-03-01 | |
| dc.date.issued | 2017 | |
| dc.date.submitted | 2017-02-06 | |
| dc.identifier.citation | 1. Liu FT, Cummings RD. Essentials of Glycobiology: Galectins. 2nd ed. Cold Spring Harbor (NY): Cold Spring Harbor Laboratory Press; 2009.
2. Chen HY, Weng IC, Hong MH, Liu FT. Galectins as bacterial sensors in the host innate response. Curr Opin Microbiol. 2014;17: 75–81. doi: 10.1016/j.mib.2013.11.006 PMID: 24581696 3. Hsu DK, Liu FT. Regulation of cellular homeostasis by galectins. Glycoconj J. 2004;19: 507–515. doi:10.1023/B:GLYC.0000014080.95829.52 4. Kiwaki K, Novak CM, Hsu DK, Liu FT, Levine JA. Galectin-3 stimulates preadipocyte proliferation and is up-regulated in growing adipose tissue. Obesity (Silver Spring). 2007;15: 32–39. doi:10.1038/oby.2007.526 5. Baek JH, Kim SJ, Kang HG, Lee HW, Kim JH, Hwang KA, et al. Galectin-3 activates PPARγ and supports white adipose tissue formation and high-fat diet-induced obesity. Endocrinology. 2015;156: 147–156. doi: 10.1210/en.2014-1374 PMID: 25343273 6. Yu F, Finley RL, Raz A, Kim HC. Galectin-3 translocates to the perinuclear membranes and inhibits cytochrome c release from the mitochondria. A role for synexin in galectin-3 translocation. J Biol Chem. 2002;277: 15819–15827. doi:10.1074/jbc.M200154200 7. Yang RY, Hsu DK, Liu FT. Expression of galectin-3 modulates T-cell growth and apoptosis. Proc Natl Acad Sci USA. 1996;93: 6737–6742. PMID: 8692888 8. Elad-Sfadia G, Haklai R, Balan E, Kloog Y. Galectin-3 augments K-Ras activation and triggers a Ras signal that attenuates ERK but not phosphoinositide 3-kinase activity. J Biol Chem. 2004;279: 34922–34930. doi:10.1074/jbc.M312697200 9. Song S, Mazurek N, Liu C, Sun Y, Ding QQ, Liu K, et al. Galectin-3 mediates nuclear beta-catenin accumulation and WNT signaling in human colon cancer cells by regulation of glycogen synthase kinase-3 activity. Cancer Res. 2009;69: 1343–1349. doi:10.1158/0008-5472.CAN-08-4153 10. Akahani S, Nangia-Makker P, Inohara H, Kim HR, Raz A. Galectin-3: a novel antiapoptotic molecule with a functional BH1 (NWGR) domain of Bcl-2 family. Cancer Res. 1997;57: 5272–5276. 11. Kuklinski S, Pesheva P, Heimann C, Urschel S, Gloor S, Graeber S, et al. Expression pattern of galectin-3 in neural tumor cell lines. J Neurosci Res. 2000;60: 45–57. 12. Nakahara S, Oka N, Raz A. On the role of galectin-3 in cancer apoptosis. Apoptosis. 2005;10: 267–275. doi:10.1007/s10495-005-0801-y 13. Ray K, Bobard A, Danckaert A, Paz-Haftel I, Clair C, Ehsani S, et al. Tracking the dynamic interplay between bacterial and host factors during pathogen-induced vacuole rupture in real time. Cell Microbiol. 2010;12: 545–556. doi:10.1111/j.1462-5822.2010.01428.x 14. Paz I, Sachse M, Dupont N, Mounier J, Cederfur C, Enninga J, et al. Galectin-3, a marker for vacuole lysis by invasive pathogens. Cell Microbiol. 2010;12: 530–544. doi:10.1111/j.1462-5822.2009.01415.x 15. Maier O, Marvin SA, Wodrich H, Campbell EM, Wiethoff CM. Spatiotemporal dynamics of adenovirus membrane rupture and endosomal escape. J Virol. 2012;86: 10821–10828. doi:10.1128/JVI.01428-12 16. Maejima I, Takahashi A, Omori H, Kimura T, Takabatake Y, Saitoh T, et al. Autophagy sequesters damaged lysosomes to control lysosomal biogenesis and kidney injury. EMBO J. 2013;32: 2336–47. doi:10.1038/emboj.2013.171 17. Chauhan S, Kumar S, Jain A, Ponpuak M, Mudd MH, Kimura T, et al. TRIMs and galectins globally cooperate and TRIM16 and galectin-3 co-direct autophagy in endomembrane damage homeostasis. Dev Cell. 2016;39: 13–27. doi:10.1016/j.devcel.2016.08.003 18. Hsu DK, Hammes SR, Kuwabara I, Greene WC, Liu FT. Human T lymphotropic virus-I infection of human T lymphocytes induces expression of the beta-galactoside-binding lectin, galectin-3. Am J Pathol. 1996;148: 1661–1670. 19. Fogel S, Guittaut M, Legrand A, Monsigny M, Hebert E. The tat protein of HIV-1 induces galectin-3 expression. Glycobiology. 1999;9: 383–387. 20. Hsu DK, Dowling CA, Jeng KCG, Chen JT, Yang R-Y, Liu F-T. Galectin‐3 expression is induced in cirrhotic liver and hepatocellular carcinoma. International journal of cancer. Wiley Online Library; 1999;81: 519–526. 21. Bieche I, Asselah T, Laurendeau I, Vidaud D, Degot C, Paradis V, et al. Molecular profiling of early stage liver fibrosis in patients with chronic hepatitis C virus infection. Virology. 2005;332: 130–144. doi:10.1016/j.virol.2004.11.009 22. Wang SF, Tsao CH, Lin YT, Hsu DK, Chiang ML, Lo CH, et al. Galectin-3 promotes HIV-1 budding via association with Alix and Gag p6. Glycobiology. 2014;24: 1022–1035. doi: 10.1093/glycob/cwu064 PMID: 24996823 23. Syvanen AC. Accessing genetic variation: genotyping single nucleotide polymorphisms. Nat Rev Genet. 2001;2: 930–942. doi:10.1038/35103535 24. The International HapMap Consortium. A haplotype map of the human genome. Nature. 2005;437: 1299–1320. doi:10.1038/nature04226 25. Balan V, Nangia-Makker P, Schwartz AG, Jung YS, Tait L, Hogan V, et al. Racial disparity in breast cancer and functional germ line mutation in galectin-3 (rs4644): a pilot study. Cancer Res. 2008;68: 10045–10050. doi:10.1158/0008-5472.CAN-08-3224 26. Mazurek N, Byrd JC, Sun Y, Ueno S, Bresalier RS. A galectin-3 sequence polymorphism confers TRAIL sensitivity to human breast cancer cells. Cancer. 2011;117: 4375–4380. doi:10.1002/cncr.26078 27. Trompet S, Jukema W, Mooijaart SP, Ford I, Stott DJ, Westendorp RG, et al. Genetic variation in galectin-3 gene associates with cognitive function at old age. Neurobiol Aging. 2012;33: 2232.e1–2232.e9. doi: 10.1016/j.neurobiolaging.2012.05.001 PMID: 22673112 28. Hu CY, Chang SK, Wu CS, Tsai WI, Hsu PN. Galectin-3 gene (LGALS3) +292C allele is a genetic predisposition factor for rheumatoid arthritis in Taiwan. Clin Rheumatol. 2011;30: 1227–1233. doi:10.1007/s10067-011-1741-2 29. Shih SR, Stollar V, Li ML. Host factors in enterovirus 71 replication. J Virol. 2011;85: 9658–9666. doi:10.1128/JVI.05063-11 30. Chen CH, Hsu BM, Wan MT. Molecular detection and prevalence of enterovirus within environmental water in Taiwan. J Appl Microbiol. 2008;104: 817–823. doi:10.1111/j.1365-2672.2007.03598.x 31. Huang WC, Huang LM, Kao CL, Lu CY, Shao PL, Cheng AL, et al. Seroprevalence of enterovirus 71 and no evidence of crossprotection of enterovirus 71 antibody against the other enteroviruses in kindergarten children in Taipei city. J Microbiol Immunol Infect. 2012;45: 96–101. doi:10.1016/j.jmii.2011.09.025 PMID: 22154997 32. Sabanathan S, Tan LV, Thwaites L, Wills B, Qui PT, Rogier van Doorn H. Enterovirus 71 related severe hand, foot and mouth disease outbreaks in South-East Asia: current situation and ongoing challenges. J Epidemiol Community Health. 2014;68: 500–502. doi:10.1136/jech-2014-203836 33. Chang SC, Lin JY, Lo LC, Li ML, Shih SR. Diverse apoptotic pathways in enterovirus 71–infected cells. J Neurovirol. 2004;10: 338–349. doi:10.1080/13550280490521032 34. Shih S-R, Weng K-F, Stollar V, Li ML. Viral protein synthesis is required for Enterovirus 71 to induce apoptosis in human glioblastoma cells. J Neurovirol. 2008;14: 53–61. doi:10.1080/13550280701798980 35. Kuo RL, Kung SH, Hsu YY, Liu WT. Infection with enterovirus 71 or expression of its 2A protease induces apoptotic cell death. J Gen Virol. 2002;83: 1367–1376. 36. Cong H, Du N, Yang Y, Song L, Zhang W, Tien P. Enterovirus 71 2B Induces Cell Apoptosis by Directly Inducing the Conformational Activation of the Proapoptotic Protein Bax. J Virol. 2016;90: 9862–9877. doi:10.1128/JVI.01499-16 37. Li ML, Hsu TA, Chen TC, Chang SC, Lee JC, Chen CC, et al. The 3C protease activity of enterovirus 71 induces human neural cell apoptosis. Virology. 2002;293: 386–395. doi:10.1006/viro.2001.1310 38. Xi X, Zhang X, Wang B, Wang T, Wang J, Huang H, et al. The interplays between autophagy and apoptosis induced by enterovirus 71. PLoS ONE. 2013;8: e56966. doi:10.1371/journal.pone.0056966.s001 39. Ho BC, Yu IS, Lu LF, Rudensky A, Chen HY, Tsai CW, et al. Inhibition of miR-146a prevents enterovirus-induced death by restoring the production of type I interferon. Nat Commun. 2014;5: 3344. doi:10.1038/ncomms4344 40. Chang YL, Ho BC, Sher S, Yu SL, Yang PC. miR-146a and miR-370 coordinate Enterovirus 71-induced cell apoptosis through targeting SOS1 and GADD45β. Cell Microbiol. 2014;17 :802–18. doi:10.1111/cmi.12401 41. Mizushima N, Komatsu M. Autophagy: renovation of cells and tissues. Cell. 2011;147: 728–741. doi:10.1016/j.cell.2011.10.026 42. He C, Zhu H, Li H, Zou MH, Xie Z. Dissociation of Bcl-2-Beclin1 complex by activated AMPK enhances cardiac autophagy and protects against cardiomyocyte apoptosis in diabetes. Diabetes. 2013;62: 1270–1281. doi:10.2337/db12-0533 43. Jordan TX, Randall G. Manipulation or capitulation: virus interactions with autophagy. Microbes Infect. 2012;14: 126–139. doi:10.1016/j.micinf.2011.09.007 44. Huang SC, Chang CL, Wang PS, Tsai Y, Liu HS. Enterovirus 71-induced autophagy detected in vitro and in vivo promotes viral replication. J Med Virol. 2009;81: 1241–1252. doi:10.1002/jmv.21502 45. Chen LL, Kung YA, Weng KF, Lin JY, Horng JT, Shih SR. Enterovirus 71 infection cleaves a negative regulator for viral internal ribosomal entry site-driven translation. J Virol. 2013;87: 3828–3838. doi:10.1128/JVI.02278-12 46. Ho M, Chen ER, Hsu KH, Twu SJ, Chen KT, Tsai SF, et al. An epidemic of enterovirus 71 infection in Taiwan. Taiwan Enterovirus Epidemic Working Group. N Engl J Med. 1999;341: 929–935. doi:10.1056/NEJM199909233411301 47. Chang LY, Lin TY, Hsu KH, Huang YC, Lin KL, Hsueh C, et al. Clinical features and risk factors of pulmonary oedema after enterovirus-71-related hand, foot, and mouth disease. The Lancet. 1999;354: 1682–1686. doi:10.1016/S0140-6736(99)04434-7 48. Solomon T, Lewthwaite P, Perera D, Cardosa MJ, McMinn P, Ooi MH. Virology, epidemiology, pathogenesis, and control of enterovirus 71. The Lancet Infectious Diseases. Elsevier Ltd; 2010;10: 778–790. doi:10.1016/S1473-3099(10)70194-8 49. Lin TY, Chang LY, Hsia SH, Huang YC, Chiu CH, Hsueh C, et al. The 1998 enterovirus 71 outbreak in Taiwan: pathogenesis and management. Clinical Infectious Diseases. 2002;34 Suppl 2: S52–7. doi:10.1086/338819 50. Huang WC, Shih WL, Yang SC, Yen TY, Lee JT, Huang YC, et al. Predicting severe enterovirus 71 infection: Age, comorbidity, and parental behavior matter. J Microbiol Immunol Infect. 2014: S1684–1182(14)00243–6. doi:10.1016/j.jmii.2014.11.013 51. Chang LY, Hsia SH, Wu CT, Huang YC, Lin KL, Fang TY, et al. Outcome of enterovirus 71 infections with or without stage-based management: 1998 to 2002. Pediatr Infect Dis J. 2004;23: 327–332. 52. Hsia SH, Wu CT, Chang JJ, Lin TY, Chung HT, Lin KL, et al. Predictors of unfavorable outcomes in enterovirus 71-related cardiopulmonary failure in children. Pediatr Infect Dis J. 2005;24: 331–334. doi: 10.1097/01.inf.0000157219.19674.98 PMID: 15818293 53. Chang LY, Chang IS, Chen WJ, Huang YC, Chen GW, Shih SR, et al. HLA-A33 is associated with susceptibility to enterovirus 71 infection. Pediatrics. 2008;122: 1271–1276. doi:10.1542/peds.2007-3735 PMID: 19047245 54. Zou R, Zhang G, Li S, Wang W, Yuan J, Li J, et al. A functional polymorphism in IFNAR1 gene is associated with susceptibility and severity of HFMD with EV71 infection. Sci Rep. 2015;5: 18541. doi:10.1038/srep18541 55. Yang J, Zhao N, Su NL, Sun JL, Lv TG, Chen Z-B. Association of interleukin 10 and interferon gamma gene polymorphisms with enterovirus 71 encephalitis in patients with hand, foot and mouth disease. Scand J Infect Dis. 2012;44: 465–469. doi:10.3109/00365548.2011.649490 56. Lv T, Li J, Han Z, Chen Z. Association of interleukin-17F gene polymorphism with enterovirus 71 encephalitis in patients with hand, foot, and mouth disease. Inflammation. 2013;36: 977–981. doi:10.1007/s10753-013-9629-8 PMID: 23519962 57. Doyle EL, Booher NJ, Standage DS, Voytas DF, Brendel VP, Vandyk JK, et al. TAL Effector-Nucleotide Targeter (TALE-NT) 2.0: tools for TAL effector design and target prediction. Nucleic Acids Res. 2012;40: W117–W122. doi: 10.1093/nar/gks608 PMID: 22693217 58. Lu J, He YQ, Yi LN, Zan H, Kung HF, He ML. Viral kinetics of enterovirus 71 in human abdomyosarcoma cells. World J Gastroenterol. 2011;17: 4135–4142. doi:10.3748/wjg.v17.i36.4135 59. Huang WC, Huang LM, Lu CY, Cheng AL, Chang LY. Atypical hand-foot-mouth disease in children: a hospital-based prospective cohort study. Virol J. 2013;10: 209. doi: 10.1186/1743-422X-10-209 PMID: 23800163 60. De la Vega FM, Lazaruk KD, Rhodes MD, Wenz MH. Assessment of two flexible and compatible SNP genotyping platforms: TaqManR SNP Genotyping Assays and the SNPlex™ Genotyping System. Mutat Res. 2005;573: 111–135. doi: 10.1016/j.mrfmmm.2005.01.008 PMID: 15829242 61. Shen GQ, Abdullah KG, Wang QK. The TaqMan method for SNP genotyping. Methods Mol Biol. 2009;578: 293–306. doi: 10.1007/978-1-60327-411-1_19 PMID: 19768602 62. Cheng HY, Huang YC, Yen TY, Hsia SH, Hsieh YC, Li CC, et al. The correlation between the presence of viremia and clinical severity in patients with enterovirus 71 infection: a multi-center cohort study. BMC Infect Dis. 2014;14: 417. doi: 10.1186/1471-2334-14-417 PMID: 25069383 63. Cheng ML, Weng SF, Kuo CH, Ho HY. Enterovirus 71 induces mitochondrial reactive oxygen species generation that is required for efficient replication. PLoS ONE. 2014;9: e113234. doi:10.1371/journal.pone.0113234.g009 64. Fukumori T, Oka N, Takenaka Y, Nangia-Makker P, Elsamman E, Kasai T, et al. Galectin-3 regulates mitochondrial stability and antiapoptotic function in response to anticancer drug in prostate cancer. Cancer Res. 2006;66: 3114–3119. doi:10.1158/0008-5472.CAN-05-3750 65. Iacobini C, Menini S, Ricci C, Fantauzzi CB, Scipioni A, Salvi L, et al. Galectin-3 ablation protects mice from diet-induced NASH: A major scavenging role for galectin-3 in liver. J Hepatol. 2011;54: 975–983. doi:10.1016/j.jhep.2010.09.020 66. Shibutani ST, Yoshimori T. A current perspective of autophagosome biogenesis. Cell Res. 2013;24: 58–68. doi:10.1038/cr.2013.159 67. Gruenberg J, van der Goot FG. Mechanisms of pathogen entry through the endosomal compartments. Nat Rev Mol Cell Biol. 2006;7: 495–504. doi:10.1038/nrm1959 68. Wang L, Inohara H, Pienta KJ, Raz A. Galectin-3 is a nuclear matrix protein which binds RNA. Biochem Biophys Res Commun. 1995;217: 292–303. doi:10.1006/bbrc.1995.2777 69. Dagher SF, Wang JL, Patterson RJ. Identification of galectin-3 as a factor in pre-mRNA splicing. Proc Natl Acad Sci USA. 1995;92: 1213–1217. 70. Soepandi PZ, Burhan E, Mangunnegoro H, Nawas A, Aditama TY, Partakusuma L, et al. Clinical Course of Avian Influenza A(H5N1) in Patients at the Persahabatan Hospital, Jakarta, Indonesia, 2005–2008. CHEST. 2010;138: 665–673. doi:10.1378/chest.09-2644 71. Willson DF, Landrigan CP, Horn SD, Smout RJ. Complications in infants hospitalized for bronchiolitis or respiratory syncytial virus pneumonia. J Pediatr. 2003;143: 142–149. doi:10.1067/S0022-3476(03)00514-6 PMID: 14615713 72. Branco RG, Tasker RC. Glycemic level in mechanically ventilated children with bronchiolitis. Pediatr Crit Care Med 2007;8: 546–550. doi:10.1097/01.PCC.0000288712.67749.45 73. Li P, Liu S, Lu M, Bandyopadhyay G, Oh D, Imamura T, et al. Hematopoietic-Derived Galectin-3 Causes Cellular and Systemic Insulin Resistance. Cell. 2016;167: 973–978.e12. doi:10.1016/j.cell.2016.10.025 74. Chang LY, Hsiung CA, Lu CY, Lin TY, Huang FY, Lai YH, et al. Status of Cellular Rather Than Humoral Immunity is Correlated with Clinical Outcome of Enterovirus 71. Pediatr Res. 2006;60: 466–471. doi:10.1203/01.pdr.0000238247.86041.19 | |
| dc.identifier.uri | http://tdr.lib.ntu.edu.tw/jspui/handle/123456789/59862 | - |
| dc.description.abstract | 半乳糖凝集素-3(Galectin-3)是一種嵌合蛋白,具有與β-半乳糖結合的能力,Galectin-3可藉由與細胞內其他蛋白的結合,或是調控細胞內的訊息傳導路徑,進而影響細胞內多種生理功能,如細胞凋亡、免疫細胞的噬菌能力、肥大細胞的成熟過程,以及T細胞的活化。然而,目前的研究仍未釐清Galectin-3在腸病毒71型(EV71)感染所扮演的角色。我們的研究發現,當橫紋肌肉瘤細胞(Rhabdomyosarcoma cell, RD cells)缺乏galectin-3時,EV71在細胞內與釋出的病毒量都有顯著的減少;此外,當RD cells表現Galectin-3的單核苷酸多型性rs4644時,EV71的病毒量也會較wild-type RD cells少。於臨床方面,我們發現感染EV71 且具有高血糖的幼童中,帶有rs4644 AA基因型的幼童,其住院期間的最高血糖值(2.2 ± 0.06 log10 mg/dL)較其他兩種基因型CC(2.4 ± 0.17 log10 mg/dL, P = 0.03)與CA(2.4 ± 0.15 log10 mg/dL, P = 0.02)基因型的幼童低,由於高血糖已知為腸病毒重症之危險因子,我們的研究發現Galectin-3不僅影響腸病毒感染,也與感染時病人之高血糖值有關,期待未來更多相關的研究能更深入探討Galectin-3如何影響 EV71感染,以及高血糖的相關機制。 | zh_TW |
| dc.description.abstract | Galectin-3, a chimeric type β-galactoside-binding protein, is known to modulate viral infection; however, its role in enterovirus 71 (EV71) infection has not been investigated.
We generated galectin-3 null rhabdomyosarcoma (RD) cells and evaluated whether EV71 infection would be affected. Deletion of galectin-3 resulted in a significant reduction of the released and intracellular EV71 viral loads, as well as cell death rates, 24 h after infection. Yet, it did not affect cell proliferation. In addition, RD cells expressing a nonsynonymous genetic variant of galectin-3, rs4644 (LGALS3 +191C/A, P64H), produced lower virus titers than those with wild-type galectin-3 (C allele). To clarify whether the in vitro viral load reduction associated with rs4644 correlates with clinical severity, we enrolled children with laboratory-confirmed EV71 infection. Since hyperglycemia is an indicator of severe EV71 infection in children, 152 of 401 enrolled children had glucose examinations at admission, and 59 subjects had serum glucose levels ≥ 150 mg/dL. In comparison to the rs4644 AA genotype (2.2 ± 0.06 log10 mg/dL), serum glucose levels during EV71 infection were higher in patients with CC (2.4 ± 0.17 log10 mg/dL, P = 0.03) and CA (2.4 ± 0.15 log10 mg/dL, P = 0.02) genotypes, respectively. These findings suggest that the rs4644 AA genotype of galectin-3 might exert a protective effect. In summary, galectin-3 affects EV71 replication in our cellular model and its variant, rs4644, is associated with hyperglycemia in the clinical setting. The underlying mechanism and its potential therapeutic application warrant further investigation. | en |
| dc.description.provenance | Made available in DSpace on 2021-06-16T09:41:53Z (GMT). No. of bitstreams: 1 ntu-106-D00456002-1.pdf: 20577430 bytes, checksum: 0697bda8cedcff92f1026c9303f17008 (MD5) Previous issue date: 2017 | en |
| dc.description.tableofcontents | 論文口試委員審定書…………………....………………………………....i
誌謝 Acknowledgement …………………………………………………...ii 中文摘要 Chinese abstract ……………………………………………......iii 英文摘要 English abstract………………………………………………....iv 第一章 介紹Chapter 1: Introduction 1.1 Galectin-3 ….....……………………………….……………...1 1.2 Intracellular galectin-3 function………………………….....1-3 1.3 Galectin-3 in viral infection…………………………………..3 1.4 Galectin-3 single nucleotide polymorphism, rs4644 and rs4652………………………………………………………3-5 1.5 Enterovirus 71 (EV71) ………………………....…………..5-6 1.6 EV71-induced apoptosis…………………….…...…………6-7 1.7 EV71-induced autophagy………………………….…….…7-8 1.8 Clinical course of EV71 infection……………………….…8-9 1.9 Predictors associated with EV71 infection…………….…......9 第二章 材料與方法 Chapter 2: Material and Methods 2.1-2.9 In vitro exploration…………....……...…...………10-14 2.10-2.13 In vivo exploration………….………...……..…….15-16 第三章 結果Chapter 3: Results 3.1 Clinical associations between galectin-3 SNPs and the disease severity in children with EV71 infection ..……..…...……17-18 3.2 Galectin-3 in EV71 infection in vitro ……………………18-20 3.3. Rs4644 A allele is associated with lower EV71 viral titers in vitro………………………………………………………20-21 3.4 Galectin-3 does not involve in EV71-induced autophagy.21-22 第四章 討論Chapter 4: Discussion 4.1 The role of galectin-3 in EV71 infection………………....23-24 4.2 Clinical associations of rs4644 in EV71 infection….…....24-25 4.3 Limitation of the study.…………...………………….…..25-26 4.4 Conclusion ………..………….……………….....………26-27 第五章 圖表Chapter 5: Table and Figures……………........................28-49 參考文獻 Reference………………………………………….………..50-57 附錄:博士班文獻發表 Publication …………………………………….58 | |
| dc.language.iso | en | |
| dc.subject | 單核?酸多型性 | zh_TW |
| dc.subject | 半乳糖凝集素-3 | zh_TW |
| dc.subject | 腸病毒71型 | zh_TW |
| dc.subject | 感染 | zh_TW |
| dc.subject | hyperglycemia | en |
| dc.subject | single nucleotide polymorphism | en |
| dc.subject | galectin-3 | en |
| dc.subject | viral load | en |
| dc.subject | Enterovirus infection | en |
| dc.subject | EV71 | en |
| dc.title | 半乳糖凝集素-3在腸病毒71型感染中所扮演之角色 | zh_TW |
| dc.title | Role of Galectin-3 in Enterovirus 71 Infection | en |
| dc.type | Thesis | |
| dc.date.schoolyear | 105-1 | |
| dc.description.degree | 博士 | |
| dc.contributor.coadvisor | 張鑾英 | |
| dc.contributor.oralexamcommittee | 謝世良,施信如,張以承 | |
| dc.subject.keyword | 半乳糖凝集素-3,腸病毒71型,感染,單核?酸多型性, | zh_TW |
| dc.subject.keyword | Enterovirus infection,EV71,galectin-3,hyperglycemia,single nucleotide polymorphism,viral load, | en |
| dc.relation.page | 58 | |
| dc.identifier.doi | 10.6342/NTU201700369 | |
| dc.rights.note | 有償授權 | |
| dc.date.accepted | 2017-02-06 | |
| dc.contributor.author-college | 醫學院 | zh_TW |
| dc.contributor.author-dept | 轉譯醫學博士學位學程 | zh_TW |
| 顯示於系所單位: | 轉譯醫學博士學位學程 | |
文件中的檔案:
| 檔案 | 大小 | 格式 | |
|---|---|---|---|
| ntu-106-1.pdf 未授權公開取用 | 20.1 MB | Adobe PDF |
系統中的文件,除了特別指名其著作權條款之外,均受到著作權保護,並且保留所有的權利。
