Skip navigation

DSpace

機構典藏 DSpace 系統致力於保存各式數位資料(如:文字、圖片、PDF)並使其易於取用。

點此認識 DSpace
DSpace logo
English
中文
  • 瀏覽論文
    • 校院系所
    • 出版年
    • 作者
    • 標題
    • 關鍵字
  • 搜尋 TDR
  • 授權 Q&A
    • 我的頁面
    • 接受 E-mail 通知
    • 編輯個人資料
  1. NTU Theses and Dissertations Repository
  2. 生物資源暨農學院
  3. 農業化學系
請用此 Handle URI 來引用此文件: http://tdr.lib.ntu.edu.tw/jspui/handle/123456789/59852
完整後設資料紀錄
DC 欄位值語言
dc.contributor.advisor王尚禮
dc.contributor.authorHung-Yun Linen
dc.contributor.author林虹妘zh_TW
dc.date.accessioned2021-06-16T09:41:21Z-
dc.date.available2020-02-16
dc.date.copyright2017-02-16
dc.date.issued2017
dc.date.submitted2017-02-06
dc.identifier.citation行政院環境保護署。2014。新興工業區周邊農地土壤及作物新興污染金屬元素細密調查。
陳怡君。2005。台東池上地區蛇紋岩土壤中鉻及鎳之生物地質化學特徵。國立屏東科技大學環境工程與科學系碩士學位論文。
張傑誠。2016。探討浸水土壤中水稻根系對鐵和鎘分佈的影響。國立臺灣大學農業化學系碩士學位論文。
Ainsworth, C.C., Pilon, J.L., Gassman, P.L. and Vandersluys, W.G. (1994) Cobalt, cadmium, and lead sorption to hydrous iron-oxide - residence time effect. Soil Science Society of America Journal 58(6), 1615-1623.
Appel, C. and Ma, L. (2002) Concentration, pH, and surface charge effects on cadmium and lead sorption in three tropical soils. Journal of Environmental Quality 31(2), 581-589.
Aydinalp, C. and Marinova, S. (2003) Distribution and forms of heavy metals in some agricultural soils. Polish Journal of Environmental Studies 12(5), 629-633.
Babel, S. and Kurniawan, T.A. (2003) Low-cost adsorbents for heavy metals uptake from contaminated water: a review. Journal of Hazardous Materials 97(1-3), 219-243.
Badraoui, M. and Bloom, P.R. (1990) Iron-rich high-charge beidellite in vertisols and mollisols of the high chaouia region of Morocco. Soil Science Society of America Journal 54(1), 267-274.
Bidoglio, G., Gibson, P.N., Ogorman, M. and Roberts, K.J. (1993) X-ray-absorption spectroscopy investigation of surface redox transformations of thallium and chromium on colloidal mineral oxides. Geochimica Et Cosmochimica Acta 57(10), 2389-2394.
Bolster, C.H. and Hornberger, G.M. (2007) On the use of linearized Langmuir equations. Soil Science Society of America Journal 71(6), 1796-1806.
Borgmann, U., Cheam, V., Norwood, W.P. and Lechner, J. (1998) Toxicity and bioaccumulation of thallium in Hyalella azteca, with comparison to other metals and prediction of environmental impact. Environmental Pollution 99(1), 105-114.
Bouabid, R., Badraoui, M. and Bloom, P.R. (1991) Potassium fixation and charge characteristics of soil clays. Soil Science Society of America Journal 55(5), 1493-1498.
Bradl, H.B. (2004) Adsorption of heavy metal ions on soils and soils constituents. Journal of Colloid and Interface Science 277(1), 1-18.
Cheam, V., Garbai, G., Lechner, J. and Rajkumar, J. (2000) Local impacts of coal mines and power plants across Canada. I. Thallium in waters and sediments. Water Quality Research Journal of Canada 35(4), 581-607.
Chen, W.T., Ho, S.B. and Lee, D.Y. (2009) Effect of pH on boron adsorption-desorption hysteresis of soils. Soil Science 174(6), 330-338.
Couture, P., Fortin, C., Hare, L., Lapointe, D. and Pitre, D. (2011) Critical review of thallium in aquatic ecosystems. INRS-ETE.
Cunha, J.C., Ruiz, H.A., Freire, M.B.G.D., Alvarez, V.H. and Fernandes, R.B.A. (2014) Quantification of permanent and variable charges in reference soils of the state of Pernambuco, Brazil((1)). Revista Brasileira De Ciencia Do Solo 38(4), 1162-1169.
Dahal, M.P. and Lawrance, G.A. (1996) Adsorption of thallium(I), lead(II), copper(II), bismuth(III) and chromium(III) by electrolytic manganese dioxide. Adsorption Science and Technology 13(4), 231-240.
Dahal, M.P., Lawrance, G.A. and Maeder, M. (1998) Kinetics of heavy metal ion adsorption on to, and proton release from, electrolytic manganese dioxide. Adsorption Science and Technology 16(1), 39-50.
Davies, M., Figueroa, L., Wildeman, T. and Bucknam, C. (2016) The oxidative precipitation of thallium at alkaline pH for treatment of mining influenced water. Mine Water and the Environment 35(1), 77-85.
Elrashidi, M.A. and Oconnor, G.A. (1982) Boron sorption and desorption in soils. Soil Science Society of America Journal 46(1), 27-31.
Gai, L.H., Wang, S.G., Gong, W.X., Liu, X.W., Gao, B.Y. and Zhang, H.Y. (2008) Influence of pH and ionic strength on Cu(II) biosorption by aerobic granular sludge and biosorption mechanism. Journal of Chemical Technology and Biotechnology 83(6), 806-813.
Galvan-Arzate, S. and Santamaria, A. (1998) Thallium toxicity. Toxicology Letters 99(1), 1-13.
Gee, G.W. and Bauder, J.W. (1986) Mehtods of soil analysis. Part I 1. Klute (ed), pp. 404-408, Agronomy.
Hamidpour, M., Kalbasi, M., Afyuni, M., Shariatmadari, H., Holm, P.E. and Hansen, H.C.B. (2010) Sorption hysteresis of Cd(II) and Pb(II) on natural zeolite and bentonite. Journal of Hazardous Materials 181(1-3), 686-691.
Harskamp, J.G., O'Donnell, M.J. and Berkelaar, E. (2010) Determining the fluxes of Tl+ and K+ at the root surface of wheat and canola using Tl(I) and K ion-selective microelectrodes. Plant and Soil 335(1-2), 299-310.
Jacobson, A.R., Klitzke, S., McBride, M.B., Baveye, P. and Steenhuis, T.S. (2005a) The desorption of silver and thallium from soils in the presence of a chelating resin with thiol functional groups. Water Air and Soil Pollution 160(1-4), 41-54.
Jacobson, A.R., McBride, M.B., Baveye, P. and Steenhuis, T.S. (2005b) Environmental factors determining the trace-level sorption of silver and thallium to soils. Science of the Total Environment 345(1-3), 191-205.
Jakubowska, M., Pasieczna, A., Zembrzuski, W., Swit, Z. and Lukaszewski, Z. (2007) Thallium in fractions of soil formed on floodplain terraces. Chemosphere 66(4), 611-618.
Jiang, H., Li, T.Q., Han, X., Yang, X.E. and He, Z.L. (2012) Effects of pH and low molecular weight organic acids on competitive adsorption and desorption of cadmium and lead in paddy soils. Environmental Monitoring and Assessment 184(10), 6325-6335.
Karbowska, B., Zembrzuski, W., Jakubowska, M., Wojtkowiak, T., Pasieczna, A. and Lukaszewski, Z. (2014) Translocation and mobility of thallium from zinc-lead ores. Journal of Geochemical Exploration 143, 127-135.
Karlsson, U. (2006) Environmental levels of thallium-influence of redox propereties and anthropogenic sources. Merten, H. (ed), pp. 5-11, Universitetsbiblioteket.
Karlsson, U., Karlsson, S. and Duker, A. (2006) The effect of light and iron(II)/iron(III) on the distribution of Tl(I)/Tl(III) in fresh water systems. Journal of Environmental Monitoring 8(6), 634-640.
Kosmulski, M., Maczka, E., Jartych, E. and Rosenholm, J.B. (2003) Synthesis and characterization of goethite and goethite-hematite composite: experimental study and literature survey. Advances in Colloid and Interface Science 103(1), 57-76.
Kozawa, A. and Yeager, J.F. (1965) Cathodic reduction mechanism of electrolytic manganese dioxide in alkaline electrolyte. Journal of the Electrochemical Society 112(10), 959-963.
Krishnamurti, G.S.R., Huang, P.M. and Kozak, L.M. (1999) Desorption kinetics of cadmium from soils using M ammonium nitrate and M ammonium chloride. Communications in Soil Science and Plant Analysis 30(19-20), 2785-2800.
LaCoste, C., Robinson, B. and Brooks, R. (2001) Uptake of thallium by vegetables: Its significance for human health, phytoremediation, and phytomining. Journal of Plant Nutrition 24(8), 1205-1215.
LaCoste, C., Robinson, B., Brooks, R., Anderson, C., Chiarucci, A. and Leblanc, M. (1999) The phytoremediation potential of thallium-contaminated soils using iberis and biscutella species. International Journal of Phytoremediation 1(4), 327-338.
Langmuir, I. (1918) The adsorption of gases on plane surfaces of glass, mica and platinum. Journal of the American Chemical Society 40, 1361-1403.
Leblanc, M., Petit, D., Deram, A., Robinson, B.H. and Brooks, R.R. (1999) The phytomining and environmental significance of hyperaccumulation of thallium by Iberis intermedia from Southern France. Economic Geology and the Bulletin of the Society of Economic Geologists 94(1), 109-113.
Lehn, H. and Schoer, J. (1987) Thallium-transfer from soils to plants-correlation between chmical form and plant uptake. Plant and Soil 97(2), 253-265.
Lin, T.S. and Nriagu, J. (1998) Revised hydrolysis constants for thallium(I) and thallium(III) and the environmental implications. Journal of the Air and Waste Management Association 48(2), 151-156.
Lis, J., Pasieczna, A., Karbowska, B., Zembrzuski, W. and Lukaszewski, Z. (2003) Thallium in soils and stream sediments of a Zn-Pb mining and smelting area. Environmental Science & Technology 37(20), 4569-4572.
Liu, J.A., Lippold, H., Wang, J., Lippmann-Pipke, J. and Chen, Y.H. (2011) Sorption of thallium(I) onto geological materials: Influence of pH and humic matter. Chemosphere 82(6), 866-871.
Madigan, C., Leong, Y.K. and Ong, B.C. (2009) Surface and rheological properties of as-received colloidal goethite (alpha-FeOOH) suspensions: pH and polyethylenimine effects. International Journal of Mineral Processing 93(1), 41-47.
Makridis, C., Pateras, D. and Amberger, A. (1996) Thallium pollution risk to food chain from cement plant. Fresenius Environmental Bulletin 5(11-12), 643-648.
Malamis, S. and Katsou, E. (2013) A review on zinc and nickel adsorption on natural and modified zeolite, bentonite and vermiculite: Examination of process parameters, kinetics and isotherms. Journal of Hazardous Materials 252, 428-461.
Martin, F., Garcia, I., Dorronsoro, C., Simon, M., Aguilar, J., Ortiz, I., Fernandez, E. and Fernandez, J. (2004) Thallium behavior in soils polluted by pyrite tailings (Aznalcollar, Spain). Soil and Sediment Contamination 13(1), 25-36.
Martin, H.W. and Kaplan, D.I. (1998) Temporal changes in cadmium, thallium, and vanadium mobility in soil and phytoavailability under field conditions. Water Air and Soil Pollution 101(1-4), 399-410.
Mckeague, J.A. and Day, J.H. (1966) Dithionite and oxalate extractable Fe and Al as aids in differentiating various classes of soils. Canadian Journal of Soil Science 46, 13-22.
McLean, E.O. (1982) Methods of soil analysis. Part2. Page, A.L. (ed), pp. 119-224, ASA and SSSA, Madison, WI.
Mehra, O.P. and Jackson, M.L. (1960) Iron oxides removed from soils and clays by a dithionite-citrate system buffered with sodium bicarbonate. Clay Minerals 7, 317-327.
Morton, J.D., Semrau, J.D. and Hayes, K.F. (2001) An X-ray absorption spectroscopy study of the structure and reversibility of copper adsorbed to montmorillonite clay. Geochimica Et Cosmochimica Acta 65(16), 2709-2722.
Nelson, D.E. and Sommers, L.E. (1996) Mehtods of soil analysis, Part3 Sparks, D.L., Page, A.L., Helmke, P.A., Loeppert, R.H., Soltanpour, P.N., Tabatabai, M.A., Johnston, C.T. and Summer, M.E. (eds), pp. 961-1010, ASA and SSSA, Madison, WI. USA.
Nriagu and Jerome, O. (1998) Thallium in the environment. Nriagu, J.O. (ed), New York : Wiley, New York.
Pai, C.W., Wang, M.K., Wang, W.M. and Houng, K.H. (1999) Smectites in iron-rich calcareous soil and black soils of Taiwan. Clays and Clay Minerals 47(4), 389-398.
Peacock, C.L. and Moon, E.M. (2012) Oxidative scavenging of thallium by birnessite: Explanation for thallium enrichment and stable isotope fractionation in marine ferromanganese precipitates. Geochimica Et Cosmochimica Acta 84, 297-313.
Persson, I. (2010) Hydrated metal ions in aqueous solution: How regular are their structures? Pure and Applied Chemistry 82(10), 1901-1917.
Peter, A.L.J. and Viraraghavan, T. (2005) Thallium: a review of public health and environmental concerns. Environment International 31(4), 493-501.
Pu, Y.B., Yang, X.F., Zheng, H., Wang, D.S., Su, Y. and He, J. (2013) Adsorption and desorption of thallium(I) on multiwalled carbon nanotubes. Chemical Engineering Journal 219, 403-410.
Radtke, A.S., Dickson, F.W. and Slack, J.F. (1978) Occurrence and formation of avicennite, Tl2O3, as a secondary mineral at Carlin Gold Deposit, Nevada. Journal of Research of the Us Geological Survey 6(2), 241-246.
Ralph, L. and Twiss, M.R. (2002) Comparative toxicity of thallium(I), thallium(III), and cadmium(II) to the unicellular alga Chlorella isolated from Lake Erie. Bulletin of Environmental Contamination and Toxicology 68(2), 261-268.
Raogadde, R. and Laitinen, H.A. (1974) Studies of heavy-metal adsorption by hydrous iron and manganese oxides. Analytical Chemistry 46(13), 2022-2026.
Rhoton, F.E. and Bigham, J.M. (2009) Natural ferrihydrite as an agent for reducing turbidity caused by suspended clays. Journal of Environmental Quality 38(5), 1887-1891.
Scheckel, K.G., Lombi, E., Rock, S.A. and McLaughlin, M.J. (2004) In vivo synchrotron study of thallium speciation and compartmentation in lberis intermedia. Environmental Science & Technology 38(19), 5095-5100.
Schedlbauer, O.F. and Heumann, K.G. (1999) Development of an isotope dilution mass spectrometric method for dimethylthallium speciation and first evidence of its existence in the ocean. Analytical Chemistry 71(24), 5459-5464.
Schedlbauer, O.F. and Heumann, K.G. (2000) Biomethylation of thallium by bacteria and first determination of biogenic dimethylthallium in the ocean. Applied Organometallic Chemistry 14(6), 330-340.
Schwertmann, U. and Taylor, R.M. (1989) Minerals in Soil Environments. J.B., D. and Weed, S.B. (eds), pp. 378-438, Soil Science Society of America, Madison.
Shirvani, M., Kalbasi, M., Shariatmadari, H., Nourbakhsh, F. and Najafi, B. (2006) Sorption-desorption of cadmium in aqueous palygorskite, sepiolite, and calcite suspensions: Isotherm hysteresis. Chemosphere 65(11), 2178-2184.
Soil Survey Staff. (2014) Keys to soil taxonomy, 12th ed. USDA-Natural Resources Conservation Service, Washington, D.C., USA.
Sollins, P., Robertson, G.P. and Uehara, G. (1988) Nutrient mobility in variable-charge and permanent-charge soils. Biogeochemistry 6(3), 181-199.
Sposito, G. (2008) The chemistry of soil, Oxford University Press, New York.
Sposito, G. and Schindler, P.W. (1986) Reactions at the soil colloid-soil solution interface, Springer Verlag, Berlin.
Strawn, D.G. and Sparks, D.L. (1999) Fate and Transport of Heavy Metals in the Vadose Zone. Selim, H.M. and Iskandar, I. (eds), pp. 1-28, Lewis Publishers, Chelsea, MI.
Tahervand, S. and Jalali, M. (2016) Sorption, desorption, and speciation of Cd, Ni, and Fe by four calcareous soils as affected by pH. Environmental Monitoring and Assessment 188(6).
Thomas, G.W. (1982) Methods of soil analysis. Part 2. Chemical and microbiological properties. Page, A.L. (ed), pp. 159-165, Agronomy monograph No. 9. ASA and SSSA, Madison, Wisconsin, USA.
Tremel, A., Masson, P., Sterckeman, T., Baize, D. and Mench, M. (1997a) Thallium in French agrosystems .1. Thallium contents in arable soils. Environmental Pollution 95(3), 293-302.
Tremel, A., Masson, P., Garraud, H., Donard, O.F.X., Baize, D. and Mench, M. (1997b) Thallium in French agrosystems .2. Concentration of thallium in field-grown rape and some other plant species. Environmental Pollution 97(1-2), 161-168.
Twining, B.S., Twiss, M.R. and Fisher, N.S. (2003) Oxidation of thallium by freshwater plankton communities. Environmental Science and Technology 37(12), 2720-2726.
Vanek, A., Chrastny, V., Komarek, M., Penizek, V., Teper, L., Cabala, J. and Drabek, O. (2013) Geochemical position of thallium in soils from a smelter-impacted area. Journal of Geochemical Exploration 124, 176-182.
Vanek, A., Grygar, T., Chrastny, V., Tejnecky, V., Drahota, P. and Komarek, M. (2010) Assessment of the BCR sequential extraction procedure for thallium fractionation using synthetic mineral mixtures. Journal of Hazardous Materials 176(1-3), 913-918.
Vanek, A., Komarek, M., Chrastny, V., Galuskova, I., Mihaljevic, M., Sebek, O., Drahota, P., Tejnecky, V. and Vokurkova, P. (2012) Effect of low-molecular-weight organic acids on the leaching of thallium and accompanying cations from soil - A model rhizosphere solution approach. Journal of Geochemical Exploration 112, 212-217.
Vanek, A., Komarek, M., Vokurkova, P., Mihaljevic, M., Sebek, O., Panuskova, G., Chrastny, V. and Drabek, O. (2011) Effect of illite and birnessite on thallium retention and bioavailability in contaminated soils. Journal of Hazardous Materials 191(1-3), 170-176.
Voegelin, A., Pfenninger, N., Petrikis, J., Majzlan, J., Plotze, M., Senn, A.C., Mangold, S., Steininger, R. and Gottlicher, J. (2015) Thallium speciation and extractability in a thallium- and arsenic-rich soil developed from mineralized carbonate rock. Environmental Science and Technology 49(9), 5390-5398.
Volkov, A.G., Paula, S. and Deamer, D.W. (1997) Two mechanisms of permeation of small neutral molecules and hydrated ions across phospholipid bilayers. Bioelectrochemistry and Bioenergetics 42(2), 153-160.
Weber, W.J., Huang, W.L. and Yu, H. (1998) Hysteresis in the sorption and desorption of hydrophobic organic contaminants by soils and sediments - 2. Effects of soil organic matter heterogeneity. Journal of Contaminant Hydrology 31(1-2), 149-165.
Wedepohl, K.H. (1978) Handbook of geochemistry, Springer, New York.
Xiao, T.F., Guha, J., Boyle, D., Liu, C.Q. and Chen, J.G. (2004) Environmental concerns related to high thallium levels in soils and thallium uptake by plants in southwest Guizhou, China. Science of the Total Environment 318(1-3), 223-244.
Xing, B.S. and Dudas, M.J. (1994) Characterization of clay-minerals in white clay soils, Peoples-Republic-of-China. Soil Science Society of America Journal 58(4), 1253-1259.
Yang, C.X., Chen, Y.H., Peng, P., Li, C., Chang, X.Y. and Xie, C.S. (2005) Distribution of natural and anthropogenic thallium in the soils in an industrial pyrite slag disposing area. Science of the Total Environment 341(1-3), 159-172.
Zunic, T.B., Moelo, Y., Loncar, Z. and Micheelsen, H. (1994) Dorallcharite, Tl0.8K0.2Fe3(SO4)2(OH)6, a new member of the jarosite-alunite family. European Journal of Mineralogy 6(2), 255-263.
dc.identifier.urihttp://tdr.lib.ntu.edu.tw/jspui/handle/123456789/59852-
dc.description.abstract鉈是一種具有高毒性的元素且其毒性對人類具有致死性,主要污染來源為礦物冶煉與科技產業工廠排放。鉈在土壤中的宿命至今尚未有文獻探討,而土壤膠體電荷為決定吸附反應的重要因子之一,為了瞭解土壤與鉈之間的交互作用,本研究利用永久電荷土壤(Cp、Btw、Ta-2)及pH依賴性電荷土壤 (Lv、Ce、Pu)對Tl (I)進行等溫吸附反應及脫附反應,探討不同電荷特性土壤對Tl (I)吸附及脫附行為之影響。本研究結果顯示,永久電荷土壤對Tl (I)之吸附量明顯大於pH依賴性電荷土壤對Tl (I)之吸附量,且Ta-2對Tl (I)之最大吸附量與陽離子交換容量之比值 (Qmax/CEC)為1.06,由此推測應是Ta-2含有大量錳氧化物,使得Tl (I)氧化形成Tl(OH)3沉澱或Tl (III)與錳形成難溶之錯合物,而提高了Tl (I)之吸附量。另一方面,本研究將不同電荷特性土壤對Tl (I)之脫附實驗結果利用Freundlich方程式擬合,並計算其遲滯係數(nd/na),結果顯示永久電荷土壤相對pH依賴性電荷土壤具有較高的遲滯現象,其主要原因為土壤組成的不同,在永久電荷土壤中,Tl (I)可藉由離子交換方式被固定在2:1型黏土礦物層間,且四面體帶電土壤之遲滯現象較八面體帶電土壤明顯,其歸因於Tl (I)吸附位置與土壤帶電位置之距離,所導致Tl (I)吸附鍵結力的不同;而pH依賴性電荷土壤則是利用高嶺石和氧化物作為其主要吸附位置,且土壤pH較低,因此pH依賴性電荷土壤對Tl (I)之吸附量較低,且反應具有可逆性。
研究結果發現,在土壤吸附Tl (I)的過程中,一部分的Tl (I)可能被土壤中的黏土礦物固定,然而Tl (I)的脫附通常具有可逆性,因此Tl (I)在土壤中可以輕易地被淋洗至地下水層中,進而增加環境污染的風險。
zh_TW
dc.description.abstractThallium is highly toxic but its fate in soil has not been well understood. In Taiwan, elevated levels of Tl in soils have been detected due to its application in the electronic industries. To understand the interaction mechanism of Tl with soils, this study conducted Tl(I) adsorption and desorption experiments for six soil samples, which included permanent-charge and pH-dependent-charge soils. The Tl(I) adsorption capacities of permanent-charge soils were higher than those of the pH-dependent charge soils. The ratios of Tl(I) adsorption maximum to CEC were determined to be 17 – 38% for the variable-charge soils and approximately 60% for the permanent-charge soils. For Ta-2 the ratio of Tl (I) adsorption maximum to CEC was 1.06, which was assumed that Tl (I) may be oxidize to Tl (III) by the manganese oxides. Tl (III) froms inner-sphere complex at manganese oxides or Tl(OH)3 precipitate to increasing the adsoption of Tl (I). The adsorption/desorption isotherms of each soil were both fitted to Freundlich equation to obtain the corresponding n values, which were subsequently used to calculate hysteresis coefficient (nd/na). The values of the hysteresis coefficients of all the soils increased with the initial Tl(I) concentration. The permanent-charge soils exhibited a higher hysteresis coefficient than the pH-dependent charge soils. These results indicated that a fraction of Tl(I) may be retained by the clay minerals in the soils. However, because the desorption behaviors of Tl(I) were generally reversible, Tl(I) is expected to be leached readily in soil, indicating a high environmental risk of Tl(I) pollution in soil.en
dc.description.provenanceMade available in DSpace on 2021-06-16T09:41:21Z (GMT). No. of bitstreams: 1
ntu-106-R03623037-1.pdf: 870965 bytes, checksum: 876f42d94a3561e983b7469ab2bb0f39 (MD5)
Previous issue date: 2017
en
dc.description.tableofcontents摘要 I
Abstract II
目錄 III
圖目錄 VI
表目錄 VIII
第1章 前言 1
第2章 前人研究 2
2.1 鉈 2
2.1.1 鉈的污染及來源 2
2.1.2 鉈的毒性 2
2.1.3 各國土壤鉈濃度及其在土壤中的分布 3
2.1.4 鉈在植體中存在形態 4
2.1.5 各國鉈的管制標準 5
2.1.6 鉈的水合反應 5
2.1.7 鉈的水解常數 6
2.1.8 鉈氧化還原 8
2.2 土壤膠體表面電荷 9
2.2.1 永久電荷 9
2.2.2 pH依賴性電荷 9
2.3 土壤吸附反應 10
2.3.1 土壤pH值 10
2.3.2 離子強度 10
2.3.3 黏土礦物含量 11
2.3.4 陽離子交換容量 11
2.3.5 鐵鋁錳氧化物 11
2.3.6 有機質 11
2.4 土壤脫附反應 12
2.4.1 遲滯係數 12
第3章 材料與方法 13
3.1 土壤特性分析 13
3.1.1 供試土壤來源及介紹 13
3.1.2 土壤基本特性分析 14
3.2 不同土壤與鉈之等溫吸附實驗 17
3.2.1 Tl金屬溶液配製 17
3.2.2 永久電荷土壤吸附Tl (I)之等溫吸附實驗 17
3.2.3 pH依賴性電荷土壤吸附Tl (I)之等溫吸附實驗 17
3.3 等溫吸附模式 18
3.3.1 Langmuir 方程式 18
3.3.2 Freundlich方程式 19
3.4 等溫脫附實驗 20
3.4.1 連續稀釋脫附實驗步驟 20
3.4.2 土壤吸附鉈含量之計算 21
3.4.3 遲滯係數計算 21
3.5 標準礦物與鐵氧化物對鉈之等溫吸附實驗 22
3.5.1 標準礦物 22
3.5.2 標準礦物之純化步驟 22
3.5.3 標準礦物懸浮液固液比測定 23
3.5.4 等溫吸附實驗 23
3.5.5 脫附實驗 24
3.6 X光吸收光譜 (X-ray absorption spectroscopy, XAS) 25
第4章 結果與討論 26
4.1 土壤基本性質 26
4.2 永久電荷土壤與pH依賴性電荷土壤對Tl (I)吸附及脫附結果 29
4.3 永久電荷土壤對Tl (I)之吸附及脫附實驗 34
4.3.1 永久電荷土壤對Tl (I)之等溫吸附實驗結果 34
4.3.2 永久電荷土壤對Tl (I)之等溫脫附實驗結果 43
4.4 pH依賴性電荷土壤對Tl (I)之等溫吸附及脫附實驗 47
4.4.1 pH依賴性電荷土壤對Tl (I)之等溫吸附實驗結果 47
4.4.2 pH依賴性電荷土壤對Tl (I)之等溫脫附實驗結果 53
4.5 標準礦物對Tl (I)之等溫吸附及脫附實驗 57
4.5.1 標準礦物對Tl (I)之等溫吸附實驗結果 57
4.5.2 標準礦物對Tl (I)之等溫脫附實驗結果 61
4.6 鐵氧化物對Tl (I)之吸附及脫附實驗 65
4.6.1 針鐵礦對Tl (I)之等溫吸附實驗結果 65
4.6.2 針鐵礦對Tl (I)之等溫脫附實驗結果 68
4.7 X光吸收光譜分析 71
第5章 結論 76
參考文獻 77
dc.language.isozh-TW
dc.title不同電荷性質土壤對鉈之吸附及脱附機制zh_TW
dc.titleAdsorption and Desorption Mechanisms of Thallium(I) by Soils with Different Charge Propertiesen
dc.typeThesis
dc.date.schoolyear105-1
dc.description.degree碩士
dc.contributor.oralexamcommittee李達源,江博能,官文惠,鄒裕民
dc.subject.keyword鉈,永久電荷土壤,pH依賴性土壤,吸附,脫附,遲滯現象,zh_TW
dc.subject.keywordThallium,Permanent-charge soil,pH-dependent charge soil,Adsorption,Desorption,Adsorption hysteresis,en
dc.relation.page85
dc.identifier.doi10.6342/NTU201700370
dc.rights.note有償授權
dc.date.accepted2017-02-07
dc.contributor.author-college生物資源暨農學院zh_TW
dc.contributor.author-dept農業化學研究所zh_TW
顯示於系所單位:農業化學系

文件中的檔案:
檔案 大小格式 
ntu-106-1.pdf
  目前未授權公開取用
850.55 kBAdobe PDF
顯示文件簡單紀錄


系統中的文件,除了特別指名其著作權條款之外,均受到著作權保護,並且保留所有的權利。

社群連結
聯絡資訊
10617臺北市大安區羅斯福路四段1號
No.1 Sec.4, Roosevelt Rd., Taipei, Taiwan, R.O.C. 106
Tel: (02)33662353
Email: ntuetds@ntu.edu.tw
意見箱
相關連結
館藏目錄
國內圖書館整合查詢 MetaCat
臺大學術典藏 NTU Scholars
臺大圖書館數位典藏館
本站聲明
© NTU Library All Rights Reserved