請用此 Handle URI 來引用此文件:
http://tdr.lib.ntu.edu.tw/jspui/handle/123456789/59848完整後設資料紀錄
| DC 欄位 | 值 | 語言 |
|---|---|---|
| dc.contributor.advisor | 江皓森 | |
| dc.contributor.author | Guan-Ying Lee | en |
| dc.contributor.author | 李冠穎 | zh_TW |
| dc.date.accessioned | 2021-06-16T09:41:08Z | - |
| dc.date.available | 2027-02-06 | |
| dc.date.copyright | 2017-02-16 | |
| dc.date.issued | 2017 | |
| dc.date.submitted | 2017-02-06 | |
| dc.identifier.citation | 1. Cao X (2016) Self-regulation and cross-regulation of pattern-recognition receptor signalling in health and disease. Nat Rev Immunol 16(1):35-50.
2. Medzhitov R (2007) Recognition of microorganisms and activation of the immune response. Nature 449(7164):819-826. 3. Poltorak A (1998) Defective LPS Signaling in C3H/HeJ and C57BL/10ScCr Mice: Mutations in Tlr4 Gene. Science 282(5396):2085-2088. 4. Akira S, Uematsu S, & Takeuchi O (2006) Pathogen recognition and innate immunity. Cell 124(4):783-801. 5. Sims JE & Smith DE (2010) The IL-1 family: regulators of immunity. Nat Rev Immunol 10(2):89-102. 6. Lamkanfi M (2011) Emerging inflammasome effector mechanisms. Nat Rev Immunol 11(3):213-220. 7. Watkins LR, Hansen MK, Nguyen KT, Lee JE, & Maier SF (1999) Dynamic regulation of the proinflammatory cytokine, interleukin-1β: Molecular biology for non-molecular biologists. Life Sciences 65(5):449-481. 8. Martinon F, Burns K, & Tschopp J (2002) The Inflammasome: A Molecular Platform Triggering Activation of Inflammatory Caspases and Processing of proIL-β. Molecular Cell 10(2):417-426. 9. Thornberry NA & Molineaux SM (1995) Interleukin-1 beta converting enzyme: a novel cysteine protease required for IL-1 beta production and implicated in programmed cell death. Protein Sci 4(1):3-12. 10. Martinon F & Tschopp J (2004) Inflammatory caspases: linking an intracellular innate immune system to autoinflammatory diseases. Cell 117(5):561-574. 11. Latz E, Xiao TS, & Stutz A (2013) Activation and regulation of the inflammasomes. Nat Rev Immunol 13(6):397-411. 12. Broz P & Dixit VM (2016) Inflammasomes: mechanism of assembly, regulation and signalling. Nat Rev Immunol 16(7):407-420. 13. Levinsohn JL, et al. (2012) Anthrax lethal factor cleavage of Nlrp1 is required for activation of the inflammasome. PLoS Pathog 8(3):e1002638. 14. Mariathasan S, et al. (2006) Cryopyrin activates the inflammasome in response to toxins and ATP. Nature 440(7081):228-232. 15. Hornung V, et al. (2008) Silica crystals and aluminum salts activate the NALP3 inflammasome through phagosomal destabilization. Nat Immunol 9(8):847-856. 16. Martinon F, Petrilli V, Mayor A, Tardivel A, & Tschopp J (2006) Gout-associated uric acid crystals activate the NALP3 inflammasome. Nature 440(7081):237-241. 17. Park YH, Wood G, Kastner DL, & Chae JJ (2016) Pyrin inflammasome activation and RhoA signaling in the autoinflammatory diseases FMF and HIDS. Nat Immunol 17(8):914-921. 18. Stempel A, Westley JW, & Benz W (1969) The Identity of the Antibiotics Nigericin, Polyetherin a and X-464. The Journal of Antibiotics 22(8):384-385. 19. Duewell P, et al. (2010) NLRP3 inflammasomes are required for atherogenesis and activated by cholesterol crystals. Nature 464(7293):1357-1361. 20. Zhou R, Yazdi AS, Menu P, & Tschopp J (2011) A role for mitochondria in NLRP3 inflammasome activation. Nature 469(7329):221-225. 21. Munoz-Planillo R, et al. (2013) K(+) efflux is the common trigger of NLRP3 inflammasome activation by bacterial toxins and particulate matter. Immunity 38(6):1142-1153. 22. Wolf AJ, et al. (2016) Hexokinase Is an Innate Immune Receptor for the Detection of Bacterial Peptidoglycan. Cell 166(3):624-636. 23. Misawa T, et al. (2013) Microtubule-driven spatial arrangement of mitochondria promotes activation of the NLRP3 inflammasome. Nat Immunol 14(5):454-460. 24. Shi H, et al. (2016) NLRP3 activation and mitosis are mutually exclusive events coordinated by NEK7, a new inflammasome component. Nat Immunol 17(3):250-258. 25. He Y, Zeng MY, Yang D, Motro B, & Nunez G (2016) NEK7 is an essential mediator of NLRP3 activation downstream of potassium efflux. Nature 530(7590):354-357. 26. Py BF, Kim MS, Vakifahmetoglu-Norberg H, & Yuan J (2013) Deubiquitination of NLRP3 by BRCC3 critically regulates inflammasome activity. Mol Cell 49(2):331-338. 27. de Almeida L, et al. (2015) The PYRIN Domain-only Protein POP1 Inhibits Inflammasome Assembly and Ameliorates Inflammatory Disease. Immunity 43(2):264-276. 28. Kayagaki N, et al. (2011) Non-canonical inflammasome activation targets caspase-11. Nature 479(7371):117-121. 29. Lu B, et al. (2012) Novel role of PKR in inflammasome activation and HMGB1 release. Nature 488(7413):670-674. 30. Strowig T, Henao-Mejia J, Elinav E, & Flavell R (2012) Inflammasomes in health and disease. Nature 481(7381):278-286. 31. Alberti KG, et al. (2009) Harmonizing the metabolic syndrome: a joint interim statement of the International Diabetes Federation Task Force on Epidemiology and Prevention; National Heart, Lung, and Blood Institute; American Heart Association; World Heart Federation; International Atherosclerosis Society; and International Association for the Study of Obesity. Circulation 120(16):1640-1645. 32. Nguyen MT, et al. (2007) A subpopulation of macrophages infiltrates hypertrophic adipose tissue and is activated by free fatty acids via Toll-like receptors 2 and 4 and JNK-dependent pathways. J Biol Chem 282(48):35279-35292. 33. Wen H, et al. (2011) Fatty acid-induced NLRP3-ASC inflammasome activation interferes with insulin signaling. Nat Immunol 12(5):408-415. 34. Allen IC, et al. (2010) The NLRP3 inflammasome functions as a negative regulator of tumorigenesis during colitis-associated cancer. J Exp Med 207(5):1045-1056. 35. Bauer C, et al. (2010) Colitis induced in mice with dextran sulfate sodium (DSS) is mediated by the NLRP3 inflammasome. Gut 59(9):1192-1199. 36. Wickstead B & Gull K (2011) The evolution of the cytoskeleton. J Cell Biol 194(4):513-525. 37. Fletcher DA & Mullins RD (2010) Cell mechanics and the cytoskeleton. Nature 463(7280):485-492. 38. Gelfand VI & Bershadsky AD (1991) Microtubule dynamics: mechanism, regulation, and function. Annu Rev Cell Biol 7:93-116. 39. Lee SH & Dominguez R (2010) Regulation of actin cytoskeleton dynamics in cells. Mol Cells 29(4):311-325. 40. Mostowy S & Shenoy AR (2015) The cytoskeleton in cell-autonomous immunity: structural determinants of host defence. Nat Rev Immunol 15(9):559-573. 41. Krendel M, Zenke FT, & Bokoch GM (2002) Nucleotide exchange factor GEF-H1 mediates cross-talk between microtubules and the actin cytoskeleton. Nat Cell Biol 4(4):294-301. 42. Enomoto T (1996) Microtubule Disruption Induces the Formation of Actin Stress Fibers and Focal Adhesions in Cultured Cells: Possible Involvement of the Rho Signal Cascade. Cell Structure and Function 21(5):317-326. 43. Ren Y (1998) Cloning and Characterization of GEF-H1, a Microtubule-associated Guanine Nucleotide Exchange Factor for Rac and Rho GTPases. Journal of Biological Chemistry 273(52):34954-34960. 44. Birkenfeld J, Nalbant P, Yoon SH, & Bokoch GM (2008) Cellular functions of GEF-H1, a microtubule-regulated Rho-GEF: is altered GEF-H1 activity a crucial determinant of disease pathogenesis? Trends Cell Biol 18(5):210-219. 45. Hodge RG & Ridley AJ (2016) Regulating Rho GTPases and their regulators. Nat Rev Mol Cell Biol 17(8):496-510. 46. Fukazawa A, et al. (2008) GEF-H1 mediated control of NOD1 dependent NF-kappaB activation by Shigella effectors. PLoS Pathog 4(11):e1000228. 47. Zhao Y, et al. (2012) Control of NOD2 and Rip2-dependent innate immune activation by GEF-H1. Inflamm Bowel Dis 18(4):603-612. 48. Chiang HS, et al. (2014) GEF-H1 controls microtubule-dependent sensing of nucleic acids for antiviral host defenses. Nat Immunol 15(1):63-71. 49. Akella JS, et al. (2010) MEC-17 is an alpha-tubulin acetyltransferase. Nature 467(7312):218-222. 50. North BJ, Marshall BL, Borra MT, Denu JM, & Verdin E (2003) The human Sir2 ortholog, SIRT2, is an NAD(+)-dependent tubulin deacetylase. Mol Cell 11(2):437-444. 51. Hubbert C, et al. (2002) HDAC6 is a microtubule-associated deacetylase. Nature 417(6887):455-458. 52. Hwang I, Lee E, Jeon SA, & Yu JW (2015) Histone deacetylase 6 negatively regulates NLRP3 inflammasome activation. Biochem Biophys Res Commun 467(4):973-978. 53. Korzeniewski C & Callewaert DM (1983) An enzyme-release assay for natural cytotoxicity. Journal of Immunological Methods 64(3):313-320. 54. North BJ, Marshall BL, Borra MT, Denu JM, & Verdin E (2003) The Human Sir2 Ortholog, SIRT2, Is an NAD+-Dependent Tubulin Deacetylase. Molecular Cell 11(2):437-444. 55. Li L & Yang XJ (2015) Tubulin acetylation: responsible enzymes, biological functions and human diseases. Cell Mol Life Sci 72(22):4237-4255. 56. Zhao Y, et al. (2011) The NLRC4 inflammasome receptors for bacterial flagellin and type III secretion apparatus. Nature 477(7366):596-600. 57. Qu Y, et al. (2012) Phosphorylation of NLRC4 is critical for inflammasome activation. Nature 490(7421):539-542. | |
| dc.identifier.uri | http://tdr.lib.ntu.edu.tw/jspui/handle/123456789/59848 | - |
| dc.description.abstract | 先天免疫系統是身體抵抗病原體入侵的第一道防線。此系統產生各式的模式識別受體 (PRR) 針對不同的病源體相關物質模式 (PAMP) 來產生不同的免疫反應。先前研究發現NLR family pyrin domain containing 3 (NLRP3) 的活化不但會被微管網路所調控,而且需要乙醯化的α微管以提供最適合NLRP3和apoptosis-associated speck-like protein containing a CARD (ASC) 組合的位置。鳥嘌呤交換因子H1 (guanine exchange factor H1, GEF-H1) 是調節微管和肌動蛋白網路之間的交互作用最重要的分子,而且在COS-7細胞內過度表現GEF-H1會加強乙醯化α微管的產生。此外,GEF-H1已經被發現參與在位於細胞質中的PRR訊息傳遞中扮演重要的角色。由於NLRP3位於細胞質中而且乙醯化的α微管累積是的NLRP3活化的重要因子,所以我們想研究GEF-H1在NLRP3活化中所扮演的角色。
首先我們使用奈及利亞菌素 (nigericin) 及樊 (alum) 作為活化NLRP3的刺激物。結果顯示GEF-H1不影響 NLRP3發炎體活化所引起的介白素1β (IL-1β) 的分泌。由於介白素1β的分泌需要凋亡蛋白酶1 (caspase-1) 的自我切割而活化且同時會造成細胞凋亡,我們進一步發現GEF-H1並不影響凋亡蛋白酶1的活化與細胞凋亡的程度。此外,GEF-H1也不影響在NLRP3活化時,細胞內乙醯化α微管的累積。綜合上述結果,我們的研究證明GEF-H1在NLRP3活化是沒有角色的。 最後我們想瞭解GEF-H1是否能調節NLR family CARD domain containing 4 (NLRC4) 發炎體的活化。在缺少GEF-H1的細胞中,其IL-1β分泌和凋亡蛋白酶1的活化都是下降的。整體來說,GEF-H1不參與在NLRP3發炎體的活化中但可調節NLRC4發炎體活化。 | zh_TW |
| dc.description.abstract | Innate immune system is the first line of defense against invading pathogens or endogenous danger signals. In order to distinguish different pathogen-associated molecular patterns (PAMPs), immune system develops several pattern recognition receptors (PRRs) to generate specific immune responses. NLR family pyrin domain containing 3 (NLRP3), one of the cytoplasmic PRRs, is regulated by the microtubule network. The accumulation of acetylated α-tubulin is a key factor to create an optimal site for the assembly of NLRP3 and apoptosis-associated speck-like protein containing a CARD (ASC). Guanine exchange factor H1 (GEF-H1) is critical for the cross-talk between microtubule and actin networks. Furthermore, overexpression of GEF-H1 in COS-7 cells induces α-tubulin acetylation. It has been proven that GEF-H1 regulates cytoplasmic PRRs nucleotide binding oligomerization domain containing 1 (NOD1)-, nucleotide binding oligomerization domain containing 2 (NOD2)- and RIG-I like receptor (RLR)-mediated immune responses. Give NLRP3 is a cytoplasmic PRR and its activation requires tubulin acetylation, we investigate whether GEF-H1 is involved in NLRP3 activation.
We first examined NLRP3-dependent IL-1β secretion and found that there was no significant difference between LPS-primed wild-type and GEF-H1-deficient bone marrow derived macrophages (BMDMs) incubated with nigericin. It is well known that IL-1β maturation requires caspase-1 autoprocessing. Therefore we examined caspase-1 maturation and found that GEF-H1 is dispensable in caspase-1 maturation in LPS-primed BMDM incubated with nigericin. Since caspase-1 autoprocessing leads to programmed cell death called pyroptosis, we then examined the cell viability. The result showed no viability difference between LPS-primed wild-type and GEF-H1-deficient BMDMs incubated with nigericin. Furthermore, we investigated α-tubulin acetylation after NLRP3 activation. The accumulation of acetylated α-tubulin was similar in LPS-primed GEF-H1-deficient BMDMs incubated with nigericin compared with wild-type BMDMs. These results implicated that GEF-H1 did not regulate the activation of NLRP3 inflammasome. Finally, we tested NLR family CARD domain containing 4 (NLRC4)-dependent IL-1β secretion and caspase-1 autoprocessing to determine whether GEF-H1 was involved in the activation of NLRC4. Compared to wild-type BMDMs, IL-1β secretion and caspase-1 autoprocessing were both reduced in LPS-primed GEF-H1-deficient BMDMs incubated with flagellin. This indicated that GEF-H1 may play a role in NLRC4 activation. Taken together, GEF-H1 is dispensable in the activation of NLRP3 inflammasome but is able to regulate NLRC4 inflammasome activation. | en |
| dc.description.provenance | Made available in DSpace on 2021-06-16T09:41:08Z (GMT). No. of bitstreams: 1 ntu-106-R03b21019-1.pdf: 1574900 bytes, checksum: f07b8c47ae9538c67a8567e1588ac9f9 (MD5) Previous issue date: 2017 | en |
| dc.description.tableofcontents | 致謝 i
中文摘要 ii Abstract iv Contents vi List of figure viii Chapter 1. Introduction 1 1. Innate immune system 1 2. NLRP3 inflammasome 1 2.1 Inflammasome 1 2.2 NLRP3 3 2.3 NLRP3 regulatory factors 4 2.4 Diseases caused by NLRP3 activation 5 3.GEF-H1 6 3.1 Cytoskeleton 6 3.2 Original functions of GEF-H1 6 3.3 GEF-H1 in immune system 7 4.The relationship between NLRP3 and GEF-H1 8 Chapter 2. Materials and Methods 10 1. Mice 10 2. NLRP3 stimulation .10 3. Measurement of the production of IL-1β 11 4. Measurement of NLRP3-induced pyroptosis 11 5. Western blot for cell lysates 11 6. Western blot for caspase-1 in supernatant 12 Chapter 3. Result 14 GEF-H1 does not affect IL-1β secretion in response of NLRP3 activation. 14 GEF-H1 deficiency does not alter the expression of NLRP3 components in responses of NLRP3 activation. 19 GEF-H1 did not regulate NLRP3-dependent caspase-1 autoprocessing, pyroptosis and the accumulation of acetylated α-tubulin. 19 1. Caspase-1 autoprocessing 19 2. Pyroptosis 21 3. The accumulation of acetylated α-tubulin 25 GEF-H1 had a possible role in the regulation of NLRC4 inflammasome activation. 30 Chapter 4. Discussion 33 Reference 36 | |
| dc.language.iso | en | |
| dc.subject | NLRP3 | zh_TW |
| dc.subject | 發炎體 | zh_TW |
| dc.subject | α微管乙醯化 | zh_TW |
| dc.subject | 鳥嘌呤交換因子H1 | zh_TW |
| dc.subject | 先天免疫 | zh_TW |
| dc.subject | NLRP3 | en |
| dc.subject | α-tubulin acetylation | en |
| dc.subject | GEF-H1 | en |
| dc.subject | inflammasome | en |
| dc.subject | innate immunity | en |
| dc.title | 鳥嘌呤交換因子H1在NLRP3發炎體調控中的角色 | zh_TW |
| dc.title | The role of guanine exchange factor H1 in regulation of NLRP3 inflammasome | en |
| dc.type | Thesis | |
| dc.date.schoolyear | 105-1 | |
| dc.description.degree | 碩士 | |
| dc.contributor.oralexamcommittee | 徐立中,陳俊任 | |
| dc.subject.keyword | 先天免疫,NLRP3,發炎體,鳥嘌呤交換因子H1,α微管乙醯化, | zh_TW |
| dc.subject.keyword | innate immunity,NLRP3,inflammasome,GEF-H1,α-tubulin acetylation, | en |
| dc.relation.page | 39 | |
| dc.identifier.doi | 10.6342/NTU201700324 | |
| dc.rights.note | 有償授權 | |
| dc.date.accepted | 2017-02-07 | |
| dc.contributor.author-college | 生命科學院 | zh_TW |
| dc.contributor.author-dept | 生命科學系 | zh_TW |
| 顯示於系所單位: | 生命科學系 | |
文件中的檔案:
| 檔案 | 大小 | 格式 | |
|---|---|---|---|
| ntu-106-1.pdf 未授權公開取用 | 1.54 MB | Adobe PDF |
系統中的文件,除了特別指名其著作權條款之外,均受到著作權保護,並且保留所有的權利。
