Skip navigation

DSpace

機構典藏 DSpace 系統致力於保存各式數位資料(如:文字、圖片、PDF)並使其易於取用。

點此認識 DSpace
DSpace logo
English
中文
  • 瀏覽論文
    • 校院系所
    • 出版年
    • 作者
    • 標題
    • 關鍵字
    • 指導教授
  • 搜尋 TDR
  • 授權 Q&A
    • 我的頁面
    • 接受 E-mail 通知
    • 編輯個人資料
  1. NTU Theses and Dissertations Repository
  2. 生物資源暨農學院
  3. 農業化學系
請用此 Handle URI 來引用此文件: http://tdr.lib.ntu.edu.tw/jspui/handle/123456789/59838
完整後設資料紀錄
DC 欄位值語言
dc.contributor.advisor王尚禮(Shan-Li Wang)
dc.contributor.authorTzu-Shan Suen
dc.contributor.author蘇子珊zh_TW
dc.date.accessioned2021-06-16T09:40:35Z-
dc.date.available2022-08-20
dc.date.copyright2020-09-22
dc.date.issued2020
dc.date.submitted2020-08-14
dc.identifier.citationAbollino, O., Malandrino, M., Giacomino, A. and Mentasti, E. (2011) The role of chemometrics in single and sequential extraction assays: A review. Analytica Chimica Acta, 688(2), 104–121.
Adamo, P., Denaix, L., Terribile, F. and Zampella, M. (2003) Characterization of heavy metals in contaminated volcanic soils of the Solofrana river valley (southern Italy). Geoderma, 117(3-4), 347–366.
Ahnstrom, Z. S. and Parker, D. R. (1999) Development and Assessment of a Sequential Extraction Procedure for the Fractionation of Soil Cadmium. Soil Science Society of America Journal, 63(6), 1650-1658.
Ahnstrom, Z. A. S. and Parker, D. R. (2001) Cadmium Reactivity in Metal-Contaminated Soils Using a Coupled Stable Isotope Dilution−Sequential Extraction Procedure. Environmental Science Technology, 35(1), 121–126.
Alfantazi, A. M. and Moskalyk, R. R. (2003) Processing of indium: a review. Minerals Engineering, 16(8), 687–694.
Alloway, B. J. (2013) Heavy metal in soils: trace metals and metalloids in soils and their bioavailability 3rd ed. Blackie Academic and Professional, Glasgow, UK.
American Conference of Governmental Industrial Hygienists. (2007) TLVs and BEIs : based on the documentation of the threshold limit values for chemical substances and physical agents biological exposure indices; American Conference of Governmental Industrial Hygienists. Cincinnati, Ohio. p. 238.
Ames, M. R., Gullu, G., Beal, J., and Olmez, I. (2000) Receptor Modeling for Elemental Source Contributions to Fine Aerosols in New York State. Journal of the Air Waste Management Association, 50(5), 881–887.
Anderson, C. J., and Welch, M. J. (1999) Radiometal-Labeled Agents (Non-Technetium) for Diagnostic Imaging. Chemical Reviews, 99(9), 2219–2234.
Aydinalp, C. and Marinova, S. (2003) Distribution and forms of heavy metals in some agricultural soils. Polish Journal of Environmental Studies, 12(5), 629-633.
Bacon, J. R. and Davidson, C. M. (2008) Is there a future for sequential chemical extraction? The Analyst, 133(1), 25–46.
Baes Jr., C. F., Mesmer, R.E. (1986) The Hydrolysis of Cations. Krieger Publishing Company, Malabar, Florida.
Beckett, P. H. T. (1989) The Use of Extractants in Studies on Trace Metals in Soils, Sewage Sludges, and Sludge-Treated Soils. Advances in Soil Science, 9, 143–176.
Bi, X. and Westerhoff, P. (2016) Adsorption of iii/v ions (In(III), Ga(III) and As(V)) onto SiO2, CeO2 and Al2O3 nanoparticles used in the semiconductor industry. Environmental Science: Nano, 3(5), 1014–1026.
Boros, E., Marquez, B. V., Ikotun, O. F., Lapi, S. E., and Ferreira, C. L. (2014) Coordination Chemistry and Ligand Design in the Development of Metal Based Radiopharmaceuticals. Ligand Design in Medicinal Inorganic Chemistry, 47–79.
Bradl, H. B. (2004) Adsorption of heavy metal ions on soils and soils constituents. Journal of Colloid and Interface Science, 277(1), 1–18.
Bruce A. F. and Maples-Reynolds, N. (2015) Indium. Handbook on the Toxicology of Metals Fourth Edition. Academic Press. p. 845-853.
Bruce A. F. and Mary J. S. (2015) Gallium and Gallium Semiconductor Compounds. Handbook on the Toxicology of Metals Fourth Edition. Academic Press. p. 787-797.
Butcher, T. and Brown, T. (2014) Gallium. Critical Metals Handbook. John Wiley Sons, Ltd. USA. p. 150-176.
Cabral , A. R. and Lefebvre, G. (1998) Use of Sequential Extraction in the Study of Heavy Metal Retention by Silty Soils. Water, Air, and Soil Pollution, 102, 329–344.
Chang, H.-F., Wang, S.-L. and Yeh, K.-C. (2017) Effect of Gallium Exposure in Arabidopsis thaliana is Similar to Aluminum Stress. Environmental Science Technology, 51(3), 1241–1248.
Chang, H.-F., Wang, S.-L., Lee, D.-C., Hsiao, S. S.-Y., Hashimoto, Y. and Yeh, K.-C. (2020) Assessment of indium toxicity to the model plant Arabidopsis. Journal of Hazardous Materials, 387, 121983.
Chen, H.-W. (2006) Gallium, Indium, and Arsenic Pollution of Groundwater from a Semiconductor Manufacturing Area of Taiwan. Bulletin of Environmental Contamination and Toxicology, 77(2), 289–296.
Chen, H.-W. (2007) Exposure and Health Risk of Gallium, Indium, and Arsenic from Semiconductor Manufacturing Industry Workers. Bulletin of Environmental Contamination and Toxicology, 78(2), 123–127.
Chen, H.-W., Chen, W.-Y., Chang, C.-N., Chuang, Y.-H. and Lin, Y.-H. (2016) Identifying airborne metal particles sources near an optoelectronic and semiconductor industrial park. Atmospheric Research, 174-175, 97–105.
Chen, J. Y., Luong, H. V. T. and Liu, J. C. (2015) Fractionation and release behaviors of metals (In, Mo, Sr) from industrial sludge. Water Research, 82, 86–93.
Chitambar, C. R. (2010) Medical Applications and Toxicities of Gallium Compounds. International Journal of Environmental Research and Public Health, 7(5), 2337–2361.
Chojnacka, K., Chojnacki, A., Górecka, H. and Górecki, H. (2005) Bioavailability of heavy metals from polluted soils to plants. Science of The Total Environment, 337(1-3), 175–182.
Clevenger, T. E. (1990) Use of sequential extraction to evaluate the heavy metals in mining wastes. Water, Air, and Soil Pollution, 50(3-4), 241–254.

Cobelo-García, A., Filella, M., Croot, P., Frazzoli, C., Du Laing, G., Ospina-Alvarez, N., Rauch, S., Salaun, P., Schäfer, J. and Zimmermann, S. (2015) COST action TD1407: network on technology-critical elements (NOTICE)—from environmental processes to human health threats. Environmental Science and Pollution Research, 22(19), 15188–15194.
Conner, E. A., Yamauchi, H. and Fowler, B. A. (1995) Alterations in the heme biosynthetic pathway from the III-V semiconductor metal, indium arsenide (InAs). Chemico-Biological Interactions, 96(3), 273–285.
Cummings, K. J., Suarthana, E., Edwards, N., Liang, X., Stanton, M. L., Day, G. A. and Kreiss, K. (2012) Serial evaluations at an indium-tin oxide production facility. American Journal of Industrial Medicine, 56(3), 300–307.
Cummings, K. J., Virji, M. A., Park, J. Y., Stanton, M. L., Edwards, N. T., Trapnell, B. C. and Kreiss, K. (2016) Respirable indium exposures, plasma indium, and respiratory health among indium-tin oxide (ITO) workers. American Journal of Industrial Medicine, 59(7), 522–531.
Cuypers, A., Remans, T., Weyens, N., Colpaert, J., Vassilev, A. and Vangronsveld, J. (2013) Soil-Plant Relationships of Heavy Metals and Metalloids. Heavy Metals in Soils, 161–193.
Department of Agriculture (USDA) and Natural Resources Conservation Service (NRCS). (2014) Keys to Soil Taxonomy. Twelfth Edition. USA.
Diakonov, I. I., Pokrovski, G. S., Bénézeth, P., Schott, J., Dandurand, J.-L. and Escalier, J. (1997) Gallium speciation in aqueous solution. Experimental study and modeling: Part 1. Thermodynamic properties of Ga(OH)4− to 300°C. Geochimica et Cosmochimica Acta, 61(7), 1333–1343.
Diks, D. M. and Allen, H. E. (1983) Correlation of copper distribution in a freshwater-sediment system to bioavailability. Bulletin of Environmental Contamination and Toxicology, 30(1), 37–43.

Emmerson, R. (2000) Solid phase partitioning of metals in managed retreat soils: field changes over the first year of tidal inundation. The Science of The Total Environment, 254(1), 75–92.
Filgueiras, A. V., Lavilla, I. Bendicho, C. (2002) Chemical sequential extraction for metal partitioning in environmental solid samples. Journal of Environmental Monitoring, 4(6), 823–857.
Flora, S. and Dwivedi, N. (2012) A Toxicochemical Review of Gallium Arsenide. Defence Science Journal, 62, 95–104.
Förstner, U. (1993) Metal Speciation - General Concepts and Applications. International Journal of Environmental Analytical Chemistry, 51(1-4), 5–23.
Fortin, D., Leppard, G. G., Tessier, A. (1993). Characteristics of lacustrine diagenetic iron oxyhydroxides. Geochimica et Cosmochimica Acta, 57(18), 4391–4404.
Fowler, B. A., Conner, E. A. and Yamauchi, H. (2005) Metabolomic and proteomic biomarkers for III–V semiconductors: Chemical-specific porphyrinurias and proteinurias. Toxicology and Applied Pharmacology, 206(2), 121–130.
Fowler, B. A. and Maples-Reynolds, N. (2015) Indium. Handbook on the Toxicology of Metals, p. 845–853.
Fowler, B. A. and Sexton, M. J. (2015) Gallium and Gallium Semiconductor Compounds. Handbook on the Toxicology of Metals, p. 787–797.
Gauthreaux, K., Noble, C. O., Falgoust, T., Beck, M. J., Sneddon, J. and Beck, J. N. (1998) Reliability and Reproducibility of a Sequential Extraction Procedure for Trace Metal Determination in Marsh Sediments in Southwest Louisiana. Microchemical Journal, 60(2), 175–183.
Geiger, F., Busse, C. A. and Loehrke, R. I. (1987) The vapor pressure of indium, silver, gallium, copper, tin, and gold between 0.1 and 3.0 bar. International Journal of Thermophysics, 8(4), 425–436.
Gibson, M. J. and Farmer, J. G. (1986) Multi-step sequential chemical extraction of heavy metals from urban soils. Environmental Pollution Series B, Chemical and Physical, 11(2), 117–135.
Goldschmidt, V. M. (1937) The principles of distribution of chemical elements in minerals and rocks. The seventh Hugo Müller Lecture, delivered before the Chemical Society on March 17th, J. Chem. Soc., 0(0), 655–673.
Gómez-Ariza, J. L., Giráldez, I., Sánchez-Rodas, D. and Morales, E. (2000) Metal sequential extraction procedure optimized for heavily polluted and iron oxide rich sediments. Analytica Chimica Acta, 414(1-2), 151–164.
Gottschling, B. C., Maronpot, R. R., Hailey, J. R., Peddada, S., Moomaw, C. R., Klaunig, J. E. and Nyska, A. (2001) The Role of Oxidative Stress in Indium Phosphide-Induced Lung Carcinogenesis in Rats. Toxicological Sciences, 64(1), 28–40.
Gleyzes, C., Tellier, S. and Astruc, M. (2002) Fractionation studies of trace elements in contaminated soils and sediments: a review of sequential extraction procedures. TrAC Trends in Analytical Chemistry, 21(6-7), 451–467.
Ha, N. N., Agusa, T., Ramu, K., Tu, N. P. C., Murata, S., Bulbule, K. A. and Tanabe, S. (2009) Contamination by trace elements at e-waste recycling sites in Bangalore, India. Chemosphere, 76(1), 9–15.
Hall, G. E. M., Vaive, J. E., Beer, R. and Hoashi, M. (1996) Selective leaches revisited, with emphasis on the amorphous Fe oxyhydroxide phase extraction. Journal of Geochemical Exploration, 56(1), 59–78.
Hass, A. and Fine, P. (2010) Sequential Selective Extraction Procedures for the Study of Heavy Metals in Soils, Sediments, and Waste Materials—a Critical Review. Critical Reviews in Environmental Science and Technology, 40(5), 365–399.
He, X.-T., Logan, T. J. and Traina, S. J. (1995) Physical and Chemical Characteristics of Selected U.S. Municipal Solid Waste Composts. Journal of Environment Quality, 24(3), 543.
Heacock, M., Kelly , C. B., Asante, K. A. , Birnbaum, L.S. , Bergman, A. L. and Brune, M. (2016) E-waste and harm to vulnerable populations: a growing global problem. Environmental Health Perspective. 124(5), 550–5.
Heltai, G., Percsich, K., Fekete, I., Barabás, B. and Józsa, T. (2000) Speciation of waste water sediments. Microchemical Journal, 67(1-3), 43–51.
Hines, C. J., Roberts, J. L., Andrews, R. N., Jackson, M. V. and Deddens, J. A. (2013) Use of and Occupational Exposure to Indium in the United States. Journal of Occupational and Environmental Hygiene, 10(12), 723–733.
Holmgren, G. G. S. (1967) A Rapid Citrate-Dithionite Extractable Iron Procedure1. Soil Science Society of America Journal, 31(2), 210.
Homma, T., Ueno, T., Sekizawa, K., Tanaka, A. and Hirata, M. (2003) Interstitial Pneumonia Developed in a Worker Dealing with Particles Containing Indium-tin Oxide. Journal of Occupational Health, 45(3), 137–139.
Hsu, L. C., Liu, Y. T. and Tzou, Y. M. (2015) Comparison of the spectroscopic speciation and chemical fractionation of chromium in contaminated paddy soils. Journal of Hazardous Materials, 296, 230–238.
Hudson-Edwards, K. A., Houghton, S. L. and Osborn, A. (2004) Extraction and analysis of arsenic in soils and sediments. TrAC Trends in Analytical Chemistry, 23(10-11), 745–752.
Hursthouse, A. S. (2001) The relevance of speciation in the remediation of soils and sediments contaminated by metallic elements—an overview and examples from Central Scotland, UK. Journal of Environmental Monitoring, 3(1), 49–60.
International Agency for Research on Cancer (IARC). (2006) Gallium arsenide. IARC Monogr Eval Carcinog Risks Hum, 86, 163–96.
Ivanoff, C. S., Ivanoff, A. E. and Hottel, T. L. (2012) Gallium poisoning: A rare case report. Food and Chemical Toxicology, 50(2), 212–215.
Ivanova, V. Y., Chevela, V. V. and Bezryadin, S. G. (2015) Complex formation of indium(III) with citric acid in aqueous solution. Russian Chemical Bulletin, 64(8), 1842–1849.
Jensen, H., Gaw, S., Lehto, N. J., Hassall, L. and Robinson, B. H. (2018) The mobility and plant uptake of gallium and indium, two emerging contaminants associated with electronic waste and other sources. Chemosphere, 209, 675–684.
Kabala, C. and Singh, B. R. (2001) Fractionation and Mobility of Copper, Lead, and Zinc in Soil Profiles in the Vicinity of a Copper Smelter. Journal of Environment Quality, 30(2), 485.
Kabata-Pendias, A. (2001) Trace elements in soils and plants third edition. CRC Press, Boca Raton, FL, USA.
Kabata-Pendias, A. and Szteke, B. (2015) Trace elements in abiotic and biotic environments. CRC Press, Boca Raton, FL, USA.
Kennou, B., El Meray, M., Romane, A. and Arjouni, Y. (2015) Assessment of heavy metal availability (Pb, Cu, Cr, Cd, Zn) and speciation in contaminated soils and sediment of discharge by sequential extraction. Environmental Earth Sciences, 74(7), 5849–5858.
Kim, N., and Fergusson, J. (1991). Effectiveness of a commonly used sequential extraction technique in determining the speciation of cadmium in soils. The Science of The Total Environment, 105, 191–209.
Krishnamurti, G. S. R., Huang, P. M., Van Rees, K. C. J., Kozak, L. M. and Rostad, H. P. W. (1995) A new soil test method for the determination of plant‐available cadmium in soils. Communications in Soil Science and Plant Analysis, 26(17-18), 2857–2867.
Ladenberger, A., Demetriades, A., Reimann, C., Birke, M., Sadeghi, M., Uhlbäck, J., Andersson, M. and Jonsson, E. (2015) GEMAS: Indium in agricultural and grazing land soil of Europe — Its source and geochemical distribution patterns. Journal of Geochemical Exploration, 154, 61–80.
Licht, C., Peiró, L. T. and Villalba, G. (2015) Global Substance Flow Analysis of Gallium, Germanium, and Indium: Quantification of Extraction, Uses, and Dissipative Losses within their Anthropogenic Cycles. Journal of Industrial Ecology, 19(5), 890–903.
Liao, Y.-H., Hwang, L.-C., Kao, J.-S., Yiin, S.-J., Lin, S.-F., Lin, C.-H. and Aw, T.-C. (2006) Lipid Peroxidation in Workers Exposed to Aluminium, Gallium, Indium, Arsenic, and Antimony in the Optoelectronic Industry. Journal of Occupational and Environmental Medicine, 48(8), 789–793.
Lokanc, M., Eggert, R. and Redlinger, M. (2015) The Availability of Indium: the Present, Medium Term, and Long Term. National Renewable Energy Lab. (NREL), Golden, CO (USA).
Løvik, A. N., Restrepo, E. and Müller, D. B. (2015) The Global Anthropogenic Gallium System: Determinants of Demand, Supply and Efficiency Improvements. Environmental Science Technology, 49(9), 5704–5712.
International Agency for Research on Cancer (IARC). (2006) Indium phosphide. IARC Monogr Eval Carcinog Risks Hum. 86, 197–224.
Manouchehri, N., Besancon, S. and Bermond, A. (2006) Major and trace metal extraction from soil by EDTA: Equilibrium and kinetic studies. Analytica Chimica Acta, 559(1), 105–112.
Marin, B., Valladon, M., Polve, M. and Monaco, A. (1997) Reproducibility testing of a sequential extraction scheme for the determination of trace metal speciation in a marine reference sediment by inductively coupled plasma-mass spectrometry. Analytica Chimica Acta, 342(2-3), 91–112.
McKenzie, R. (1971) The synthesis of birnessite, cryptomelane, and some other oxides and hydroxides of manganese. Mineralogical magazine. 38(296), 493-502.
Meites L. (1964) Handbook of Analytical Chemistry. McGraw-Hill. New York, USA.
Menzies, N. W., Donn, M. J. and Kopittke, P. M. (2007) Evaluation of extractants for estimation of the phytoavailable trace metals in soils. Environmental Pollution, 145(1), 121–130.
Mihaljevič, M., Poňavič, M., Ettler, V. and Šebek, O. (2003) A comparison of sequential extraction techniques for determining arsenic fractionation in synthetic mineral mixtures. Analytical and Bioanalytical Chemistry, 377(4), 723–729.
Miller, W. P., Martens, D. C. and Zelazny, L. W. (1986) Effect of Sequence in Extraction of Trace Metals from Soils1. Soil Science Society of America Journal, 50(3), 598.
Ministry of Health, Labor and Welfare (MHLW). (2010) Technical guidelines for preventing health impairment of workers engaged in the indium tin oxide handling process. Tokyo: Government of Japan.
Miragaya, J. G. and Sosa, A. M. (1994) Trace elements in the Valencia lake (Venezuela) sediments. Water, Air, Soil Pollut, 77, 141.
Moeller, T. (1941) Contributions to the Chemistry of Indium. III. An Electrometric Study of the Precipitation of Hydrous Indium Hydroxide1. Journal of the American Chemical Society, 63(10), 2625–2628.
Moerlein, S. M. and Welch, M. J. (1981) The chemistry of gallium and indium as related to radiopharmaceutical production. International Journal of Nuclear Medicine and Biology, 8(4), 277–287.
Morabito, R. (1995) Extraction techniques in speciation analysis of environmental samples. Fresenius’ Journal of Analytical Chemistry, 351(4-5), 378–385.
Nuss, P. and Blengini, G. A. (2018) Towards better monitoring of technology critical elements in Europe: Coupling of natural and anthropogenic cycles. Science of The Total Environment, 613-614, 569–578.
Papp, C. S. E., Filipek, L. H. and Smith, K. S. (1991) Selectivity and effectiveness of extractants used to release metals associated with organic matter. Applied Geochemistry, 6(3), 349–353.
Połedniok, J. (2008) Speciation of scandium and gallium in soil. Chemosphere, 73(4), 572–579.
Połedniok, J., Kita, A. and Zerzucha, P. (2012) Spectrophotometric and Inductively Coupled Plasma–Optical Emission Spectroscopy Determination of Gallium in Natural Soils and Soils Polluted by Industry: Relationships between Elements. Communications in Soil Science and Plant Analysis, 43(8), 1121–1135.
Pohlman, A. A. and McColl, J. G. (1988) Soluble Organics from Forest Litter and their Role in Metal Dissolution. Soil Science Society of America Journal, 52(1), 265.
Rao, C. R. M., Sahuquillo, A. and Lopez Sanchez, J. F. (2008) A Review of the Different Methods Applied in Environmental Geochemistry For Single and Sequential Extraction of Trace Elements in Soils and Related Materials. Water, Air, and Soil Pollution, 189(1-4), 291–333.
Rauret, G. (1998) Extraction procedures for the determination of heavy metals in contaminated soil and sediment. Talanta, 46(3), 449–455.
Rauret, G., López-Sánchez, J. F., Sahuquillo, A., Rubio, R., Davidson, C., Ure, A. and Quevauviller, P. (1999) Improvement of the BCR three step sequential extraction procedure prior to the certification of new sediment and soil reference materials. Journal of Environmental Monitoring, 1(1), 57–61.
Ridgway, I. M. and Price, N. B. (1987) Geochemical associations and post-depositional mobility of heavy metals in coastal sediments: Loch Etive, Scotland. Marine Chemistry, 21(3), 229–248.
Schwarz-Schampera, U. (2014) Indium. Critical Metals Handbook. John Wiley Sons, Ltd. USA. p. 204-229.
Schwertmann, U. and Cornell, R. M. (2008) Iron oxides in the laboratory: preparation and characterization. John Wiley Sons, Ltd. USA.
Shaheen, S. M., Tsadilas, C. D. and Rinklebe, J. (2013) A review of the distribution coefficients of trace elements in soils: Influence of sorption system, element characteristics, and soil colloidal properties. Advances in Colloid and Interface Science, 201-202, 43–56.
Shuman, L. M. (1982). Separating Soil Iron- and Manganese-Oxide Fractions for Microelement Analysis1. Soil Science Society of America Journal, 46(5), 1099-1102.
Shuman, L. M. (1983) Sodium Hypochlorite Methods for Extracting Microelements Associated with Soil Organic Matter1. Soil Science Society of America Journal, 47(4), 656.
Smith, I. C., Carson, B. L. and Hoffmeister, F. (1978) Trace metals in the environment: Volume 5 – Indium. Ann Arbor Science Publishers, Ann Arbor, Mich. p. 552.
Staff, K., Brown, M. B., Chilcott, R. P., Hider, R. C., Jones, S. A. and Kong, X. L. (2011) Ga(III) complexes—The effect of metal coordination on potential systemic absorption after topical exposure. Toxicology Letters, 202(3), 155–160.
Stone, M. and Droppo, I. G. (1996) Distribution of lead, copper and zinc in size-fractionated river bed sediment in two agricultural catchments of southern Ontario, Canada. Environmental Pollution, 93(3), 353–362.
Stone, M. and Marsalek, J. (1996) Trace metal composition and speciation in street sediment: Sault Ste. Marie, Canada. Water, Air, Soil Pollution, 87(1-4), 149–169.
Su, J.-Y., Syu, C.-H. and Lee, D.-Y. (2018) Growth inhibition of rice ( Oryza sativa L.) seedlings in Ga- and In-contaminated acidic soils is respectively caused by Al and Al + In toxicity. Journal of Hazardous Materials, 344, 274–282.
Sutherland, R. A., Tack, F. M. G., Tolosa, C. A. and Verloo, M. G. (2000) Operationally Defined Metal Fractions in Road Deposited Sediment, Honolulu, Hawaii. Journal of Environment Quality, 29(5), 1431.
Takeda, A., Tsukada, H., Takaku, Y., Hisamatsu, S., Inaba, J. and Nanzyo, M. (2006) Extractability of major and trace elements from agricultural soils using chemical extraction methods: Application for phytoavailability assessment. Soil Science and Plant Nutrition, 52(4), 406–417.
Tessier, A., Campbell, P. G. C. and Bisson, M. (1979) Sequential extraction procedure for the speciation of particulate trace metals. Analytical Chemistry, 51(7), 844–851.
Tokalioglu, S., Kartal, S. and Elçi, L. (2000) Speciation and Determination of Heavy Metals in Lake Waters by Atomic Absorption Spectrometry after Sorption on Amberlite XAD-16 Resin. Analytical Sciences, 16(11), 1169–1174.
Ure, A. M. and Davidson, C. M. (2001) Chemical speciation in the environment, Blackwell Science, Oxford, UK.
Ure, A. M., Quevauviller, P., Muntau, H. and Griepink, B. (1993) Speciation of Heavy Metals in Soils and Sediments. An Account of the Improvement and Harmonization of Extraction Techniques Undertaken Under the Auspices of the BCR of the Commission of the European Communities. International Journal of Environmental Analytical Chemistry, 51(1-4), 135–151.
USGS. (2018) Mineral Commodity Summaries 2018. United States Geological Survey, Reston, Virginia.
Vaněk, A., Grygar, T., Chrastný, V., Tejnecký, V., Drahota, P. and Komárek, M. (2010) Assessment of the BCR sequential extraction procedure for thallium fractionation using synthetic mineral mixtures. Journal of Hazardous Materials, 176(1-3), 913–918.
Vaněk, A.; Mihaljevič, M.; Galušková, I.; Chrastný, V.; Komárek, M.; Penížek, V.; Zádorová, T. and Drábek, O. (2013) Phase-dependent phytoavailability of thallium–A synthetic soil experiment. Journal of hazardous materials, 250-251, 265-271.
Van Hulle, M., De Cremer, K., Vanholder, R. and Cornelis, R. (2005) In vivo distribution and fractionation of indium in rats after subcutaneous and oral administration of [114mIn]InAs. Journal of Environmental Monitoring, 7(4), 365.
Wcisło, E., Ioven, D., Kucharski, R. and Szdzuj, J. (2002) Human health risk assessment case study: an abandoned metal smelter site in Poland. Chemosphere, 47(5), 507–515.
Wedepohl, K. H. (1995) The composition of the continental-crust. Geochimica et Cosmochimica Acta, 59(7), 1217–1232.
Whalley, C., and Grant, A. (1994). Assessment of the phase selectivity of the European Community Bureau of Reference (BCR) sequential extraction procedure for metals in sediment. Analytica Chimica Acta, 291(3), 287–295.
White, S. J. O. and Hemond, H. F. (2011) The Anthrobiogeochemical Cycle of Indium: A Review of the Natural and Anthropogenic Cycling of Indium in the Environment. Critical Reviews in Environmental Science and Technology, 42(2), 155–186.
White, S. J. O., Hussain, F. A., Hemond, H. F., Sacco, S. A., Shine, J. P., Runkel, R. L. and Kimball, B. A. (2017) The precipitation of indium at elevated pH in a stream influenced by acid mine drainage. Science of The Total Environment, 574, 1484–1491.
White, S. J. O. and Shine, J. P. (2016) Exposure Potential and Health Impacts of Indium and Gallium, Metals Critical to Emerging Electronics and Energy Technologies. Current Environmental Health Reports, 3(4), 459–467.
Wood, S. A. and Samson, I. M. (2006) The aqueous geochemistry of gallium, germanium, indium and scandium. Ore Geology Reviews. 28(1), 57–102.
Yang, J.-L. and Chen, L.-H. (2018) Toxicity of antimony, gallium, and indium toward a teleost model and a native fish species of semiconductor manufacturing districts of Taiwan. Journal of Elementology. 23(1), 191-199.
Zorpas, A. A., Constantinides, T., Vlyssides, A. G., Haralambous, I. and Loizidou, M. (2000) Heavy metal uptake by natural zeolite and metals partitioning in sewage sludge compost. Fuel and Energy Abstracts, 41(4), 220.
dc.identifier.urihttp://tdr.lib.ntu.edu.tw/jspui/handle/123456789/59838-
dc.description.abstract隨著高科技產業的發展,其製程中常使用的新興元素如鎵和銦之環境風險逐漸增加,並可能對生物與人類造成危害。土壤受金屬污染對於生態與人類之影響,主要取決於金屬污染物在各個化學相態中的分布情形,一般透過序列萃取方法來劃分化學相態,藉此評估其有效性與移動性。同一種序列萃取方法並非適用於劃分所有金屬元素的化學相態,因此目前已發展出許多不同方法,其中以Tessier法與BCR法的使用最為廣泛。然而,目前尚未有針對鎵和銦序列萃取方法之適用性的討論,因此,本實驗之研究目的是探討序列萃取Tessier法與BCR法劃分土壤中鎵和銦物種之適用性。本實驗利用已知鎵、銦濃度的伊萊石、方解石、水鈉錳礦、水鐵礦、針鐵礦及腐植酸進行單一試劑萃取,確認試劑溶解能力與專一性,並以此預測序列萃取結果。接著進行序列萃取實驗,計算預測值與實際值之相關性與一致性以評估其適用性。最後使用外添加鎵與銦的三種土壤進行序列萃取實驗,並與XAS物種鑑定結果進行比對,驗證萃取方法之適用性。實驗結果顯示Tessier與BCR序列萃取方法中的單一試劑對方解石、伊萊石、腐植酸劃分結果雖不具有專一性,但仍可對其萃取作用進行評估。Tessier法對針鐵礦的劃分效果較佳,BCR法則無法萃取出其中的目標元素。水鈉錳礦及水鐵礦在兩種方法中皆具有良好的劃分效果。含鎵與含銦材料的序列萃取結果顯示,Tessier法皆較BCR法更適用於所有含鎵礦物與腐植酸;含銦礦物與腐植酸除方解石以外皆適用Tessier法,而BCR法也適用於伊萊石、水鈉錳礦和水鐵礦中。若以土壤中的組成比例考量,Tessier法對含銦礦物與腐植酸仍較BCR法更為適用。外添加鎵和銦土壤的序列萃取結果顯示Tessier法與BCR法皆適用於評估土壤中鎵和銦的有效性及其物種分布。zh_TW
dc.description.abstractGallium(Ga) and indium(In) are widely used in high-tech industries, which resulted in their release into the environment and the increased risks of exposure to public health. The impact of soil metal pollution on ecological and public healths depends on the abundance and distribution of metal pollutants in various chemical phases. Given that, sequential extraction methods have been developed to determine metal fractionation to provide information about the availability and mobility of metal pollutants in soil. However, a sequential extraction method is often not applicable to all metal pollutants. Therefore, different methods have been developed and evaluated, and Tessier and BCR method are the most widely used ones so far. For Ga and In, it is unknown whether the sequential extraction methods are suitable for the fractionation of Ga and In in soil. Therefore, the purpose of this study is to assess the applicability of the Tessier and BCR sequential extraction method to the fractionation of Ga and In in soil. Illite, calcite, birnessite, ferrihydrite, goethite and humic acid with known Ga and In concentrations were prepared and extracted with each reagent to confirm the specificity of the reagent in extracting Ga and In, After single extraction, sequential extraction methods were conducted for those materials to determine the correlation and consistency between the predicted value and the actual value. Finally, three soils spiked with Ga or In were used for sequential extraction experiments to evaluate the analytical performance of the extraction method through the comparison with the corresponding XAS speciation results. The experimental results show that the fractionation results of calcite, illite, and humic acid with a single reagent in the two sequential extraction methods are not as expected; Tessier method has a better extraction effect on goethite, and BCR method cannot extract the target elements in goethite. Birnessite and ferrihydrite have good extraction effects in the two methods. The sequential extraction results of Ga-bearing or In-bearing materials show that Tessier method is more suitable for all Ga-bearing minerals and humic acid than BCR method. Tessier method is suitable for In-bearing minerals and humic acid except for calcite, and BCR method is also suitable for illite, birnessite and ferrihydrite. For the soil, the Tessier method is more suitable for In-bearing minerals and humic acid than BCR method. The sequential extraction results of Ga- or In-spiked soil show that both Tessier method and BCR method are suitable for evaluating the availability of Ga and In in soil.en
dc.description.provenanceMade available in DSpace on 2021-06-16T09:40:35Z (GMT). No. of bitstreams: 1
U0001-1308202016495000.pdf: 2140696 bytes, checksum: 429dee6ee06655391e3e4922ec4ca0fe (MD5)
Previous issue date: 2020
en
dc.description.tableofcontents摘 要 i
Abstract ii
目錄 iv
圖目錄 vi
表目錄 ix
第一章 前言 1
第二章 研究目的 3
第三章 文獻回顧 4
3.1 科技關鍵元素 (Technology-critical elements) 4
3.2 鎵、銦的來源與環境背景濃度 4
3.3 鎵、銦化學特性及在土壤中的物種型態 6
3.4 鎵、銦的毒性與管制標準 8
3.5 金屬元素在土壤中的物種型態特性 9
3.6 用於環境樣品的萃取方法 11
3.6.1 單一萃取方法 11
3.6.2 序列萃取方法 12
第四章 材料與方法 19
4.1 化學藥品來源 19
4.2 礦物與腐植酸來源 19
4.3 序列萃取方法 22
4.3.1 改良BCR法 (Rauret et al. 1999) 22
4.3.2 Tessier法 (Tessier et al. 1979) 23
4.4 序列萃取方法評估 24
4.4.1 單一萃取:單一礦物與腐植酸 25
4.4.2 序列萃取:單一礦物與腐植酸 26
4.4.3 序列萃取:外添加之土壤 26
4.5 化學定性與定量分析 27
4.5.1 X光繞射光譜(X-ray diffraction spectroscopy, XRD) 27
4.5.2 微波輔助王水消化法 27
4.5.3 感應耦合電漿原子發射光譜儀(Inductively coupled plasma optical emission spectrometry, ICP-OES) 27
4.5.4 X光吸收光譜(X-ray adsorption spectroscopy, XAS) 28
4.6 統計分析 28
第五章 結果與討論 30
5.1含鎵或含銦的礦物、腐植酸、供試土壤之性質 30
5.2序列萃取方法評估 34
5.2.1 單一萃取:單一礦物與腐植酸 34
5.2.2 序列萃取:單一礦物與腐植酸 51
5.2.3 序列萃取:外添加土壤 72
第六章 結論 76
參考文獻 78
dc.language.isozh-TW
dc.subject物種劃分zh_TW
dc.subject鎵zh_TW
dc.subject銦zh_TW
dc.subject序列萃取zh_TW
dc.subjectSequential extractionen
dc.subjectGalliumen
dc.subjectIndiumen
dc.subjectChemical fractionationen
dc.title序列萃取方法劃分土壤鎵與銦物種的適用性之探討zh_TW
dc.titleEvaluation of Sequential Extraction for Speciation of Gallium and Indium in Soilen
dc.typeThesis
dc.date.schoolyear108-2
dc.description.degree碩士
dc.contributor.oralexamcommittee許正一(Zeng-Yei Hseu),鄒裕民(Yu-Min Tzou),賴鴻裕(Hung-Yu Lai),劉羽庭(Yu-Ting Liu)
dc.subject.keyword鎵,銦,序列萃取,物種劃分,zh_TW
dc.subject.keywordGallium,Indium,Sequential extraction,Chemical fractionation,en
dc.relation.page91
dc.identifier.doi10.6342/NTU202003294
dc.rights.note有償授權
dc.date.accepted2020-08-17
dc.contributor.author-college生物資源暨農學院zh_TW
dc.contributor.author-dept農業化學研究所zh_TW
顯示於系所單位:農業化學系

文件中的檔案:
檔案 大小格式 
U0001-1308202016495000.pdf
  未授權公開取用
2.09 MBAdobe PDF
顯示文件簡單紀錄


系統中的文件,除了特別指名其著作權條款之外,均受到著作權保護,並且保留所有的權利。

社群連結
聯絡資訊
10617臺北市大安區羅斯福路四段1號
No.1 Sec.4, Roosevelt Rd., Taipei, Taiwan, R.O.C. 106
Tel: (02)33662353
Email: ntuetds@ntu.edu.tw
意見箱
相關連結
館藏目錄
國內圖書館整合查詢 MetaCat
臺大學術典藏 NTU Scholars
臺大圖書館數位典藏館
本站聲明
© NTU Library All Rights Reserved