請用此 Handle URI 來引用此文件:
http://tdr.lib.ntu.edu.tw/jspui/handle/123456789/59834完整後設資料紀錄
| DC 欄位 | 值 | 語言 |
|---|---|---|
| dc.contributor.advisor | 潘子明(Tzu-Ming Pan) | |
| dc.contributor.author | Meng-Chun Cheng | en |
| dc.contributor.author | 鄭孟純 | zh_TW |
| dc.date.accessioned | 2021-06-16T09:40:23Z | - |
| dc.date.available | 2022-02-17 | |
| dc.date.copyright | 2017-02-17 | |
| dc.date.issued | 2017 | |
| dc.date.submitted | 2017-02-07 | |
| dc.identifier.citation | Aderem, A., Underhill, D.M. 1999. Mechanisms of phagocytosis in macrophages. Annu. Rev. Immunol. 17: 593-623.
Agrawal, M., Kumar, V., Singh, A.K., Kashyap, M.P., Khanna, V.K., Siddiqui, M.A., Pant, A.B. 2013. trans-Resveratrol protects ischemic PC12 cells by inhibiting the hypoxia associated transcription factors and increasing the levels of antioxidant defense enzymes. ACS. Chem. Neurosci. 4: 285-294. Aronowski, J., Ostrow, P., Samways, E., Strong, R., Zivin, J.A., Grotta, J.C. 1994. Graded bioassay for demonstration of brain rescue from experimental acute ischemia in rats. Stroke 25: 2235-2240. Bae, E.H., Kim, I.J., Park, J.W., Ma, S.K., Lee, J.U., Kim, S.W. 2010. Renoprotective effect of rosuvastatin in DOCA-salt hypertensive rats. Nephrol. Dial. Transplant. 25: 1051-1059. Bai, J., Rodriguez, A.M., Melendez, J.A., Cederbaum, A.I. 1999. Overexpression of catalase in cytosolic or mitochondrial compartment protects HepG2 cells against oxidative injury. J. Biol. Chem. 274: 26217-26224. Bartus, R.T., Hayward, N.J., Elliott, P.J., Sawyer, S.D., Baker, K.L., Dean, R.L., Akiyama, A., Straub, J.A., Harbeson, S.L. 1994. Calpain inhibitor AK295 protects neurons from focal brain ischemia. Stroke 25: 2265-2270. Bazan, N.G. 2007. Omega-3 fatty acids, pro-inflammatory signaling and neuroprotection. Curr. Opin. Clin. Nutr. Metab. Care 10: 136-141. Beal, M.F., Brouillet, E., Jenkins, B.G., Ferrante, R.J., Kowall, N.W., Miller, J.M., Storey, E., Srivastava, R., Rosen, B.R., Hyman, B.T. 1993. Neurochemical and histologic characterization of striatal excitotoxic lesions produced by the mitochondrial toxin 3-nitropropionic acid. J. Neurosci. 13: 4181-4192. Beckman, J.S., Beckman, T.W., Chen, J., Marshall, P.A., Freeman, B.A. 1990. Apparent hydroxyl radical production by peroxynitrite: implications for endothelial injury from nitric oxide and superoxide. PNAS. 87: 1620-1624. Bergersen, L.H. 2007. Is lactate food for neurons? Comparison of monocarboxylate transporter subtypes in brain and muscle. Neuroscience 145: 11-19. Berridge, M.J. 1995. Inositol trisphosphate and calcium signaling. Ann. N.Y. Acad. Sci. 766: 31-43. Berthet, C., Castillo, X., Magistretti, P.J., Hirt, L. 2012. New evidence of neuroprotection by lactate after transient focal cerebral ischaemia: extended benefit after intracerebroventricular injection and efficacy of intravenous administration. Cerebrovasc. Dis. 34: 329-335. Berthet, C., Lei, H., Thevenet, J., Gruetter, R., Magistretti, P.J., Hirt, L. 2009. Neuroprotective role of lactate after cerebral ischemia. J. Cereb. Blood Flow Metab. 29: 1780-1789. Boast, C.A., Gerhardt, S.C., Pastor, G., Lehmann, J., Etienne, P.E., Liebman, J.M. 1988. The N-methyl-D-aspartate antagonists CGS 19755 and CPP reduce ischemic brain damage in gerbils. Brain Res. 442: 345-348. Bonventre, J.V., Huang, Z., Taheri, M.R., O'Leary, E., Li, E., Moskowitz, M.A., Sapirstein, A. 1997. Reduced fertility and postischaemic brain injury in mice deficient in cytosolic phospholipase A2. Nature 390: 622-625. Borlongan, C.V., Koutouzis, T.K., Randall, T.S., Freeman, T.B., Cahill, D.W., Sanberg, P.R. 1995. Systemic 3-nitropropionic acid: behavioral deficits and striatal damage in adult rats. Brain Res. Bull. 36: 549-556. Box, G.E.P and Behnken, D.W. 1960. Some new three level designs for the study of quantitative variable. Technometrics. 2: 455-463. Brady, H.J., Gil-Gomez, G. 1998. The pro-apoptotic Bcl-2 family member, Bax. Int. J. Biochem. Cell Biol. 30: 647-650. Breg, J., Romijn, D. 1988. Characterisation of four lactose monophosphates by application of 31P-, 13C-, and 1H-n.m.r. spectroscopy. Carbohydrate Research 174: 23-36. Brooks, V.L., Freeman, K.L. 2006. Time course of synergistic interaction between DOCA and salt on blood pressure: roles of vasopressin and hepatic osmoreceptors. Am. J. Physiol. Regul. Integr. Comp. Physiol. 291: R1825-1834. Cacabelos, R., Fernandez-Novoa, L., Perez-Trullen, J.M., Franco-Maside, A., Alvarez, X.A. 1992. Serum histamine in Alzheimer's disease and multi-infarct dementia. Methods Find Exp. Clin. Pharmacol. 14: 711-715. Chamorro, A., Vila, N., Ascaso, C., Elices, E., Schonewille, W., Blanc, R. 1998. Blood pressure and functional recovery in acute ischemic stroke. Stroke 29: 1850-1853. Chen, C.L., Pan, T.M. 2013. Red mold dioscorea decreases blood pressure when administered alone or with amlodipine and is a potentially safe functional food in SHR and WKY rats. J. Funct. Foods 5: 1456-1465. Chen, J., Li, Y., Wang, L., Lu, M., Chopp, M. 2002. Caspase inhibition by Z-VAD increases the survival of grafted bone marrow cells and improves functional outcome after MCAo in rats. J. Neurol. Sci. 199: 17-24. Cheng, C.P., Tsai, S.W., Chiu, C.P., Pan, T.M., Tsai, T.Y. 2013. The effect of probiotic-fermented soy milk on enhancing the NO-mediated vascular relaxation factors. J. Sci. Food Agric. 93: 1219-1225. Cheng, M.C., Tsai, T.Y., Pan, T.M. 2015. Anti-obesity activity of the water extract of Lactobacillus paracasei subsp. paracasei NTU 101 fermented soy milk products. Food Funct. 6: 3522-3530. Cheng, Y., Deshmukh, M., D'Costa, A., Demaro, J.A., Gidday, J.M., Shah, A., Sun, Y., Jacquin, M.F., Johnson, E.M., Holtzman, D.M. 1998. Caspase inhibitor affords neuroprotection with delayed administration in a rat model of neonatal hypoxic-ischemic brain injury. J. Clin. Invest. 101: 1992-1999. Cheng, Y.D., Al-Khoury, L., Zivin, J.A. 2004. Neuroprotection for ischemic stroke: two decades of success and failure. Neurotherapeutics 1: 36-45. Cherubini, A., Lowenthal, D.T., Paran, E., Mecocci, P., Williams, L.S., Senin, U. 2007. Hypertension and cognitive function in the elderly. Am. J. Ther. 14: 533-554. Chiang, S.S., Liao, J.W., Pan, T.M. 2012a. Effect of bioactive compounds in Lactobacilli-fermented soy skim milk on femoral bone microstructure of aging mice. J. Sci. Food Agric. 92: 328-335. Chiang, S.S., Liu, C.F., Tseng, K.C., Mau, J.L., Pan, T.M. 2012b. Immunomodulatory effects of dead Lactobacillus on murine splenocytes and macrophages. Food Agric. Immunol. 23: 183-202. Chiang, S.S., Pan, T.M. 2011. Antiosteoporotic effects of Lactobacillus-fermented soy skim milk on bone mineral density and the microstructure of femoral bone in ovariectomized mice. J. Agric. Food Chem. 59: 7734-7742. Chiang, S.S., Pan, T.M. 2013. Beneficial effects of phytoestrogens and their metabolites produced by intestinal microflora on bone health. Appl. Microbiol. Biotechnol. 97: 1489-1500. Chiu, B.Y., Chang, C.P., Lin, J.W., Yu, J.S., Liu, W.P., Hsu, Y.C., Lin, M.T. 2014. Beneficial effect of astragalosides on stroke condition using PC12 cells under oxygen glucose deprivation and reperfusion. Cell Mol. Neurobiol. 34: 825-837. Chiu, C.H., Lu, T.Y., Tseng, Y.Y., Pan, T.M. 2006. The effects of Lactobacillus-fermented milk on lipid metabolism in hamsters fed on high-cholesterol diet. Appl. Microbiol. Biotechnol. 71: 238-245. Cho, S., Bales, J., Tran, T.K., Korab, G., Khandelwal, N., Joffe, A.M. 2016. Effects of 14 versus 21 days of nimodipine therapy on neurological outcomes in aneurysmal subarachnoid hemorrhage patients. Ann. Pharmacother 50: 718-724. Chung, S.W., Kang, B.Y., Kim, S.H., Pak, Y.K., Cho, D., Trinchieri, G., Kim, T.S. 2000. Oxidized low density lipoprotein inhibits interleukin-12 production in lipopolysaccharide-activated mouse macrophages via direct interactions between peroxisome proliferator-activated receptor-gamma and nuclear factor-kappa B. J. Biol. Chem. 275: 32681-32687. Clark, W.M., Madden, K.P., Rothlein, R., Zivin, J.A. 1991. Reduction of central nervous system ischemic injury by monoclonal antibody to intercellular adhesion molecule. J. Neurosurg. 75: 623-627. Crawford, M.J., Krishnamoorthy, R.R., Rudick, V.L., Collier, R.J., Kapin, M., Aggarwal, B.B., Al-Ubaidi, M.R., Agarwal, N. 2001. Bcl-2 overexpression protects photooxidative stress-induced apoptosis of photoreceptor cells via NF-kappaB preservation. Biochem. Biophys. Res. Commun. 281: 1304-1312. Cregan, S.P., MacLaurin, J.G., Craig, C.G., Robertson, G.S., Nicholson, D.W., Park, D.S., Slack, R.S., 1999. Bax-dependent caspase-3 activation is a key determinant in p53-induced apoptosis in neurons. J. Neurosci. 19: 7860-7869. Czogalla, A., Sikorski, A.F. 2005. Spectrin and calpain: a 'target' and a 'sniper' in the pathology of neuronal cells. Cell Mol. Life Sci. 62: 1913-1924. D'Orsi, B., Kilbride, S.M., Chen, G., Perez Alvarez, S., Bonner, H.P., Pfeiffer, S., Plesnila, N., Engel, T., Henshall, D.C., Dussmann, H., Prehn, J.H. 2015. Bax regulates neuronal Ca2+ homeostasis. J. Neurosci. 35: 1706-1722. Dave, J.R., Koenig, M.L., Tortella, F.C., Pieringer, R.A., Doctor, B.P., Ved, H.S. 1997. Dodecylglycerol provides partial protection against glutamate toxicity in neuronal cultures derived from different regions of embryonic rat brain. Mol. Chem. Neuropathol. 30: 1-13. Daynes, R.A., Jones, D.C. 2002. Emerging roles of PPARs in inflammation and immunity. Nat. Rev. Immunol. 2: 748-759. de la Torre, J.C. 2010. Vascular risk factor detection and control may prevent Alzheimer's disease. Ageing Res. Rev. 9: 218-225. Dickens, F., Greville, G.D. 1933. Metabolism of normal and tumour tissue. VIII. Respiration in fructose and in sugar-free media. Biochem. J. 27: 832-841. Dong, X., Song, Y.N., Liu, W.G., Guo, X.L. 2009. Mmp-9, a potential target for cerebral ischemic treatment. Curr. Neuropharmacol. 7: 269-275. Dufouil, C., Richard, F., Fievet, N., Dartigues, J.F., Ritchie, K., Tzourio, C., Amouyel, P., Alperovitch, A. 2005. APOE genotype, cholesterol level, lipid-lowering treatment, and dementia: the three-city study. Neurology 64: 1531-1538. Duron, E., Hanon, O. 2008. Vascular risk factors, cognitive decline, and dementia. Vasc. Health Risk Manag. 4: 363-381. Enciu, A.M., Constantinescu, S.N., Popescu, L.M., Muresanu, D.F., Popescu, B.O. 2011. Neurobiology of vascular dementia. J. Aging Res. 2011, 1-11. Endres, M., Namura, S., Shimizu-Sasamata, M., Waeber, C., Zhang, L., Gomez-Isla, T., Hyman, B.T., Moskowitz, M.A. 1998. Attenuation of delayed neuronal death after mild focal ischemia in mice by inhibition of the caspase family. J. Cereb. Blood Flow Metab. 18: 238-247. Espartero, J.L., Rashkov, I., Li, S.M., Manolova, N., Vert, M. 1996. NMR analysis of low molecular weight poly (lactic acid) s. Macromolecules 29: 3535-3539. Evans, J.G., Feuerlein, W., Glatt, M.M., Kanowski, S., Scott, D.B. 1986. Chlormethiazole 25 years: recent developments and historical perspectives. Acta. Psychiatr. Scand. 329: 1-198. Farkas, E., Donka, G., de Vos, R.A., Mihaly, A., Bari, F., Luiten, P.G. 2004. Experimental cerebral hypoperfusion induces white matter injury and microglial activation in the rat brain. Acta. Neuropathol. 108: 57-64. Ferri, C.P., Prince, M., Brayne, C., Brodaty, H., Fratiglioni, L., Ganguli, M., Hall, K., Hasegawa, K., Hendrie, H., Huang, Y., Jorm, A., Mathers, C., Menezes, P.R., Rimmer, E., Scazufca, M. 2005. Global prevalence of dementia: a Delphi consensus study. Lancet. 366: 2112-2117. Fordel, E., Thijs, L., Martinet, W., Schrijvers, D., Moens, L., Dewilde, S. 2007. Anoxia or oxygen and glucose deprivation in SH-SY5Y cells: a step closer to the unraveling of neuroglobin and cytoglobin functions. Gene 398: 114-122. Fratiglioni, L., De Ronchi, D., Aguero-Torres, H. 1999. Worldwide prevalence and incidence of dementia. Drugs Aging 15: 365-375. Frederick, J.R., Chen, Z., Bevers, M.B., Ingleton, L.P., Ma, M., Neumar, R.W. 2008. Neuroprotection with delayed calpain inhibition after transient forebrain ischemia. Crit. Care Med. 36: S481-485. Frost, S.B., Barbay, S., Mumert, M.L., Stowe, A.M., Nudo, R.J. 2006. An animal model of capsular infarct: endothelin-1 injections in the rat. Behav. Brain Res. 169: 206-211. Fujita, M., Ando, K., Nagae, A., Fujita, T. 2007. Sympathoexcitation by oxidative stress in the brain mediates arterial pressure elevation in salt-sensitive hypertension. Hypertension 50: 360-367. Gama, C.S., Berk, M., Andreazza, A.C., Kapczinski, F., Belmonte-de-Abreu, P. 2008. Serum levels of brain-derived neurotrophic factor and thiobarbituric acid reactive substances in chronically medicated schizophrenic patients: a positive correlation. Rev. Bras. Psiquiatr. 30: 337-340. Gentile, M.T., Poulet, R., Di Pardo, A., Cifelli, G., Maffei, A., Vecchione, C., Passarelli, F., Landolfi, A., Carullo, P., Lembo, G. 2009. Beta-amyloid deposition in brain is enhanced in mouse models of arterial hypertension. Neurobiol. Aging 30: 222-228. Girnun, G.D., Domann, F.E., Moore, S.A., Robbins, M.E. 2002. Identification of a functional peroxisome proliferator-activated receptor response element in the rat catalase promoter. Mol. Endocrinol. 16: 2793-2801. Goderska, K., Jacek, N., Zbigniew, C. 2008. Comparison of the growth of Lactobacillus acidophilus and Bifidobacterium bifidum species in media supplemented with selected saccharides including prebiotics. Acta. Sci. Pol. Technol. Aliment. 7: 5-20. Gotti, B., Duverger, D., Bertin, J., Carter, C., Dupont, R., Frost, J., Gaudilliere, B., MacKenzie, E.T., Rousseau, J., Scatton, B. 1988. Ifenprodil and SL 82.0715 as cerebral anti-ischemic agents. J. Pharmacol. Exp. Ther. 247: 1211-1221. Green, A.R. 1998. Clomethiazole (Zendra) in acute ischemic stroke: basic pharmacology and biochemistry and clinical efficacy. Pharmacol. Ther. 80: 123-147. Guha, M., Mackman, N. 2001. LPS induction of gene expression in human monocytes. Cell Signal. 13: 85-94. Gustafson, D. 2006. Adiposity indices and dementia. Lancet. Neurol. 5: 713-720. Guyot, L.L., Diaz, F.G., O'Regan, M.H., McLeod, S., Park, H., Phillis, J.W. 2001. Real-time measurement of glutamate release from the ischemic penumbra of the rat cerebral cortex using a focal middle cerebral artery occlusion model. Neurosci. Lett. 299: 37-40. Hachinski, V.C., Iliff, L.D., Zilhka, E., Du Boulay, G.H., McAllister, V.L., Marshall, J., Russell, R.W., Symon, L. 1975. Cerebral blood flow in dementia. Arch. Neurol. 32: 632-637. Hacke, W., Donnan, G., Fieschi, C., Kaste, M., von Kummer, R., Broderick, J.P., Brott, T., Frankel, M., Grotta, J.C., Haley, E.C., Jr., Kwiatkowski, T., Levine, S.R., Lewandowski, C., Lu, M., Lyden, P., Marler, J.R., Patel, S., Tilley, B.C., Albers, G., Bluhmki, E., Wilhelm, M., Hamilton, S., Investigators, A.T., Investigators, E.T., Investigators, S.G. 2004. Association of outcome with early stroke treatment: pooled analysis of ATLANTIS, ECASS, and NINDS rt-PA stroke trials. Lancet. 363: 768-774. Hagg, S., Thorn, L.M., Forsblom, C.M., Gordin, D., Saraheimo, M., Tolonen, N., Waden, J., Liebkind, R., Putaala, J., Tatlisumak, T., Groop, P.H. 2014. Different risk factor profiles for ischemic and hemorrhagic stroke in type 1 diabetes mellitus. Stroke 45: 2558-2562. Hainsworth, A.H., Markus, H.S. 2008. Do in vivo experimental models reflect human cerebral small vessel disease? A systematic review. J. Cereb. Blood Flow Metab. 28: 1877-1891. Hara, H., Huang, P.L., Panahian, N., Fishman, M.C., Moskowitz, M.A. 1996. Reduced brain edema and infarction volume in mice lacking the neuronal isoform of nitric oxide synthase after transient MCA occlusion. J. Cereb. Blood Flow. Metab. 16: 605-611. Hart, M.N., Heistad, D.D., Brody, M.J. 1980. Effect of chronic hypertension and sympathetic denervation on wall/lumen ratio of cerebral vessels. Hypertension 2: 419-423. Hattori, H., Takeda, M., Kudo, T., Nishimura, T., Hashimoto, S. 1992. Cumulative white matter changes in the gerbil brain under chronic cerebral hypoperfusion. Acta. Neuropathol. 84: 437-442. He, Q., Xu, Y., Teng, Y., Wang, D. 2008. Biodiesel production catalyzed by whole-cell lipase from Rhizopus chinensis. 29: 41-46. Herrera, Y., Katnik, C., Rodriguez, J.D., Hall, A.A., Willing, A., Pennypacker, K.R., Cuevas, J. 2008. Sigma-1 receptor modulation of acid-sensing ion channel a (ASIC1a) and ASIC1a-induced Ca2+ influx in rat cortical neurons. J. Pharmacol. Exp. Ther. 327: 491-502. Hong, S.C., Goto, Y., Lanzino, G., Soleau, S., Kassell, N.F., Lee, K.S. 1994. Neuroprotection with a calpain inhibitor in a model of focal cerebral ischemia. Stroke 25: 663-669. Horn, J., de Haan, R.J., Vermeulen, M., Limburg, M. 2001. Very Early Nimodipine Use in Stroke (VENUS): a randomized, double-blind, placebo-controlled trial. Stroke 32: 461-465. Horn, T., Klein, J. 2013. Neuroprotective effects of lactate in brain ischemia: dependence on anesthetic drugs. Neurochem. Int. 62: 251-257. Hsieh, F.I., Chiou, H.Y. 2014. Stroke: morbidity, risk factors, and care in Taiwan. Stroke 16: 59-64. Huang, P.L., Huang, Z., Mashimo, H., Bloch, K.D., Moskowitz, M.A., Bevan, J.A., Fishman, M.C. 1995. Hypertension in mice lacking the gene for endothelial nitric oxide synthase. Nature 377: 239-242. Huang, T., Gao, D., Jiang, X., Hu, S., Zhang, L., Fei, Z. 2014. Resveratrol inhibits oxygen-glucose deprivation-induced MMP-3 expression and cell apoptosis in primary cortical cells via the NF-kappaB pathway. Mol. Med. Rep. 10: 1065-1071. Huang, Z., Huang, P.L., Ma, J., Meng, W., Ayata, C., Fishman, M.C., Moskowitz, M.A. 1996. Enlarged infarcts in endothelial nitric oxide synthase knockout mice are attenuated by nitro-L-arginine. J. Cereb. Blood Flow Metab. 16: 981-987. Huang, Z., Huang, P.L., Panahian, N., Dalkara, T., Fishman, M.C., Moskowitz, M.A. 1994. Effects of cerebral ischemia in mice deficient in neuronal nitric oxide synthase. Science 265: 1883-1885. Hussein, G., Goto, H., Oda, S., Sankawa, U., Matsumoto, K., Watanabe, H. 2006. Antioxidant and histopathological effects in spontaneously hypertensive rats. Biol. Pharm. Bull. 29: 684-688. Hwang, P.A., Tsai, Y.G., Gau, S.Y., Hung, Y.L., Fan, C.C. 2011. Neuroprotective effects of the lipidic extract from integument of squid Dosidicus gigas. J. Mar. Sci. Tech. 19: 101-106. Jacob, F., Clark, L.A., Guzman, P.A., Osborn, J.W. 2005. Role of renal nerves in development of hypertension in DOCA-salt model in rats: a telemetric approach. Am. J. Physiol. Heart Circ. Physiol. 289: 1519-1529. Jennings, J.R., Muldoon, M.F., Ryan, C.M., Mintun, M.A., Meltzer, C.C., Townsend, D.W., Sutton-Tyrrell, K., Shapiro, A.P., Manuck, S.B. 1998. Cerebral blood flow in hypertensive patients: an initial report of reduced and compensatory blood flow responses during performance of two cognitive tasks. Hypertension 31: 1216-1222. Jiang, H., Koubi, D., Zhang, L., Kuo, J., Rodriguez, A.I., Hunter, T.J., Gautam, S.C., Levine, R.A. 2005. Inhibitors of iNOS protects PC12 cells against the apoptosis induced by oxygen and glucose deprivation. Neurosci. Lett. 375: 59-63. Jiang, X., Mu, D., Manabat, C., Koshy, A.A., Christen, S., Tauber, M.G., Vexler, Z.S., Ferriero, D.M. 2004. Differential vulnerability of immature murine neurons to oxygen-glucose deprivation. Exp. Neurol. 190: 224-232. Jung, T.W., Lee, J.Y., Shim, W.S., Kang, E.S., Kim, S.K., Ahn, C.W., Lee, H.C., Cha, B.S. 2007. Rosiglitazone protects human neuroblastoma SH-SY5Y cells against MPP+ induced cytotoxicity via inhibition of mitochondrial dysfunction and ROS production. J. Neurol. Sci. 253: 53-60. Kader, A., Frazzini, V.I., Solomon, R.A., Trifiletti, R.R. 1993. Nitric oxide production during focal cerebral ischemia in rats. Stroke 24: 1709-1716. Kamata, H., Tanaka, C., Yagisawa, H., Matsuda, S., Gotoh, Y., Nishida, E., Hirata, H. 1996. Suppression of nerve growth factor-induced neuronal differentiation of PC12 cells. N-acetylcysteine uncouples the signal transduction from ras to the mitogen-activated protein kinase cascade. J. Biol. Chem. 271: 33018-33025. Kannel, W.B., Cupples, L.A., Ramaswami, R., Stokes, J., Kreger, B.E., Higgins, M. 1991. Regional obesity and risk of cardiovascular disease; the Framingham Study. J. Clin. Epidemiol. 44: 183-190. Katnik, C., Cuevas, J. 2014. Non-specific inhibition of ischemia- and acidosis-induced intracellular calcium elevations and membrane currents by alpha-phenyl-N-tert-butylnitrone, butylated hydroxytoluene and trolox. Int. J. Mol. Sci. 15: 3596-3611. Kawamura, T., Umemura, T., Hotta, N. 2012. Cognitive impairment in diabetic patients: Can diabetic control prevent cognitive decline? J. Diabetes Investig. 3: 413-423. Kim, E.J., Park, K.S., Chung, S.Y., Sheen, Y.Y., Moon, D.C., Song, Y.S., Kim, K.S., Song, S., Yun, Y.P., Lee, M.K., Oh, K.W., Yoon, D.Y., Hong, J.T. 2003. Peroxisome proliferator-activated receptor-gamma activator 15-deoxy-Delta12,14-prostaglandin J2 inhibits neuroblastoma cell growth through induction of apoptosis: association with extracellular signal-regulated kinase signal pathway. J. Pharmacol. Exp. Ther. 307: 505-517. Kim, G.W., Copin, J.C., Kawase, M., Chen, S.F., Sato, S., Gobbel, G.T., Chan, P.H. 2000. Excitotoxicity is required for induction of oxidative stress and apoptosis in mouse striatum by the mitochondrial toxin, 3-nitropropionic acid. J. Cereb. Blood Flow Metab. 20: 119-129. Kishi, T., Hirooka, Y. 2012. Oxidative stress in the brain causes hypertension via sympathoexcitation. Front. Physiol. 3: 335-343. Kishimoto, K., Li, R.C., Zhang, J., Klaus, J.A., Kibler, K.K., Dore, S., Koehler, R.C., Sapirstein, A. 2010. Cytosolic phospholipase A2 alpha amplifies early cyclooxygenase-2 expression, oxidative stress and MAP kinase phosphorylation after cerebral ischemia in mice. J. Neuroinflammation 7: 42-55. Kivipelto, M., Helkala, E.L., Hanninen, T., Laakso, M.P., Hallikainen, M., Alhainen, K., Soininen, H., Tuomilehto, J., Nissinen, A. 2001. Midlife vascular risk factors and late-life mild cognitive impairment: A population-based study. Neurology 56: 1683-1689. Kloppenborg, R.P., van den Berg, E., Kappelle, L.J., Biessels, G.J. 2008. Diabetes and other vascular risk factors for dementia: which factor matters most? A systematic review. Eur. J. Pharmacol. 585: 97-108. Knopman, D.S., Roberts, R. 2010. Vascular risk factors: imaging and neuropathologic correlates. J. Alzheimers Dis. 20: 699-709. Korczyn, A.D., Vakhapova, V., Grinberg, L.T. 2012. Vascular dementia. J. Neurol. Sci. 322: 2-10. Krause, G.S., White, B.C., Aust, S.D., Nayini, N.R., Kumar, K. 1988. Brain cell death following ischemia and reperfusion: a proposed biochemical sequence. Crit. Care Med. 16: 714-726. Kudo, T., Takeda, M., Tanimukai, S., Nishimura, T. 1993. Neuropathologic changes in the gerbil brain after chronic hypoperfusion. Stroke 24: 259-264. Lapchak, P.A., Araujo, D.M., Song, D., Wei, J., Zivin, J.A. 2002. Neuroprotective effects of the spin trap agent disodium-[(tert-butylimino) methyl] benzene-1,3-disulfonate N-oxide (generic NXY-059) in a rabbit small clot embolic stroke model: combination studies with the thrombolytic tissue plasminogen activator. Stroke 33: 1411-1415. Lee, B.H., Lo, Y.H., Pan, T.M. 2013. Anti-obesity activity activity of Lactobacillus fermented soy milk products. J. Funct. Foods 5: 905-913. Lewen, A., Matz, P., Chan, P.H. 2000. Free radical pathways in CNS injury. J. Neurotrauma. 17: 871-890. Leyen, K.V. 2013. Lipoxygenase: an emerging target for stroke therapy. CNS Neurol. Disord. Drug Targets 12: 191-199. Li, C., Li, L., Zhou, H., Xi, C., He, L. 2015. Improving yield of 1,3-Diglyceride by whole-cell lipase from A. Niger GZUF36 catalyzed glycerolysis via medium optimization. J. Braz. Chem. Soc. 26: 247-254. Lin, F.M., Chiu, C.H., Pan, T.M. 2004. Fermentation of a milk-soymilk and Lycium chinense Miller mixture using a new isolate of Lactobacillus paracasei subsp. paracasei NTU 101 and Bifidobacterium longum. J. Ind. Microbiol. Biotechnol. 31: 559-564. Lin, T.H., Pan, T.M. 2014. Inhibitory effect of Lactobacillus paracasei subsp. paracasei NTU 101 on rat dental caries. J. Funct. Foods 10: 223-231. Lin, W.H., Lin, C.K., Sheu, S.J., Hwang, C.F., Ye, W.T., Hwang, W.Z., Tsen, H.Y. 2009. Antagonistic activity of spent culture supernatants of lactic acid bacteria against Helicobacter pylori growth and infection in human gastric epithelial AGS cells. J. Food Sci. 74: 225-230. Liu, C.F., Hu, C.L., Chiang, S.S., Tseng, K.C., Yu, R.C., Pan, T.M. 2009. Beneficial preventive effects of gastric mucosal lesion for soy-skim milk fermented by lactic acid bacteria. J. Agric. Food Chem. 57: 4433-4438. Liu, C.F., Pan, T.M. 2010. In vitro effects of lactic acid bacteria on cancer cell viability and antioxidant activity. J. Food Drug Anal. 18: 77-86. Liu, C.F., Tung, Y.T., Wu, C.L., Lee, B.H., Hsu, W.H., Pan, T.M. 2011. Antihypertensive effects of Lactobacillus-fermented milk orally administered to spontaneously hypertensive rats. J. Agric. Food Chem. 59: 4537-4543. Liu, Y., Song, X.D., Liu, W., Zhang, T.Y., Zuo, J. 2003. Glucose deprivation induces mitochondrial dysfunction and oxidative stress in PC12 cell line. J. Cell Mol. Med. 7: 49-56. Liu, Y.Y., Zeng, S.Y., Leu, Y.L., Tsai, T.Y. 2015. Antihypertensive effect of a combination of uracil and glycerol derived from Lactobacillus plantarum strain TWK10-fermented soy milk. J. Agric. Food Chem. 63: 7333-7342. Lloyd-Jones, D.M., Evans, J.C., Levy, D. 2005. Hypertension in adults across the age spectrum: current outcomes and control in the community. JAMA. 294: 466-472. Loebel, R.O. 1925. Contributions on the respiration and glycosis of animal tissue. Biochem. Z. 161: 219-239. Lowry, O.H., Rosebrough, N.J., Farr, A.L., Randall, R.J. 1951. Protein measurement with the Folin phenol reagent. J. Biol. Chem. 193: 265-275. Lu, Y.M., Yin, H.Z., Chiang, J., Weiss, J.H. 1996. Ca2+-permeable AMPA/kainate and NMDA channels: high rate of Ca2+ influx underlies potent induction of injury. J. Neurosci. 16: 5457-5465. Mari, Y., Katnik, C., Cuevas, J. 2010. ASIC1a channels are activated by endogenous protons during ischemia and contribute to synergistic potentiation of intracellular Ca2+ overload during ischemia and acidosis. Cell Calcium 48: 70-82. Marshall, J.W., Duffin, K.J., Green, A.R., Ridley, R.M. 2001. NXY-059, a free radical-trapping agent, substantially lessens the functional disability resulting from cerebral ischemia in a primate species. Stroke 32: 190-198. McCracken, E., Dewar, D., Hunter, A.J. 2001. White matter damage following systemic injection of the mitochondrial inhibitor 3-nitropropionic acid in rat. Brain Res. 892: 329-335. McDowell, I. 2001. Alzheimer's disease: insights from epidemiology. Aging (Milano) 13: 143-162. McKean, T.A. 2001. Calcium transport mechanisms in muskrat and rat hearts. Comp. Biochem. Physiol. A Mol. Integr. Physiol. 130: 771-780. Meigs, J.B., Hu, F.B., Rifai, N., Manson, J.E. 2004. Biomarkers of endothelial dysfunction and risk of type 2 diabetes mellitus. JAMA. 291: 1978-1986. Mickel, H.S., Kempski, O., Feuerstein, G., Parisi, J.E., Webster, H.D. 1990. Prominent white matter lesions develop in mongolian gerbils treated with 100% normobaric oxygen after global brain ischemia. Acta. Neuropathologica. 79: 465-472. Molenaar, E.A., Hwang, S.J., Vasan, R.S., Grobbee, D.E., Meigs, J.B., D'Agostino, R.B., Sr., Levy, D., Fox, C.S. 2008. Burden and rates of treatment and control of cardiovascular disease risk factors in obesity: the Framingham Heart Study. Diabetes Care 31: 1367-1372. Molz, S., Olescowicz, G., Kraus, J.R., Ludka, F.K., Tasca, C.I. 2015. Purine receptors are required for DHA-mediated neuroprotection against oxygen and glucose deprivation in hippocampal slices. Purinergic. Signal. 11: 117-126. Moreno, S., Mugnaini, E., Ceru, M.P. 1995. Immunocytochemical localization of catalase in the central nervous system of the rat. J. Histochem. Cytochem. 43: 1253-1267. Moretti, A., Gorini, A., Villa, R.F. 2011. Pharmacotherapy and prevention of vascular dementia. CNS Neurol. Disord. Drug Targets 10: 370-390. Moretti, R., Torre, P., Antonello, R.M., Manganaro, D., Vilotti, C., Pizzolato, G. 2008. Risk factors for vascular dementia: hypotension as a key point. Vasc. Health Risk Manag. 4: 395-402. Moro, M.A., Almeida, A., Bolanos, J.P., Lizasoain, I. 2005. Mitochondrial respiratory chain and free radical generation in stroke. Free Radic. Biol. Med. 39: 1291-1304. Naidu, A.S., Bidlack, W.R., Clemens, R.A. 1999. Probiotic spectra of lactic acid bacteria (LAB). Crit. Rev. Food Sci. Nutr. 39: 13-126. Ni, J., Ohta, H., Matsumoto, K., Watanabe, H. 1994. Progressive cognitive impairment following chronic cerebral hypoperfusion induced by permanent occlusion of bilateral carotid arteries in rats. Brain Res. 653: 231-236. Nolte, R.T., Wisely, G.B., Westin, S., Cobb, J.E., Lambert, M.H., Kurokawa, R., Rosenfeld, M.G., Willson, T.M., Glass, C.K., Milburn, M.V. 1998. Ligand binding and co-activator assembly of the peroxisome proliferator-activated receptor-gamma. Nature 395: 137-143. Obisesan, T.O. 2009. Hypertension and cognitive function. Clin. Geriatr. Med. 25: 259-288. Ohta, H., Nishikawa, H., Kimura, H., Anayama, H., Miyamoto, M. 1997. Chronic cerebral hypoperfusion by permanent internal carotid ligation produces learning impairment without brain damage in rats. Neuroscience 79: 1039-1050. Ohta, K., Graf, R., Rosner, G., Heiss, W.D. 2001. Calcium ion transients in peri-infarct depolarizations may deteriorate ion homeostasis and expand infarction in focal cerebral ischemia in cats. Stroke 32: 535-543. Okamoto, K., Hazama, F., Yamori, Y., Haebara, H., Nagaoka, A. 1975. Pathogenesis and prevention of stroke in spontaneously hypertensive rats. Clin. Sci. Mol. Med. Suppl. 2: 161s-163s. Paci, A., Ottaviano, P., Trenta, A., Iannone, G., De Santis, L., Lancia, G., Moschini, E., Carosi, M., Amigoni, S., Caresia, L. 1989. Nimodipine in acute ischemic stroke: a double-blind controlled study. Acta Neurol. Scand. 80: 282-286. Palmer, R.M., Ferrige, A.G., Moncada, S. 1987. Nitric oxide release accounts for the biological activity of endothelium-derived relaxing factor. Nature 327: 524-526. Pandya, R.S., Mao, L., Zhou, H., Zhou, S., Zeng, J., Popp, A.J., Wang, X. 2011. Central nervous system agents for ischemic stroke: neuroprotection mechanisms. Cent. Nerv. Syst. Agents Med. Chem. 11: 81-97. Panza, F., D'Introno, A., Colacicco, A.M., Capurso, C., Pichichero, G., Capurso, S.A., Capurso, A., Solfrizzi, V. 2006. Lipid metabolism in cognitive decline and dementia. Brain Res. Rev. 51: 275-292. Peters, R. 2012. Blood pressure, smoking and alcohol use, association with vascular dementia. Exp. Gerontol. 47: 865-872. Pfrieger, F.W. 2003. Cholesterol homeostasis and function in neurons of the central nervous system. Cell Mol. Life Sci. 60: 1158-1171. Piguet, O., Garner, B. 2010. Vascular pharmacotherapy and dementia. Curr. Vasc. Pharmacol. 8: 44-50. Popjak, G., Edmond, J., Anet, F.A., Easton, N.R., Jr. 1977. Carbon-13 NMR studies on cholesterol biosynthesized from [13C] mevalonates. J. Am. Chem. Soc. 99: 931-935. Prins, N.D., Scheltens, P. 2015. White matter hyperintensities, cognitive impairment and dementia: an update. Nat. Rev. Neurol. 11: 157-165. Rink, C., Khanna, S. 2011. Significance of brain tissue oxygenation and the arachidonic acid cascade in stroke. Antioxid. Redox. Signal. 14: 1889-1903. Ros, J., Pecinska, N., Alessandri, B., Landolt, H., Fillenz, M. 2001. Lactate reduces glutamate-induced neurotoxicity in rat cortex. J. Neurosci. Res. 66: 790-794. Rosenberg, L., Merion, R.M., Campbell, D.A., Jr., Dafoe, D.C., Clarke, S., Rocher, L., Turcotte, J.G. 1988. Peripheral blood catalase in patients undergoing renal transplantation. J. Surg. Res. 44: 493-498. Ruitenberg, A., Ott, A., van Swieten, J.C., Hofman, A., Breteler, M.M. 2001. Incidence of dementia: does gender make a difference? Neurobiol. Aging 22: 575-580. Saito, H., Togashi, H., Yoshioka, M., Nakamura, N., Minami, M., Parvez, H. 1995. Animal models of vascular dementia with emphasis on stroke-prone spontaneously hypertensive rats. Clin. Exp. Pharmacol. Physiol. Suppl. 22: S257-259. Salminen, S., von Wright, A., Morelli, L | |
| dc.identifier.uri | http://tdr.lib.ntu.edu.tw/jspui/handle/123456789/59834 | - |
| dc.description.abstract | 腦血管疾病為一種嚴重的神經性疾病,亦為導致死亡與成年人長期殘疾的主要原因。腦血管疾病發生期間,氧氣和葡萄糖供應不足造成細胞損傷與大量自由基產生,最終導致神經細胞死亡及造成智力減退,由腦血管疾病引起之認知障礙及失智症統稱為血管性失智症。近年來研究指出萃取自蔬果與飲品中之天然化合物,藉由抗氧化、抗發炎及抑制微膠細胞活化等機制達到神經保護之效果。本研究室先前研究結果顯示,Lactobacillus paracasei subsp. paracasei NTU 101 (NTU 101) 發酵產物可改善數種與氧化壓力及/或發炎反應相關之疾病,亦能降低腦血管疾病之危險因子如:高血壓、粥狀動脈硬化、高血脂及肥胖。推論 NTU 101 發酵產物應具抗氧化及抗發炎等生理活性,故具預防及治療腦血管疾病之潛力。首先,以菌數、pH 值與乳酸變化作為指標,初步篩選出適合 NTU 101 發酵之基質為 25% 牛奶添加 5% 葡萄糖 (25% SM + 5% Glc)。25% SM + 5% Glc 發酵液之乙醇萃取物,於濃度 1 mg/mL 下,可預防由氧氣與葡萄糖剝奪及再灌注 (oxygen glucose deprivation-reoxygenation, OGD/R) 所造成之細胞死亡,與 OGD/R 相比,顯著回復細胞存活率達 42% (p < 0.05,回復率公式:(樣品組細胞存活率- OGD/R 組細胞存活率)/OGD/R 組細胞存活率 × 100%)。進一步探討 25% SM + 5% Glc 中具神經保護之生物活性物質,25% SM + 5% Glc 之 NTU 101 發酵液乙醇萃取物中的區分物 2-7-4 (F-2-7-4) 於濃度 10 μg/mL 下與 OGD/R 相比顯著增加細胞存活率達 40% (p < 0.05)。F-2-7-4 由超高效液相層析串聯質譜儀 (ultra-performance liquid chromatography-mass spectrometry) 得其偽離子峰為 m/z 551.5033 ([M-H2O+H]+),利用核磁共振 (nuclear magnetic resonance) 儀鑑定其分子式為 C35H68O5、分子量為 568 之化合物 glyceryl 1,3-dipalmitate (GD)。動物試驗以含有 GD 之 25% SM + 5% Glc 之 NTU 101 發酵液乙醇萃取物 (NTU101F) 來評估其對於醋酸去氧皮質酮與鹽溶液 (deoxycorticosterone acetate and salt solution, DOCA-S) 高血壓誘導血管性失智症之改善效果,實驗結果顯示,NTU101F (11、22 或 110 mg/kg) 可改善弓動脈彈性蛋白排列散亂及增加內皮型一氧化氮合成酶 (endothelial nitric oxide synthase) 表現量,促使一氧化氮生成,達到血管舒張之效果,亦可降低腦部水分滯留及腦組織中基質金屬蛋白酶 9 (matrix metalloproteinases-9)、氧化壓力及發炎之情形,進而改善學習記憶之能力。以上結果顯示,NTU101F 可透過抗氧化及抗發炎機制,預防血管性失智症之效果,具有潛力應用於腦血管疾病。進一步利用人類神經纖維瘤母細胞 (SH-SY5Y) 探討 GD 之神經保護機制,GD 可減緩 OGD/R 引起胞內活性氧 (reactive oxygen species) 之生成,提升細胞核中過氧化體增生劑活化接受器 γ (peroxisome proliferator-activated receptor gamma) 與核因子-紅血球之 2 相關因子-2 (nuclear factor erythroid 2-related factor 2, Nrf2) 之蛋白表現量,進而促使 Nrf2 下游抗氧化酵素-第一型血紅素氧化酶 (heme oxygenase-1, HO-1) 之表現,因而提升神經細胞抗氧化之能力,進而降低氧化壓力所造成之損傷。GD 可抑制核因子活化 B 細胞 κ 輕鏈增強子 (nuclear factor kappa-light-chain-enhancer of activated B cells) 之表現量,降低發炎反應。亦可藉由提升鈣離子通道蛋白 (plasma membrane Ca2+ ATPase) 之表現量,調控細胞內鈣離子之含量,達到減緩神經細胞損傷之效果。我們的研究結果顯示 GD 具預防或治療缺血性腦損傷及神經退行性疾病之潛力。由反應曲面法所得之最適 GD 生成條件為牛奶濃度 25.53%、葡萄糖濃度 44.32 g/L 及培養溫度 39.52oC,於此最適培養條件下,可生成 71.51 ng/g 之GD。以葡萄糖與牛奶為替代培養基可降低生產成本,提升其應用於商業之可行性。 | zh_TW |
| dc.description.abstract | Cerebrovascular disease is a common and serious neurological disease, which is the leading cause of death and long-term disability in adults. During the development of cerebrovascular disease, glucose and oxygen deficiencies induce subcellular damage and produce large amounts of free radicals, finally leading to neuronal death and intelligence deterioration. Cerebrovascular disease causes cognitive impairment and vascular dementia. Recent studies have focused on the potential preventative effects of natural fruit and vegetable extracts and beverages against certain age-related neurological disorders. The underlying mechanisms include antioxidation, anti-inflammation, and inhibition of microglia activation. Therefore, natural products are attracting increasing attention in the field of drug discovery. Our research group found that the fermentation metabolites of Lactobacillus paracasei subsp. paracasei NTU 101 (NTU 101) have antioxidant and anti-inflammation effects. In addition, they reduce the risk factors of cerebrovascular diseases such as hypertension, atherosclerosis, hyperlipidemia, and obesity. NTU 101-fermented metabolites have the potential to prevent and treat cerebrovascular diseases. The addition of 5% glucose to a 25% milk solution (25% SM + 5% Glc) exerted a significant effect not only on the number of bacterial cells but also on their acid-producing ability. A more statistically significant increase in cell viability was observed in the group treated with the 1 mg/mL ethanol NTU 101 extract-fermented 25% SM + 5% Glc (NTU101F) than was observed in the control oxygen-glucose deprivation-reoxygenation (OGD/R) pre-treatment groups (42%, p < 0.05, recovery rate: (cell viability of sample-treatment group - cell viability of OGD/R group)/cell viability of OGD/R group × 100%). Therefore, we investigated the neuroprotective compounds in the NTU101F. At a concentration of 10 μg/mL, fraction 2-7-4 (F-2-7-4) significantly enhanced cell viability by 40% (p < 0.05). The molecular formula of F-2-7-4 was identified as glyceryl 1,3-dipalmitate (GD, C35H68O5) using nuclear magnetic resonance and ultra-performance liquid chromatography-mass spectrometry (m/z 551.5033, [M-H2O+H]+). The hypertension-induced vascular dementia rats were orally administered the GD-containing-NTU101F (11, 22, or 110 mg/kg), which improved the elastin arrangement and upregulated the expression of endothelial nitric oxide (NO) synthase (eNOS). The upregulated eNOS stimulated NO synthesis and, thereby, improved hypertension. NTU101F also improved the learning and memory ability, and decreased brain edema, matrix metalloproteinase (MMP)-9 and oxidative activity, and inflammation in the hippocampus. Our results indicate that NTU101F effectively inhibited oxidative stress- and inflammation-related mechanisms in the brain, thus providing neuroprotection and preventing hypertension-associated loss of cognitive abilities. Therefore, we further investigated the neuroprotective effect of GD in human neuroblastoma SH-SY5Y cells. GD ameliorated OGD/R-induced apoptosis by elevating the expression of nuclear peroxisome proliferator-activated receptor gamma and nuclear factor erythroid 2-related factor 2 (Nrf2) proteins and its downstream heme oxygenase-1, which attenuated reactive oxygen species generation. Pre-treatment with GD reduced the nuclear factor kappa-light-chain-enhancer of activated B cells (NF-κB) expression, which attenuated the induction of pro-inflammatory mediators. GD also increased the plasma membrane Ca2+ adenosine triphosphatase (ATPase, PMCA) level and, thereby, reduced the levels of cytosolic Ca2+, which also correlated with the reduced cell death. Our findings indicate the potential of the therapeutic application of GD in the prevention and treatment of cerebral ischemic and neurodegenerative diseases. The response surface plot predicted a maximum GD concentration (71.51 ng/g) at an incubation temperature of 39.52°C using the substrate containing 25.53% milk and 44.32 g/L glucose. The milk powder and glucose were used as an alternative medium which could decrease the production cost, with the potential prospects for application. | en |
| dc.description.provenance | Made available in DSpace on 2021-06-16T09:40:23Z (GMT). No. of bitstreams: 1 ntu-106-D02b22004-1.pdf: 11715635 bytes, checksum: 20e529e3d6c04e468d532f8c4680dd02 (MD5) Previous issue date: 2017 | en |
| dc.description.tableofcontents | 中文摘要………………………………………………………………………………… II
英文摘要………………………………………………………………………………… IV 縮寫表…………………………………………………………………………………… VII 目錄……………………………………………………………………………………… IX 圖目錄…………………………………………………………………………………… XII 表目錄…………………………………………………………………………………… XV 第壹章 前言與文獻回顧…………………………………………………………….…. 1 ㄧ、腦血管疾病介紹…………………………………………………………………… 1 二、缺血型腦血管疾病造成細胞損傷的機轉……………………………………….…. 4 (一) 細胞酸中毒 (acidosis) 與鈉離子超載 (sodium overload)…………………… 4 (二) 興奮性毒性物質釋放與鈣離子超載 (calcium overload)……………………... 4 (三) 蛋白質降解 (protein degradation)………………………………..……. 5 (四) 自由基及氧化傷害…………………….……………………………………….. 5 (五) 發炎反應……………………………………….....…………………………….. 9 三、缺血型腦血管疾病治療方式……………………………………………….………. 9 (一) 血栓溶解劑……………………………………………………………………... 9 (二) 神經保護……………………………………………………………………….. 10 四、血管性失智症 (vascular dementia, VaD)…………………………………………... 12 (一) 血管性失智症危險因子……………………..…………………………………. 13 (二) 血管性失智症的動物模式………………………………………….………... 15 五、乳酸菌………………….……………………………………………………………. 18 (一) 改善腸道菌相…………………………………………………………...……… 18 (二) 調節免疫系統…...…………………………………………………….………... 18 (三) 調節血脂………………………………………………………………………... 19 (四) 預防動脈粥狀硬化…...………………………………………………………… 20 (五) 調節血壓…………………...…………………………………………………… 20 (六) 預防胃黏膜損傷…………………………...…………………………………… 20 (七) 骨質保健………..……………………………………………………...……….. 21 (八) 不易形成體脂肪………………………………………………………….…….. 21 (九) 預防齲齒………………………………………………..………………………. 22 (十) 抑制癌細胞增生…………………………………………………….……..…… 22 第貳章 研究動機與目的……………………………………………………………….. 23 第參章 材料與方法…………………………………………………………………….. 25 ㄧ、實驗材料…………………………………………………………………………… 25 (一) 藥品試劑………………………………………………………………………... 25 (二) 細胞株…………………………………………………………………………... 25 (三) 儀器設備………………………………………………………………………... 25 二、實驗方法…………………………………………………………………………… 27 第一部分 初步發酵條件篩選………………………………………………………….. 27 第二部分 具保護神經細胞之活性物質分離、純化與鑑定…………29 第三部分 探討 25% SM + 5% Glc 之 NTU 101 發酵液乙醇萃取物對血管性失智 症之改善效果……………………………………………………………34 第四部分 探討 NTU 101 發酵液乙醇粗萃取物中的活性物質 (glyceryl 1,3-dipalmitate, GD) 對人類神經纖維瘤母細胞之保護效果……………44 第五部分 以反應曲面法 (response surface methodology, RSM) 探討 NTU 101 發酵液乙醇粗萃取物中的活性物質最適培養條件組合…48 第肆章 結果與討論…………………………………………………………………….. 50 一、NTU 101 初步發酵條件篩選………………………………………………………50 二、具保護神經細胞活性物質之分離、純化與鑑定………………………52 三、25% SM + 5% Glc 之 NTU 101 發酵液乙醇萃取物對高血壓誘發血管性失智症大鼠之改善效果……………………………...…………………………….…71 四、探討 NTU 101 發酵液乙醇粗萃取物中的活性物質 (glyceryl 1,3-dipalmitate, GD) 對人類神經纖維瘤母細胞 (SH-SY5Y) 之保護效果……………………87 五、以反應曲面法 (response surface methodology, RSM) 探討 NTU 101 發酵液中的活性物質 (GD) 最適培養條件組合…………100 第伍章 結論…………………………………………………………………………….. 106 第陸章 參考文獻……………………………………………………………………….. 108 第柒章 附錄…………………………………………………………………………….. 135 | |
| dc.language.iso | zh-TW | |
| dc.subject | 腦血管疾病 | zh_TW |
| dc.subject | 3-dipalmitate | zh_TW |
| dc.subject | glyceryl 1 | zh_TW |
| dc.subject | 發酵產物 | zh_TW |
| dc.subject | NTU 101 | zh_TW |
| dc.subject | 氧氣與葡萄糖剝奪 | zh_TW |
| dc.subject | NTU 101 | en |
| dc.subject | cerebrovascular diseases | en |
| dc.subject | oxygen-glucose deprivation | en |
| dc.subject | 3-dipalmitate | en |
| dc.subject | glyceryl 1 | en |
| dc.subject | fermented product | en |
| dc.title | Lactobacillus paracasei subsp. paracasei NTU 101 發酵產物對改善腦血管疾病之研究 | zh_TW |
| dc.title | Study on the Lactobacillus paracasei subsp. paracasei NTU 101-fermented products for improvement in cerebrovascular diseases | en |
| dc.type | Thesis | |
| dc.date.schoolyear | 105-1 | |
| dc.description.degree | 博士 | |
| dc.contributor.coadvisor | 陳俊任(Chun-Jen Chen) | |
| dc.contributor.oralexamcommittee | 周正俊(Cheng-chun Chou),廖啟成(Chii-Cherng Liao),蔡宗佑(Tsung-Yu Tsai),蔣慎思(Shen-Shih Chiang),呂彥禮(Yann-Lii Leu) | |
| dc.subject.keyword | 腦血管疾病,氧氣與葡萄糖剝奪,NTU 101,發酵產物,glyceryl 1,3-dipalmitate, | zh_TW |
| dc.subject.keyword | cerebrovascular diseases,oxygen-glucose deprivation,NTU 101,fermented product,glyceryl 1,3-dipalmitate, | en |
| dc.relation.page | 135 | |
| dc.identifier.doi | 10.6342/NTU201700388 | |
| dc.rights.note | 有償授權 | |
| dc.date.accepted | 2017-02-08 | |
| dc.contributor.author-college | 生命科學院 | zh_TW |
| dc.contributor.author-dept | 生化科技學系 | zh_TW |
| 顯示於系所單位: | 生化科技學系 | |
文件中的檔案:
| 檔案 | 大小 | 格式 | |
|---|---|---|---|
| ntu-106-1.pdf 未授權公開取用 | 11.44 MB | Adobe PDF |
系統中的文件,除了特別指名其著作權條款之外,均受到著作權保護,並且保留所有的權利。
