Skip navigation

DSpace

機構典藏 DSpace 系統致力於保存各式數位資料(如:文字、圖片、PDF)並使其易於取用。

點此認識 DSpace
DSpace logo
English
中文
  • 瀏覽論文
    • 校院系所
    • 出版年
    • 作者
    • 標題
    • 關鍵字
    • 指導教授
  • 搜尋 TDR
  • 授權 Q&A
    • 我的頁面
    • 接受 E-mail 通知
    • 編輯個人資料
  1. NTU Theses and Dissertations Repository
  2. 電機資訊學院
  3. 生醫電子與資訊學研究所
請用此 Handle URI 來引用此文件: http://tdr.lib.ntu.edu.tw/jspui/handle/123456789/59829
完整後設資料紀錄
DC 欄位值語言
dc.contributor.advisor李百?
dc.contributor.authorU-Wai Loken
dc.contributor.author陸裕威zh_TW
dc.date.accessioned2021-06-16T09:40:08Z-
dc.date.available2020-02-21
dc.date.copyright2017-02-21
dc.date.issued2017
dc.date.submitted2017-02-07
dc.identifier.citation[1] M. Karaman, E. Kolagasioglu, and A. Atalar, 'A VLSI receive beamformer for digital ultrasound imaging,' IEEE Int Conf. on Acous., Speech, and Signal Processing, vol. 5, pp. 657 - 660, Mar 1992.
[2] K. E. Thomenius, 'Evolution of ultrasound beamformers,' IEEE Int. Ultrason. Symp., vol. 2, pp. 1615-1622, Nov 1996.
[3] M. Karaman, A. Atalar, and H. Koymen, 'VLSI circuits for adaptive digital beamforming in ultrasound imaging,' IEEE Trans. Med. Imaging, vol. 12, pp. 711-20, Aug 1993.
[4] H. Li and D. C. Liu, 'An Embedded high performance ultrasonic signal processing subsystem,' IEEE Int. Conf. Embed. Software System, pp. 125-130, May 2009.
[5] F. K. Schneider, A. Agarwal, Y. M. Yoo, T. Fukuoka, and Y. Kim, 'A fully programmable computing architecture for medical ultrasound machines,' IEEE Trans Inf Technol Biomed, vol. 14, pp. 538-40, Mar 2010.
[6] S. Sikdar, R. Managuli, L. Gong, V. Shamdasani, T. Mitake, T. Hayashi, et al., 'A single mediaprocessor-based programmable ultrasound system,' IEEE Trans Inf Technol Biomed, vol. 7, pp. 64-70, Mar 2003.
[7] A. M. Hendy, M. Hassan, R. Eldeeb, D. Kholy, A.-B. Youssef, and Y. M. Kadah, 'PC-based modular digital ultrasound imaging system,' IEEE Int. Ultrason. Symp., pp. 1330-1333, Sept 2009.
[8] C.L. Xia, A.Y. Zhao, and D. C. Liu, 'Optimized GPU framework for ultrasound B-mode Imaging,' IEEE Int. Conf. Bioinf. Biomed. Engin., pp. 1-4, Jun 2010.
[9] J. P. Asen, J. I. Buskenes, C. I. Colombo Nilsen, A. Austeng, and S. Holm, 'Implementing capon beamforming on a GPU for real-time cardiac ultrasound imaging,' IEEE Trans. Ultrason. Ferroelectr. Freq. Control, vol. 61, pp. 76-85, Jan 2014.
[10] B. Y. Yiu, I. K. Tsang, and A. C. H. Yu, 'GPU-based beamformer: fast realization of plane wave compounding and synthetic aperture imaging,' IEEE Trans. Ultrason. Ferroelectr. Freq. Control, vol. 58, pp. 1698-705, Aug 2011.
[11] J. I. Buskenes, J. P. Asen, C.-I. C. Nilsen, and A. Austeng, 'An Optimized GPU Implementation of the MVDR Beamformer for Active Sonar Imaging,' IEEE Journal of Ocean. Engineer. , pp. 1-13, Jun 2014.
[12] J.M. Hansen, D. Schaa, and J.A. Jensen, 'Synthetic aperture beamformation using the GPU,' IEEE Int. Ultrason. Symp., pp. 373 - 376, Oct 2011.
[13] J.Y. Chen, B. Y. Yiu, H.K.-H So, and A. C. H. Yu, 'Real-time GPU-based adaptive beamformer for high qualityultrasound imaging,' IEEE Int. Ultrason. Symp., pp. 474 - 477, Oct 2012.
[14] J.W. Kwon, J. H. Song, S. Bae, T. K. Song, and Y. Yoo, 'An effective beamforming algorithm for a GPU-basedultrasound imaging system,' IEEE Int. Ultrason. Symp, pp. 619 - 622, Oct 2012.
[15] J.Y. Chen, A. C. H. Yu, and H. K.-H. So, 'Design considerations of real-time adaptive beamformer for medical ultrasound research using FPGA and GPU,' IEEE Int. Conf. Field Programm. Tech., pp. 198 - 205, Dec 2012.
[16] I. Guracar, 'CUDA Accelerated Real Time Signal Processing in High Performance Diagnostic Ultrasound Imaging,' in NVIDIA GPU Technology Conference, 2013.
[17] R. E. Daigle, 'Ultrasound imaging system with pixel oriented processing,' U.S. Patent Patent, 2006.
[18] L. W. Chang, K. H. Hsu, and P. C. Li, 'Graphics processing unit-based high-frame-rate color Doppler ultrasound processing,' IEEE Trans Ultrason Ferroelectr Freq Control, vol. 56, pp. 1856-60, Sep 2009.
[19] W. Boonleelakul, U. Techavipoo, D. Worasawate, R. Keinprasit, P. Pinunsottikul, N. Sugino, et al., 'Compression of ultrasound RF data using decimation and quantization ' IEEE 6th Biomed. Engineer. Int. Conf., pp. 1-4, Oct 2013.
[20] P. Govindan, T. Gonnot, S. Gilliland, and J. Saniie, '3D Ultrasonic Signal Compression Algorithms for High Signal Fidelity,' IEEE 56th Int. Midwest Symp. on Cir. and Syst., pp. 1263 - 1266, Aug 2013.
[21] E. Oruklu, N. Jayakumar, and J. Saniie, 'Ultrasonic Signal Compression Using Wavelet packet Decomposition and Adaptive Thresholding,' IEEE Int. Ultrason. Symp, pp. 171-175, Nov 2008.
[22] Y. F. Li and P. C. Li, 'Ultrasound beamforming using compressed data,' IEEE Trans. Inf. Technol. Biomed., vol. 16, pp. 308-13, May 2012.
[23] P. W. Cheng, C. C. Shen, and P. C. Li, 'MPEG compression of ultrasound RF channel data for a real-time software-based imaging system,' IEEE Trans. Ultrason. Ferroelectr. Freq. Control, vol. 59, pp. 1413-20, Jul 2012.
[24] M. Mansour and M. Ali, 'Lossless Compression of Ultrasound RF Data,' IEEE Int. Ultrason. Symp., pp. 2282-2285, Oct 2010.
[25] M. A. d. Freitas, M. R. Jimenez, H. Benincaza, and J. P. v. d. Weid, 'A New Lossy Compression Algorithm for Ultrasound Signals,' IEEE Int. Ultrason. Symp., pp. 1885 - 1888, Nov 2008.
[26] G. S. Robinson, 'Fourier Transforms of Walsh Functions,' IEEE Trans. Elecromagnetic Compatibility, vol. 16, pp. 183-185, Feb 1974.
[27] M. H. Lee and M. Kaveh, 'Fast Hadamard transform based on a simple matrix factorization,' IEEE Trans. Acoust., Speech and Sig. Processing, vol. 34, pp. 1666 - 1667, Dec 1986.
[28] B. J. Fino and V. R. Algazi, 'Unified matrix treatment of the fast Walsh-Hadamard transform,' IEEE Trans. Computers, vol. 25, pp. 1142 - 1146, Nov 1976.
[29] J. A. Jensen, 'Simulation of advanced ultrasound systems using Field II,' IEEE Int. Sym. on Biomed. Imag., vol. 1, pp. 636-639, Apr 2004.
[30] U. W. Lok, G. W. Fan, and P. C. Li, 'Lossless Data Compression for Improving the Performance of a GPU-Based Beamformer,' IEEE Int. Ultrason. Symp, pp. 561 - 564, Jul 2013.
[31] P. K. Meher and S.Y. Park, 'CORDIC designs for fixed angle of rotation,' IEEE Trans. on VLSI Systems, , vol. 21, pp. 217 - 228, Mar 2013.
[32] R. G. Marquart and J. C. Hancock, 'Performance of Hamming Code,' IEEE Transactions on Space Electron. and Telemetry, vol. 9, pp. 115 - 126, Dec 2007.
[33] P. C. Li and J. J. Huang, 'Efficient Dynamic Focus Control for Three-Dimensional Imaging Using Two-Dimensional Arrays,' IEEE Trans. Ultrason. Ferroelect. Freq. Control, vol. 49, pp. 1191-1202, Sep 2002.
[34] K. Owen, M. I. Fuller, and J. A. Hossack, 'Application of X-Y separable 2-D array beamforming for increased frame rate and energy efficiency in handheld devices,' IEEE Trans. Ultrason. Ferroelect. Freq. Control, vol. 59, pp. 1332-1343, Jul 2012.
[35] B. Savord and R. Solomon, 'Fully sampled matrix transducer for real time 3D ultrasonic imaging,' IEEE Int. Ultrason. Symp, vol. 1, pp. 945-953, Oct 2003.
[36] U. Scheipers, S. Koptenko, R. R. , T. Falco, and M. Lachaine, '3-D ultrasound volume reconstruction using the direct frame interpolation method,' IEEE Trans. Ultrason. Ferroelect. Freq. Control, vol. 57, pp. 2460 - 2470, Nov 2010.
[37] S. W. Smith, G. E. Trahey, and O. T. v. Ramm, 'Two dimensional arrays for medical ultrasound,' Ultrason. Imag., vol. 14, pp. 213-233, Jul 1992.
[38] M. Yang, R. Sampson, S. Wei, T. F. Wenisch, and C. Chakrabart, 'Separable Beamforming For 3-D Medical Ultrasound Imaging,' IEEE Trans. Ultrason. Ferroelect. Freq. Control, vol. 63, pp. 279-290, Nov 2014.
[39] E. D. Angelini, A. F. Laine, S. Takuma, J.W. Holmes, and S. Homma, 'LV volume quantification via spatiotemporal analysis of real-time 3-D echocardiography,' IEEE Trans. Med. Imag., vol. 20, pp. 457 - 469, Jun 2001.
[40] D. C. Barratt, B. B. Ariff, K. N. Humphries, S. A. M. Thom, and A. D. Hughes, 'Reconstruction and quantification of the carotid artery bifurcation from 3-Dultrasound images,' IEEE Trans. Med. Imag., vol. 23, pp. 567 - 583, May 2004.
[41] E.A. Fisher, J.A. Stahl, J.H. Budd, and M. E. Goldman, 'Transesophageal echocardiography: procedures and clinical application,' J. Am. Coll. Cardiol., vol. 18, pp. 1333-1348, Nov 1991.
[42] R.M. Lang, V. Mor-Avi , L. Sugeng, P.S. Nieman, and D. J. Sahn, 'Three-dimensional echocardiography: the benefits of the additional dimension.,' J. Am. Coll. Cardiol., vol. 48, pp. 2053-2069, Nov 2006.
[43] L. Sugeng, P. Coon, L. Weinert, N. Jolly, G. Lammertin, J.E. Bednarz, et al., 'Use of real-time 3-dimensional transthoracic echocardiography in the evaluation of mitral valve disease,' vol. 19, pp. 413– 421, Apr 2006.
[44] L. F. Nock and G. E. Trahey, 'Synthetic receive aperture imaging with phase correction for motion and for tissue inhomogeneities. I. Basic principles,' IEEE Trans. Ultrason. Ferroelect. Freq. Control, vol. 39, pp. 489-495, Jul 1992.
[45] W. F. Walker and G. E. Trahey, 'Real-time synthetic receive aperture imaging: experimental results,' IEEE Ultrasonics Symp., vol. 3, pp. 1657 - 1660, Oct. 1994.
[46] M. Karaman, P. C. Li, and M. O. Donnell, 'Synthetic aperture imaging for small scale systems,' IEEE Trans. Ultrason. Ferroelect. Freq. Control, vol. 42, pp. 429-442, 1995.
[47] J. A. Johnson, O. Oralkan, S. Ergun, U. Demirci, M. Karaman, and B. T. Khuri-Yakub, 'Coherent array imaging using phased subarrays. Part II: Simulations and experimental results,' IEEE Trans. Ultrason. Ferroelect. Freq. Control, vol. 52, pp. 51-64, Jan 2005.
[48] J. A. Johnson, M. Karaman, and B. T. Khuri-Yakub, 'Coherent-array imaging using phased subarrays. Part I: Basic principles,' IEEE Trans. Ultrason. Ferroelect. Freq. Control, vol. 52, pp. 37-50, Jan 2005.
[49] J. G. Petrofsky, S. H. Maslak, and C. R. Cole, 'Ultrasonic receive beamformer with phased subarrays,' U.S. Patent 5 676 147, Oct 1997.
[50] G. R. Lockwood and F. S. Foster, 'Optimizing the radiation pattern of sparse periodic two-dimensional arrays,' IEEE Trans. Ultrason. Ferroelect. Freq. Control, vol. 43, pp. 15-19, Jan 1996.
[51] J. T. Yen and S. W. Smith, 'Real-time rectilinear volumetric imaging,' IEEE Trans. Ultrason. Ferroelect. Freq. Control, vol. 49, pp. 114-124, Jan 2002.
[52] J. D. Larson, '2-D phased array ultrasound imaging system with distributed phasing,' U.S. Patent 5 229 933, Jul. 1993.
[53] S. Blaak, C. T. Lancée, J. G. Bosch, C. Prins, A. F. W. v. d. Steen, and N. d. Jong, 'A matrix transducer for 3D transesophageal echocardiographywith a separate transmit and receive subarray,' IEEE Int. Ultrason. Symp, pp. 2341 - 2344, Oct 2011.
[54] S. Blaak, Z. Yu, G.C.M. Meijer, C. Prins, C.T. Lancée, J.G. Bosch, et al., 'Design of a micro-beamformer for a 2D piezoelectric ultrasound transducer,' IEEE Int. Ultrason. Symp., pp. 1338-1341, Sept 2009.
[55] Z. Yu, S. Blaak, Z. Chang, J. Yao, J.G. Bosch, C. Prins, et al., 'Front-end receiver electronics for a matrix transducer for 3D transesophageal echocardiography,' IEEE Trans. Ultrason. Ferroelect. Freq. Control, vol. 59, pp. 1500-1512, Jul 2012.
[56] Z. Yu, M. A. P. Pertijs, and G. C. M. Meijer, 'A Programmable Analog Delay Line for Micro-Beamforming in a Transesophageal Ultrasound Probe,' IEEE Solid-State & Integr. Circu. Technol. (ICSICT), pp. 299-301, Nov 2010.
[57] B. Savord and R. Solomon, 'Fully sampled matrix transducer for real time 3D ultrasonic imaging,' IEEE Ultrasonics Symp., pp. 945-953, Oct 2003.
[58] B. J. Savord, 'Beamforming methods and apparatus for three-dimensional ultrasound imaging using two-dimensional transducer array,' U.S. Patent 6 013 032, Jan 2000.
[59] O. Bernard, M. Zhang, F. Varray, P. Gueth, J. P. Thiran, H. Liebgott, et al., 'Ultrasound fourier slice imaging: a novel approach for ultrafast imaging technique,' IEEE Int. Ultrason. Symp, pp. 129-132, Sep 2014.
[60] J. Cheng and J. J. Lu, 'Extended high-frame rate imaging method with limited-diffraction beams,' IEEE Trans. Ultrason. Ferroelect. Freq. Control, vol. 53, pp. 880–899, May 2006.
[61] D. Garcia, L. Tarnec, S. Muth, E. Montagnon, J. Poree, and G. Cloutier, 'Stolt's f-k migration for plane wave ultrasound imaging,' IEEE Trans. Ultrason. Ferroelect. Freq. Control, vol. 60, pp. 1853-1867, Sep 2013.
[62] W. Namgoong, 'Performance of a direct-conversion receiver with AC coupling,' IEEE Transactions on Circuits and Systems II: Analog and Digital Signal Processing, vol. 47, pp. 1556-1559, Dec. 2000.
[63] Pui-In Mak, U. Seng-Pan, and R. P. Martins, 'On the design of a programmable-gain amplifier with built-In compact DC-Offset cancellers for very low-voltage WLAN systems,' IEEE Transactions on Circuits and Systems I: Regular Papers, vol. 55, pp. 496-509, Mar 2008.
dc.identifier.urihttp://tdr.lib.ntu.edu.tw/jspui/handle/123456789/59829-
dc.description.abstract超音波陣列影像系統由於成像所需資料量龐大,過往在硬體電路上利用高度平行架構達成即時影像處理。但使用硬體架構的缺點之一為電路的功能固定因此較難有高度之可程式化設計,演算法的開發因此亦需較長之時間。然而隨著軟體運算能力進步,以圖形處理器(GPU)為基礎的軟體陣列成像系統能有效地降低硬體資源和系統開發速度。但實現軟體成像系統的主要瓶頸之一是大量超音波射頻訊號需要從硬體的記憶體中,藉由傳輸介面傳送到軟體端。因此資料壓縮成為軟體成像之主要工作。但目前的資料解壓縮方法不適合平行處理,解壓縮成為即時軟體陣列成像系統的另一瓶頸。本研究主要提出快速壓縮-解壓縮演算法來改善軟體陣列系統的資料傳輸問題。本研究的第一部份主要介紹二維成像系統的壓縮-解壓縮演算法,其主要分為兩個方法。第一種是提出無失真壓縮-解壓縮演算法,這方法能在GPU上能有效達成平行解壓縮資料,因此2-3毫秒的時間即可完成解壓縮一張影像所需的資料,而此方法的壓縮率約為1.7。第二種是導入沃爾什轉換 (Walsh transform)壓縮方法,針對振幅資訊實現接近無失真資料壓縮,以增加資料壓縮率。此方法能使壓縮率從1.7上升為接近2.2,並且也保留快速解壓縮能力。為了實際驗證我們的研究在有限傳輸介面的可行性,我們將沃爾什轉換的壓縮方法應用在64 通道的系統、並且利用單一USB 3.0 傳輸線作為傳輸介面。結果顯示超音波訊號經過壓縮後能利用此傳輸介面作即時傳輸。最後,我們提出微波束成像以及錯誤補償演算法來實現資料壓縮。此方法亦可在類比訊號實現,因此可用於使用二維陣列之三維超音波影像,並降低類比-數位轉換器以及線路連接的複雜度。在這部份可達到5-6倍的壓縮率。而微波束成像方法也能應用在數位系統上作資料壓縮。此方法能跟沃爾什轉換方法相容並且提供約3.1的壓縮率,硬體資源利用率只需多約2-3%。本研究實現了平行壓縮-解壓縮演算法以滿足2-D軟體超音波的傳輸速率之需求,而在使用二維陣列之三維超音波影像中也實現了錯誤補償演算法以減少系統複雜度並維持成像品質。未來工作將會專注於減少三維成像系統之計算複雜度以及最佳化錯誤補償演算法之電路設計與實現。zh_TW
dc.description.abstractGraphics processing unit (GPU)-based software beamforming has advantages over hardware-based beamforming such as higher programmability, channel data preservation and shorter design cycles. However, the need for a high data transmission rate when transferring ultrasound radiofrequency (RF) data from the front end to the back end is a major technical challenge. Data compression methods can be applied in the front end to mitigate this issue. Nevertheless, many decompression processes cannot be performed efficiently on a GPU in real time, thus presenting another bottleneck for real-time imaging. The aim of this dissertation is to develop algorithms enabling parallel compression and decompression of ultrasound channel data. With the presented methods, the data transfer rate can be reduced and decompression can be performed on the GPU in real time. In the first part of this dissertation, a real-time lossless compression-decompression algorithm is presented. This method exploits low hardware resource requirements, fast compression-decompression speed as well as high image quality. The compression ratio of this approach is approximately 1.7. In the second part of the dissertation, Walsh transform is integrated with the previous lossless compression method to further enhance the compression efficiency. With this integrated approach, the compression ratio can be improved from 1.7 to 2.2, while preserving the compression-decompression speed at the expense of slightly increased hardware utilization. With these, the overall data compression rate can reach to 5-6 with demodulation and down-sampling. To test the performance of the proposed methods, the Walsh-transform compression method is implemented on a 64-channel system with limited data transfer rate via a single USB 3.0 cable. For the third part of the dissertation, analog micro-beamforming (MBF) method is investigated to reduce the system complexity of the 3-D ultrasound imaging system. To improve the image quality of MBF approach, the error compensation method is proposed. The compensation approach can be applied in the analog domain to reduce system complexity of a 2D array system by reducing the number of cables and analog-to-digital converters. Furthermore, this approach can also be used digitally to suppress channel amplitude data as a lossy data compression method. This approach is compatible to the Walsh-transform-based compression algorithm with only 2-3 % increment of hardware resources. The compression ratio of this approach is nearly 3.1 as well. In summary, in the thesis fully parallel compression-decompression algorithms was realized to mitigate the transmission rate requirements for software-based beamformers for 2-D imaging system. The system complexity for 2D array system can also be reduced with the MBF with the compensation method. Future work will focus on developing a real-time 3-D ultrasound imaging system with reasonable computational complexity and high image quality.en
dc.description.provenanceMade available in DSpace on 2021-06-16T09:40:08Z (GMT). No. of bitstreams: 1
ntu-106-D00945003-1.pdf: 2974558 bytes, checksum: 52059241eb72b0cc4b963dbe4a193d36 (MD5)
Previous issue date: 2017
en
dc.description.tableofcontents致謝 I
ABSTRACT II
中文摘要 IV
CONTENT V
LIST OF FIGURES VIII
LIST OF TABLES. X
CHAPTER 1. INTRODUCTION 1
1.1 ULTRASOUND IMAGING 1
1.2 RECEIVE BEAMFORMING BY DELAY AND SUM 1
1.3 HARDWARE-BASED BEAMFORMING 3
1.4 SOFTWARE-BASED BEAMFORMING 4
1.5 DRAWBACKS OF SOFTWARE-BASED BEAMFORMING 6
1.6 DATA COMPRESSION OF ULTRASOUND DATA 7
1.7 SCOPE OF THIS DISSERTATION 8
CHAPTER 2. LOSSLESS DATA COMPRESSION 10
2.1 INTRODUCTION 10
2.2 COMPRESSION AND DECOMPRESSION ALGORITHM 10
2.3 SYSTEM CONFIGURATION 11
2.4 MATHEMATICAL ANALYSIS OF THE LOSSLESS COMPRESSION METHOD 12
2.5 RESULTS 15
2.5.1 Compression ratio 15
2.5.2 Decoding speed 16
2.6 SUMMARY 17
CHAPTER 3. WALSH-TRANSFORM-BASED COMPRESSION-DECOMPRESSION 18
3.1 INTRODUCTION 18
3.2 WALSH TRANSFORM-BASED COMPRESSION 18
3.2.1 Walsh transform 18
3.2.2 Apply transform-based compression to amplitude data 19
3.3 ENCODER AND DECODER PROCESS 21
3.3.1 Hardware architecture of the proposed method and data transfer mechanism 21
3.3.2 CUDA decoder 23
3.4 RESULTS 25
3.4.1 Settings 26
3.4.2 Encoder time and hardware resource utilization 27
3.4.3 Compression efficiency 27
3.4.4 Data decompression in a GPU 29
3.5 SUMMARY 36
CHAPTER 4. MICRO-BEAMFORMING WITH ERROR COMPENSATION FOR 3-D ULTRASOUND IMAGING 37
4.1 INTRODUCTION 37
4.2 MICROBEAMFORMING APPROACH 39
4.2.1 Brief introduction of MBF approach 39
4.2.2 Coherent gain degradation 40
4.2.3 Noise effect of micro-beamforming approach 41
4.3 ERROR COMPENSATION APPROACH 42
4.3.1 Proposed method and system architecture 42
4.3.2 Analysis of mean square error with and without the proposed method 44
4.3.3 Analog circuit design of the proposed method 46
4.4 RESULTS 48
4.4.1 Spatial resolution 49
4.4.2 Peak-signal-to-noise ratio (PSNR) and contrast-to-noise ratio (CNR) 51
4.4.3 Reduction of ADCs 53
4.4.4 H-SPICE simulation 53
4.5 SUMMARY 54
CHAPTER 5. DATA COMPRESSION USING DIGITAL MICRO-BEAMFROMING WITH ERROR COMPENSATION 55
5.1 INTRODUCTION 55
5.2 DIGITAL MICRO-BEAMFORMING 55
5.3 DIGITAL MICRO-BEAMFORMING WITH ERROR COMPENSATION 57
5.3.1 Error model 58
5.3.2 Hardware architecture of the proposed method 59
5.3.3 Decoder in a GPU 60
5.4. RESULTS 61
5.4.1 Real time ability and hardware utilization of the proposed method 61
5.4.2 Compression efficiency 62
5.4.3 Contrast-to-noise-ratio 65
5.4.4 Data decompression on a GPU 65
5.5 SUMMARY 66
CHAPTER 6. CONCLUSIONS AND FUTURE WORKS 67
6.1 CONCLUSIONS 67
6.2 FUTURE WORKS 68
6.2.1 Adaptive decoder requirement for 2-D imaging system with Walsh-transform compression 68
6.2.2 Computation complexity issue for micro-beamforming with error compensation approach for 3-D ultrasound imaging system 69
6.2.3 Circuit optimization and DC offset issues for micro-beamforming with the error compensation approach 70
6.2.4 Summary 71
REFERENCES 72
PUBLICATION LIST 77
dc.language.isoen
dc.subject軟體陣列成像系統zh_TW
dc.subject資訊壓縮zh_TW
dc.subject波束成像zh_TW
dc.subject微波束成像zh_TW
dc.subjectGPUzh_TW
dc.subjectWalsh transformen
dc.subjectGPUen
dc.subjectsoftware beamformingen
dc.subjectdata compressionen
dc.subjectmicro-beamformingen
dc.subjecterror compensationen
dc.title利用資料壓縮以改善即時軟體超音波成像系統zh_TW
dc.titleImproving Performance of Real Time Software-Based Beamformers Using Data Compressionen
dc.typeThesis
dc.date.schoolyear105-1
dc.description.degree博士
dc.contributor.oralexamcommittee周呈霙,沈哲州,鄭耿璽,李夢麟,王昱欣
dc.subject.keywordGPU,資訊壓縮,波束成像,微波束成像,軟體陣列成像系統,zh_TW
dc.subject.keywordGPU,software beamforming,data compression,micro-beamforming,error compensation,Walsh transform,en
dc.relation.page78
dc.identifier.doi10.6342/NTU201700396
dc.rights.note有償授權
dc.date.accepted2017-02-08
dc.contributor.author-college電機資訊學院zh_TW
dc.contributor.author-dept生醫電子與資訊學研究所zh_TW
顯示於系所單位:生醫電子與資訊學研究所

文件中的檔案:
檔案 大小格式 
ntu-106-1.pdf
  未授權公開取用
2.9 MBAdobe PDF
顯示文件簡單紀錄


系統中的文件,除了特別指名其著作權條款之外,均受到著作權保護,並且保留所有的權利。

社群連結
聯絡資訊
10617臺北市大安區羅斯福路四段1號
No.1 Sec.4, Roosevelt Rd., Taipei, Taiwan, R.O.C. 106
Tel: (02)33662353
Email: ntuetds@ntu.edu.tw
意見箱
相關連結
館藏目錄
國內圖書館整合查詢 MetaCat
臺大學術典藏 NTU Scholars
臺大圖書館數位典藏館
本站聲明
© NTU Library All Rights Reserved