請用此 Handle URI 來引用此文件:
http://tdr.lib.ntu.edu.tw/jspui/handle/123456789/59826
完整後設資料紀錄
DC 欄位 | 值 | 語言 |
---|---|---|
dc.contributor.advisor | 陳凱風(Kai-Feng Chen) | |
dc.contributor.author | Yu-Wei Kao | en |
dc.contributor.author | 高裕維 | zh_TW |
dc.date.accessioned | 2021-06-16T09:39:58Z | - |
dc.date.available | 2017-02-17 | |
dc.date.copyright | 2017-02-17 | |
dc.date.issued | 2017 | |
dc.date.submitted | 2017-02-08 | |
dc.identifier.citation | 1. Chatrchyan, S. et al. Search for heavy quarks decaying into a top quark and a W or Z boson using lepton + jets events in pp collisions at p s = 7 TeV. JHEP 01, 154 (2013).
2. Khachatryan, V. et al. Search for vector-like charge 2/3 T quarks in proton-proton collisions at sqrt(s) = 8 TeV. Phys. Rev. D 93, 012003 (2016). 3. Hou, W.-S. Searching for new heavy chiral quark pairs via their annihilation to multiple vector bosons. Phys. Rev. D 86, 037701 (2012). 4. Thomson, M. Modern Particle Physics isbn : 9781107034266 (Sept. 2013). 5. Gell-Mann, M. A schematic model of baryons and mesons. Physics Letters 8, 214 {215. issn : 0031-9163 (1964). 6. Zweig, G. An SU(3) model for strong interaction symmetry and its breaking. Version 1 (1964). 7. Wu, C. S., Ambler, E., Hayward, R. W., Hoppes, D. D. & Hudson, R. P. Experimental Test of Parity Conservation in Beta Decay. Phys. Rev. 105, 1413{1415 (4 1957). 8. Olive, K. A. et al. Review of Particle Physics. Chin. Phys. C38, 090001 (2014). 9. Sakharov, A. D. Violation of CP invariance, C asymmetry, and baryon asymmetry of the universe. Soviet Physics Uspekhi 34, 392 (1991). 10. Hou, W.-S. Source of CP Violation for the Baryon Asymmetry of the Universe. International Journal of Modern Physics D 20, 1521{1532 (2011). 11. Jarlskog, C. Commutator of the Quark Mass Matrices in the Standard Electroweak Model and a Measure of Maximal CP Nonconservation. Phys. Rev. Lett. 55, 1039{1042 (10 1985). 12. Precision electroweak measurements on the Z resonance. Physics Reports 427, 257 {454. issn : 0370-1573 (2006). 13. Matter-antimatter trigonometry with LHCb Mar. 4, 2015. < https://home.cern/scientists/updates/ 2015/03/matter-antimatter-trigonometry-lhcb >. 14. Klempt, E., Batty, C. & Richard, J.-M. The antinucleonnucleon interaction at low energy: Annihilation dynamics. Physics Reports 413, 197 {317. issn : 0370-1573 (2005). 15. Dover, C., Gutsche, T., Maruyama, M. & Faessler, A. The physics of nucleon-antinucleon annihilation. Progress in Particle and Nuclear Physics 29, 87 {173. issn : 0146-6410 (1992). 16. Orfanidis, S. & Rittenberg, V. Nucleon-antinucleon annihilation into pions. Nuclear Physics B 59, 570 {582. issn : 0550-3213 (1973). 17. The CMS experiment at the CERN LHC. Journal of Instrumentation 3, S08004 (2008). 18. The CMS high level trigger. The European Physical Journal C - Particles and Fields 46, 605{667 (2006). 19. M. Czakon, A. M. ATLAS-CMS recommended predictions for top-quark-pair cross sections using the Top++v2.0 program 2013. < {https://twiki.cern.ch/twiki/bin/view/LHCPhysics/TtbarNNLO#Top _quark\_pair\_cross\_sections\_at} > 20. Tomislav Seva, H. Y.-S. T. Standard Model Cross Sections for CMS at 13 TeV 2016. < {https://twiki. cern.ch/twiki/bin/viewauth/CMS/StandardModelCrossSectionsat13TeV} >. 21. Alwall, J. et al. The automated computation of tree-level and next-to-leading order diㄦential cross sections, and their matching to parton shower simulations. JHEP 07, 079 (2014). 22. Sjstrand, T., Mrenna, S. & Skands, P. PYTHIA 6.4 physics and manual. Journal of High Energy Physics 2006, 026 (2006). 23. De Favereau, J. et al. DELPHES 3: a modular framework for fast simulation of a generic collider experi- ment. Journal of High Energy Physics 2014, 57 (2014). 24. Alwall, J. et al. Comparative study of various algorithms for the merging of parton showers and matrix elements in hadronic collisions. Eur. Phys. J. C53, 473{500 (2008). 25. Alwall, J. et al. The automated computation of tree-level and next-to-leading order diㄦential cross sections, and their matching to parton shower simulations. JHEP 07, 079 (2014). 26. Cowan, G., Cranmer, K., Gross, E. & Vitells, O. Asymptotic formulae for likelihood-based tests of new physics. Eur. Phys. J. C71, 1554 (2011). 27. Sinervo, P. Definition and Treatment of Systematic Uncertainties in High Energy Physics and Astro- physics. eConf C030908, TUAT004 (2003). 28. CMS luminosity measurement for the 2015 data taking period 2016. < {http://cms-results.web.cern. ch/cms-results/public-results/preliminary-results/LUM-15-001/index.html} >. 29. GiovanniPetrucciani. Documentation of the RooStats -based statistics tools for Higgs PAG 2016. < {https: //twiki.cern.ch/twiki/bin/viewauth/CMS/SWGuideHiggsAnalysisCombinedLimit} >. 30. Read, A. L. Presentation of search results: the CL s technique. Journal of Physics G: Nuclear and Particle Physics 28, 2693 (2002). 31. Dominguez, A et al. CMS Technical Design Report for the Pixel Detector Upgrade tech. rep. CERN- LHCC-2012-016. CMS-TDR-11 (2012). < https://cds.cern.ch/record/1481838 >. 32. Moya, M. M. CMS pixel upgrade for the phase I: Module production and qualification. Nuclear Instru- ments and Methods in Physics Research Section A: Accelerators, Spectrometers, Detectors and Associated Equipment 831. Proceedings of the 10th International Hiroshima Symposium on the Development and Application of Semiconductor Tracking Detectors, 137 {139. issn : 0168-9002 (2016). 33. Langenegger, U. PXAR - Pixel eXpert Analysis Readout 2016. < https://twiki.cern.ch/twiki/bin/ viewauth/CMS/Pxar >. 34. Berger, P. Module Result Web 2015. < https://twiki.cern.ch/twiki/bin/viewauth/CMS/MoReWeb >. 35. Jui-Fa, Tsai, et al. Cold box setup and operation Aug. 4, 2015. < https://twiki.cern.ch/twiki/bin/ viewauth/CMS/NTUPixelProductionColdBox >. 36. Langenegger, U., Starodumov, A. & Trueb, P. Test and Qualification Procedures of the CMS Pixel Barrel Modules. < https://cds.cern.ch/record/1364795 > (2006). 37. Jan Ho. X-ray Calibration of Digital BPix Modules for the Phase 1 Upgrade of the CMS Pixel Detector 2015. < https://twiki.cern.ch/twiki/bin/viewauth/CMS/BPixX-rayCalibration >. 38. Lutz Feld, Katja Klein, Martin Lipinski, Samuel Mller, Frederic Stepp, Michael Wlochal. High Rate X- Ray Test Experiences on BPIX module meeting Sept. 29, 2015. < https://indico.cern.ch/event/ 446829/contributions/1939913/attachments/1161920/1673550/2015_09_29_ML_HRResults.pdf >. | |
dc.identifier.uri | http://tdr.lib.ntu.edu.tw/jspui/handle/123456789/59826 | - |
dc.description.abstract | 本論文包含了兩部份:重夸克「火球」訊號的研究,以及 CERN/臺灣/芬蘭團隊在CMS 桶狀畫素偵測器 (BPIX) 第一期升級計劃中,生產畫素模組 (pixel module) 的紀錄。
第一部份,動機源自於單純的提問:為何宇宙主要是由物質所組成而非反物質?這個物質-反物質不對稱的問題,需要額外的超越粒子物理標準模型外的電荷宇稱不守衡 (CP violation) 才有可能被完整解釋。而標準模型外的重夸克,像是第四代夸克、或是類向量夸克 (vector-like quark) 等粒子,就很有機會能夠提供更多的電荷宇稱不守衡的現象。當這些新夸克的質量很大的時候,其相應的湯川耦合 (Yukawa coupling) 強度預期也會相當地大;如果這個耦合效應可以導致夸克-反夸克對以某種熱平衡的方式湮滅的話,那麼「火球」訊號便可能發生。「火球」訊號預測了湮滅後所產生的粒子主要是縱向的向量波色子(longitudinal vector boson),且數量會非常多。我們採用 Madgraph5 所產生的事件樣本進行「火球」訊號的研究,並藉由 Delphes 的模擬,考慮了簡化的 CMS 偵測器環境。如果在由 LHC 質心能量為13 TeV 的質子-質子對撞所產生、積分亮度 (integrated luminosity)高達100 fb -1 的數據中發現「火球」訊號的話,那麼對於重夸克的質量小於1 TeV/c 2 的「火球」訊號,其顯著性將可達五個標準差。反之,如果在相同的條件沒有發現「火球」訊號的話,在 95% 的信心水準下,質量小於 1.35 TeV/c 2 的重夸克是不存在的。 第二部份,CMS 的 BPIX 第一期升級計劃在2011年便開始進行。這是為了配合 LHC的升級計劃,因應更高的瞬時亮度 (~2×10 34 cm −2 s −1 ) 以及事件的堆積效應 (pile-up effect) 而作的準備。其中一項重要的工作,是由歐洲五個研究團隊所負責的畫素模組生產。 CERN/臺灣/芬蘭團隊屬於其中的一組研究團隊,負責生產 BPIX 第三層所需的畫素模組的總數一半。關於在 CERN 製程的進行,包含模組的組裝 (module assembly) 以及品質的測試(qualification tests) 等,都被紀錄在這份論文當中。其中作者參與了 X 光品質測試,相關的量測過程與分析圖表亦收錄其中。我們在2016年八月完成了這項任務,總計貢獻了207片畫素模組供第三層 BPIX 使用,另外有額外3片畫素模組作為第四層 BPIX 的備份元件。 | zh_TW |
dc.description.abstract | The thesis includes the study of the fireball signature of heavy quarks and the record of the CERN / Taiwan / Finland module production in CMS barrel pixel detector (BPIX) phase 1 upgrade.
For the first part, in order to solve the known problem of a matter-dominant universe, new CP violation source beyond the standard model of particle physics is needed. Adding new heavy quarks, such as sequential 4th generation quarks or vector-like quarks, to the model is a promising candidate solution. When the mass of the new quark is very heavy and hence their associated Yukawa coupling can be very large, a new fireball-like signature may appear if their strong couplings lead to annihilation in a thermal way. The emitted particles from the annihilation could be mainly longitudinal vector bosons, and the multiplicity is exceptionally high. We present the study of such a 'fireball' experimental signature with the fast simulated samples produced by the Madgraph5 generator. The detector effect is modelded by the Delphes package assuming a simplified CMS detector model. If the signal is discovered with a data set corresponding to an integrated luminosity of 100 $fb^{-1}$ collected at the LHC 13 TeV pp collisions, a statistical significance of $5sigma$ can be reached if the mass of the new heavy quark is below 1 TeV/$c^2$. If no excess above the background from other standard model processes is seen, a limit on the new heavy quark mass can be set to 1.35 TeV/$c^2$ at 95\% confidence level. For the second part, the CMS BPIX phase 1 upgrade has been being on going since 2011 with the provision for the progress of the LHC upgrade plans (high-luminosity LHC) and the expectation of even larger instant luminosity ($sim 2 imes 10^{34} cm^{-2}s^{-1}$) and pile-up effect in near future. One of the important tasks is barrel pixel module production which is in charge of five different consortia in Europe. CERN / Taiwan / Finland is the consortium responsible to 176 barrel pixel modules which are one-half the quota required for the Layer-3 BPIX. The module production progressing in CERN, including the module assembly procedure as well as the qualification tests, are recorded. As the writer participated in the x-ray qualification tests, both the procedure and analysis result in x-ray tests would be particularly detailed out. In the end of our module production in August 2016, there are 207 barrel pixel modules contributed to the Layer-3 BPIX, and additional 3 pixel modules to the backup modules for the Layer-4 BPIX. | en |
dc.description.provenance | Made available in DSpace on 2021-06-16T09:39:58Z (GMT). No. of bitstreams: 1 ntu-106-R03222022-1.pdf: 63571536 bytes, checksum: d9a58b2546eb4d487137a66990a5916c (MD5) Previous issue date: 2017 | en |
dc.description.tableofcontents | 1 Introduction . . . . . . . . . . . . . . . . . . . . 1
1.1 Standard Model . . . . . . . . . . . . . . . . . . 2 1.1.1 Fundamental particles . . . . . . . . . . . . . . . 2 1.1.2 Fundamental interactions . . . . . . . . . . . . . . 3 1.1.3 CP violation . . . . . . . . . . . . . . . . . . 4 1.1.4 Challenges . . . . . . . . . . . . . . . . . . . 5 1.2 Heavy Quarks . . . . . . . . . . . . . . . . . . . 6 1.2.1 Fourth Generation Quarks . . . . . . . . . . . . . . 6 1.2.2 Vector-like Quarks . . . . . . . . . . . . . . . . 8 1.3 Fireball Analogy . . . . . . . . . . . . . . . . . 9 1.3.1 πpp Phenomenology . . . . . . . . . . . . . . . . . 9 1.3.2 GQQ Analogy . . . . . . . . . . . . . . . . . . . 11 2 The CMS Detector . 13 2.1 Superconducting magnet . . . . . . . . . . . . . . . 14 2.2 Inner tracking system . . . . . . . . . . . . . . . . 14 2.3 Electromagnetic calorimeter . . . . . . . . . . . . . . 15 2.4 Hadron calorimeter . . . . . . . . . . . . . . . . . 15 2.5 The muon system . . . . . . . . . . . . . . . . . . 16 2.6 Trigger System . . . . . . . . . . . . . . . . . . 16 3 Event Samples . 19 3.1 Monte Carlo Samples . . . . . . . . . . . . . . . . 19 3.2 Signal Event Samples . . . . . . . . . . . . . . . . 19 3.3 Background Event Samples . . . . . . . . . . . . . . . 24 4 Event Selection . 27 4.1 Selection Cuts Optimisation . . . . . . . . . . . . . . 28 4.2 Expected Yield . . . . . . . . . . . . . . . . . . 30 4.3 The Distributions of Kinematical Variables . . . . . . . . . 35 5 Systematic Uncertainties 39 6 Experimental Sensitivity 43 6.1 The Discovery Significance . . . . . . . . . . . . . . 43 6.1.1 The simple counting experiment . . . . . . . . . . . . 43 6.2 The Upper Limit with CLs Method . . . . . . . . . . . . 45 7 Physical Result . 49 8 The CERN/TW/FIN Module Production Project in CMS BPIX Phase-1 Upgrade . 57 8.1 Introduction . . . . . . . . . . . . . . . . . . . 57 8.2 Module Assembly . . . . . . . . . . . . . . . . . . 60 8.2.1 Base strips gluing . . . . . . . . . . . . . . . . 62 8.2.2 HDI gluing . . . . . . . . . . . . . . . . . . . 62 8.2.3 Wire bonding . . . . . . . . . . . . . . . . . . 65 8.2.4 Cable gluing and electrical tests . . . . . . . . . . . 65 8.3 Full Qualification . . . . . . . . . . . . . . . . . 66 8.3.1 Principle . . . . . . . . . . . . . . . . . . . 66 8.3.2 Experimental setup . . . . . . . . . . . . . . . . 67 8.3.3 Thermal cycling . . . . . . . . . . . . . . . . . 67 8.3.4 Pretest, full tests, and IV measurement . . . . . . . . . 68 8.3.5 Grade Criteria . . . . . . . . . . . . . . . . . 71 8.4 X-ray Qualification . . . . . . . . . . . . . . . . 72 8.4.1 Principle . . . . . . . . . . . . . . . . . . . 72 8.4.2 Experimental setup . . . . . . . . . . . . . . . . 73 8.4.3 X-ray calibration . . . . . . . . . . . . . . . . 74 8.4.4 X-ray high rate tests . . . . . . . . . . . . . . . 76 8.4.5 Grade criteria and common seen problems . . . . . . . . . 83 8.5 Protection cap assembly . . . . . . . . . . . . . . . 88 8.6 Subsequent Actions . . . . . . . . . . . . . . . . . 89 8.6.1 Transportation to ETH . . . . . . . . . . . . . . . 89 8.6.2 Reception tests . . . . . . . . . . . . . . . . . 90 8.7 Summary . . . . . . . . . . . . . . . . . . . . 91 9 Conclusion 93 9.1 Summary . . . . . . . . . . . . . . . . . . . . 93 9.2 Outlook . . . . . . . . . . . . . . . . . . . . 94 Reference . . . . . . . . . . . . . . . . . . . . . . 95 | |
dc.language.iso | en | |
dc.title | 研究多向量玻色子「火球」特徵訊號與參與 CMS 畫素偵測器第一期升級計畫 | zh_TW |
dc.title | Study of Multi Vector Boson 'Fireball” Signature and Participation in the CMS BPIX Phase-I Upgrade Project | en |
dc.type | Thesis | |
dc.date.schoolyear | 105-1 | |
dc.description.degree | 碩士 | |
dc.contributor.oralexamcommittee | 裴思達(Stathes Paganis),王嵩銘,張元翰,徐百嫻,熊怡 | |
dc.subject.keyword | 多向量玻色子,第四代夸克,湯川耦合,緊湊緲子線圈偵測器,第一期升級計劃,畫素偵測器,畫素元件生產, | zh_TW |
dc.subject.keyword | Multiple vector bosons,Fourth generation quarks,Yukawa coupling,CMS,Phase I upgrade,Pixel detector,BPIX,Module production, | en |
dc.relation.page | 96 | |
dc.identifier.doi | 10.6342/NTU201700376 | |
dc.rights.note | 有償授權 | |
dc.date.accepted | 2017-02-08 | |
dc.contributor.author-college | 理學院 | zh_TW |
dc.contributor.author-dept | 物理學研究所 | zh_TW |
顯示於系所單位: | 物理學系 |
文件中的檔案:
檔案 | 大小 | 格式 | |
---|---|---|---|
ntu-106-1.pdf 目前未授權公開取用 | 62.08 MB | Adobe PDF |
系統中的文件,除了特別指名其著作權條款之外,均受到著作權保護,並且保留所有的權利。