Skip navigation

DSpace

機構典藏 DSpace 系統致力於保存各式數位資料(如:文字、圖片、PDF)並使其易於取用。

點此認識 DSpace
DSpace logo
English
中文
  • 瀏覽論文
    • 校院系所
    • 出版年
    • 作者
    • 標題
    • 關鍵字
    • 指導教授
  • 搜尋 TDR
  • 授權 Q&A
    • 我的頁面
    • 接受 E-mail 通知
    • 編輯個人資料
  1. NTU Theses and Dissertations Repository
  2. 管理學院
  3. 資訊管理學系
請用此 Handle URI 來引用此文件: http://tdr.lib.ntu.edu.tw/jspui/handle/123456789/59821
完整後設資料紀錄
DC 欄位值語言
dc.contributor.advisor李瑞庭
dc.contributor.authorYing-Hsiu Liuen
dc.contributor.author劉盈秀zh_TW
dc.date.accessioned2021-06-16T09:39:42Z-
dc.date.available2027-07-19
dc.date.copyright2017-02-16
dc.date.issued2016
dc.date.submitted2017-02-08
dc.identifier.citation[1] R. E. Bellman, Dynamic Programming, Mineola, New York, USA: Dover Publications, 2003.
[2] J. C. Bezdek, Pattern Recognition with Fuzzy Objective Function Algorithms, Norwell, Massachusetts, USA: Kluwer, 1981.
[3] J. C. Bezdek, R. Ehrlich and W. Full, FCM: The fuzzy c-means clustering algorithm, Computers & Geosciences, vol. 10, no. 2–3, pp. 191–203, 1984.
[4] D. M. Blei, A. Y. Ng and M. I. Jordan, Latent Dirichlet allocation, Journal of Machine Learning Research, vol. 3, pp. 993–1022, 2003.
[5] M. Clements, P. Serdyukov, A. P. D. Vries and M. J. T. Reinders, Using Flickr geotags to predict user travel behaviour, Proceedings of the 33rd International ACM SIGIR Conference on Research and Development in Information Retrieval, pp. 851–852, 2010.
[6] J. C. Dunn, A fuzzy relative of the ISODATA process and its use in detecting compact well-separated clusters, Journal of Cybernetics, vol. 3, no. 3, pp. 32–57, 1973.
[7] E. Ferrara, R. Interdonato and A. Tagarelli, Online popularity and topical interests through the lens of Instagram, Proceedings of the 25th ACM Conference on Hypertext and Social Media, pp. 24–34, 2014.
[8] F. Giannotti, M. Nanni, F. Pinelli and D. Pedreschi, Trajectory pattern mining, Proceedings of the 13th ACM SIGKDD International Conference on Knowledge Discovery and Data Mining, pp. 330–339, 2007.
[9] H. Jeung, M. L. Yiu, X. Zhou, C. S. Jensen and H. T. Shen, Discovery of convoys in trajectory databases, Proceedings of the VLDB Endowment, vol. 1, no. 1, pp. 1068–1080, 2008,
[10] A. Kharrat, I. S. Popa, K. Zeitouni and S. Faiz, Clustering algorithm for network constraint trajectories, Headway in Spatial Data Handling, pp. 631–647, 2008.
[11] Y. Kim, J. Han and C. Yuan, TOPTRAC: Topical trajectory pattern mining, Proceedings of the 21th ACM SIGKDD International Conference on Knowledge Discovery and Data Mining, pp. 587–596, 2015.
[12] J.-G. Lee, J. Han and K.-Y. Whang, Trajectory clustering: A partition-and-group framework, Proceedings of the ACM SIGMOD International Conference on Management of Data, pp. 593–604, 2007.
[13] Z. Li, B. Ding, J. Han and R. Kays, Swarm: Mining relaxed temporal moving object clusters, Proceedings of the VLDB Endowment, vol. 3, no. 1–2, pp. 723–734, 2010.
[14] X. Li, T.-A. N. Pham, G. Cong, Q. Yuan, X. Li and S. Krishnaswamy, Where you Instagram? Associating your Instagram photos with points of interest, Proceedings of the 24th ACM International on Conference on Information and Knowledge Management, pp. 1231–1240, 2015.
[15] L. Manikonda, Y. Hu and S. Kambhampati, Analyzing user activities, demographics, social network structure and user-generated content on Instagram, ArXiv Preprints, arXiv: 1410.8099, 2014.
[16] J. Pei, J. Han, B. Mortazavi-Asl, H. Pinto, Q. Chen, U. Dayal and M. Hsu, Prefixspan: Mining sequential patterns by prefix-projected growth, Proceedings of the 17th International Conference on Data Engineering, pp. 215–224, 2001.
[17] A. I. J. T. Ribeiro, T. H. Silva, F. Duarte-Figueiredo and A. A.F. Loureiro, Studying traffic conditions by analyzing Foursquare and Instagram data, Proceedings of the 11th ACM Symposium on Performance Evaluation of Wireless Ad Hoc, Sensor & Ubiquitous Networks, pp. 17–24, 2014.
[18] P. Serdyukov, V. Murdock and R. V. Zwol, Placing Flickr photos on a map, Proceedings of the 32nd International ACM SIGIR Conference on Research and Development in Information Retrieval, pp. 484–491, 2009.
[19] B. Sigurbjörnsson, R. V. Zwol, Flickr tag recommendation based on collective knowledge, Proceedings of the 17th International Conference on World Wide Web, pp. 327–336, 2008.
[20] T. H. Silva, P. O. S. Vaz de Melo, J. M. Almeida, J. Salles and A. A. F. Loureiro, A comparison of Foursquare and Instagram to the study of city dynamics and urban social behavior, Proceedings of the 2nd ACM SIGKDD International Workshop on Urban Computing, pp. 4, 2013.
[21] R. A. Wagner and M. J. Fischer, The string-to-string correction problem, Journal of the ACM, vol. 21, no. 1, pp. 168–173, 1974.
[22] X. L. Xie and G. Beni, A validity measure for fuzzy clustering, IEEE Transactions on Pattern Analysis and Machine Intelligence, vol. 13, no. 8, pp. 841–847, 1991.
[23] Y. Ye, Y. Zheng, Y. Chen, J. Feng and X. Xie, Mining individual life pattern based on location history, Proceedings of the 10th IEEE International Conference on Mobile Data Management, pp. 1–10, 2009.
[24] Z. Yin, L. Cao, J. Han, J. Luo and T. S. Huang, Diversified trajectory pattern ranking in geo-tagged social media, Proceedings of the SIAM International Conference on Data Mining, pp. 980–991, 2011.
[25] C. Zhang, J. Han, L. Shou, J. Lu and T. L. Porta, Splitter: Mining fine-grained sequential patterns in semantic trajectories, Proceedings of the VLDB Endowment, vol. 7, no. 9, pp. 769–780, 2014.
[26] Y. Zheng, Trajectory data mining: An overview, ACM Transactions on Intelligent Systems and Technology, vol. 6, no. 3, pp. 29, 2015.
[27] Y. Zheng, N. J. Yuan, K. Zheng and S. Shang, On discovery of gathering patterns from trajectories, Proceedings of the 2013 IEEE International Conference on Data Engineering, pp. 242– 253, 2013.
dc.identifier.urihttp://tdr.lib.ntu.edu.tw/jspui/handle/123456789/59821-
dc.description.abstract近年來,照片分享社群如Instagram、Flckr、Pinterest等等蓬勃發展,因此,我們提出一套方法,利用模糊C均值分群演算法(FCM),探勘Instagram上的使用者移動模式。我們提出的方法共包含4個步驟,首先,我們在FCM中加上地點加權的概念,將鄰近的地點叢集在一起成為一個群集,我們稱每個群集為一個地標,並將每個地點轉換成一個空間的特徵向量。接著,我們使用隱含狄利克雷分佈模型,將使用者貼文內的標籤分成多個主題,並將每個地點轉換成語意的特徵向量。然後,我們使用動態規劃方法,計算使用者間移動路徑間的距離,並修改FCM將使用者移動路徑分成不同群集。最後,我們利用第一、二步的結果,將使用者移動路徑轉換成地標和主題的序列,並修改FCM將轉換後的序列分成不同群集。也就是說,我們將使用者移動路徑分成兩個層級的群集,在第三步,我們利用空間和語意的特徵向量,將使用者移動路徑分群,我們稱之為地點層級;而在第四步,我們則利用轉換後的序列來分群,我們稱之為地標層級。地點層級的分群結果,可以幫助我們分析使用者細部的移動方式,而地標層級的分群結果,則可以讓我們了解使用者概觀的移動方式。實驗結果顯示,我們所提出的方法可以有效地探勘出使用者在Instagram上的移動模式。zh_TW
dc.description.abstractPhoto sharing social networks have drawn considerable attention recently, such as Instagram, Flickr, VSCO, and Pinterest. Therefore, in this study, we propose a framework to mine users’ movements on Instagram based on the fuzzy c-means method (FCM). The proposed method contains four phases. First, we incorporate the concept of weighted locations into the FCM method to group neighboring locations into a cluster (or landmark), and then convert each location into a spatial feature vector. Second, we apply the Latent Dirichlet Allocation (LDA) model to cluster the hashtags into location topics, and then convert each location into a semantic feature vector. Then, we transform each trajectory into two sequences of spatial and semantic feature vectors. Third, we apply a dynamic programming approach to compute the distance between converted trajectories, and modify the FCM method to cluster them together. Finally, we transform each trajectory into a sequence of the landmark and topic identifiers obtained in the first and second phases and then further modify the FCM method to cluster transformed sequences together. That is, we cluster trajectories together by spatial and semantic feature vectors in the third phase (location layer), and then cluster them together by transformed sequences in the last phase (landmark layer). The clusters formed in the location layer can provide us to analyze users’ movements in a fine-grained view while those in the landmark layer can complement movement analyses in a coarse-grained view. The experiment results show that the proposed framework can effectively find users’ movements on Instagram.en
dc.description.provenanceMade available in DSpace on 2021-06-16T09:39:42Z (GMT). No. of bitstreams: 1
ntu-105-R03725033-1.pdf: 1490462 bytes, checksum: a252c480ae572687d260633c349a1e9d (MD5)
Previous issue date: 2016
en
dc.description.tableofcontentsTable of Contents i
List of Figures ii
List of Tables iii
Chapter 1 Introduction 1
Chapter 2 Related Work 4
Chapter 3 The Proposed Method 6
3.1. Spatial Feature Vector 7
3.2. Semantic Feature Vector 9
3.3. Clustering Trajectories by Spatial and Semantic Feature Vectors 11
3.4. Clustering Trajectories by Landmark and Topic Identifiers 14
Chapter 4 Experiment Results 18
4.1. Datesets 18
4.2. Performance Evaluation 19
4.3. Example Clusters and Users’ Movements 22
Chapter 5 Conclusions and Future Work 27
References 29
dc.language.isoen
dc.subject照片分享社群zh_TW
dc.subject隱含狄利克雷分佈模型zh_TW
dc.subject模糊C均值分群演算法zh_TW
dc.subject動態規劃方法zh_TW
dc.subject使用者移動模式zh_TW
dc.subjectfuzzy c-means methoden
dc.subjectdynamic programming approachen
dc.subjectLatent Dirichlet Allocation modelen
dc.subjectphoto sharing social networken
dc.subjectusers’ movementen
dc.title探勘 Instagram 社群使用者移動模式zh_TW
dc.titleMining Users’ Movements on Instagramen
dc.typeThesis
dc.date.schoolyear105-1
dc.description.degree碩士
dc.contributor.oralexamcommittee許秉瑜,劉敦仁
dc.subject.keyword使用者移動模式,照片分享社群,模糊C均值分群演算法,隱含狄利克雷分佈模型,動態規劃方法,zh_TW
dc.subject.keywordusers’ movement,photo sharing social network,fuzzy c-means method,Latent Dirichlet Allocation model,dynamic programming approach,en
dc.relation.page31
dc.identifier.doi10.6342/NTU201700404
dc.rights.note有償授權
dc.date.accepted2017-02-08
dc.contributor.author-college管理學院zh_TW
dc.contributor.author-dept資訊管理學研究所zh_TW
顯示於系所單位:資訊管理學系

文件中的檔案:
檔案 大小格式 
ntu-105-1.pdf
  未授權公開取用
1.46 MBAdobe PDF
顯示文件簡單紀錄


系統中的文件,除了特別指名其著作權條款之外,均受到著作權保護,並且保留所有的權利。

社群連結
聯絡資訊
10617臺北市大安區羅斯福路四段1號
No.1 Sec.4, Roosevelt Rd., Taipei, Taiwan, R.O.C. 106
Tel: (02)33662353
Email: ntuetds@ntu.edu.tw
意見箱
相關連結
館藏目錄
國內圖書館整合查詢 MetaCat
臺大學術典藏 NTU Scholars
臺大圖書館數位典藏館
本站聲明
© NTU Library All Rights Reserved