請用此 Handle URI 來引用此文件:
http://tdr.lib.ntu.edu.tw/jspui/handle/123456789/59805完整後設資料紀錄
| DC 欄位 | 值 | 語言 |
|---|---|---|
| dc.contributor.advisor | 管希聖(Hsi-Sheng Goan) | |
| dc.contributor.author | Ssu-Chih Lin | en |
| dc.contributor.author | 林嗣智 | zh_TW |
| dc.date.accessioned | 2021-06-16T09:38:53Z | - |
| dc.date.available | 2020-08-21 | |
| dc.date.copyright | 2020-08-21 | |
| dc.date.issued | 2020 | |
| dc.date.submitted | 2020-08-14 | |
| dc.identifier.citation | B. Weber, S. Mahapatra, T. F. Watson, and M. Y. Simmons, Nano Letters 12, 4001 (2012), ISSN 1530-6984, URL https://doi.org/10.1021/nl3012903. Y. He, S. K. Gorman, D. Keith, L. Kranz, J. G. Keizer, and M. Y. Simmons, Nature 571, 371 (2019), ISSN 1476-4687, URL https://doi.org/10.1038/ s41586-019-1381-2. C. H. Yang, R. C. C. Leon, J. C. C. Hwang, A. Saraiva, T. Tanttu, W. Huang, J. C. Lemyre, K. W. Chan, K. Y. Tan, F. E. Hudson, et al. (2019), 1902.09126. M. Jung, M. D. Schroer, K. D. Petersson, and J. R. Petta, Applied Physics Letters 100, 253508 (2012), URL https://doi.org/10.1063/1.4729469. T. Berer, D. Pachinger, G. Pillwein, M. M¨uhlberger, H. Lichtenberger, G. Brunthaler, and F. Sch¨affler, Semiconductor Science and Technology 22, S137 (2006), URL https://doi.org/10.1088%2F0268-1242%2F22%2F1%2Fs32. J. M. Elzerman, R. Hanson, J. S. Greidanus, L. H. Willems van Beveren, S. De Franceschi, L. M. K. Vandersypen, S. Tarucha, and L. P. Kouwenhoven, Phys. Rev. B 67, 161308 (2003), URL https://link.aps.org/doi/10.1103/ PhysRevB.67.161308. W. H. Lim, C. H. Yang, F. A. Zwanenburg, and A. S. Dzurak, Nanotechnology 22, 335704 (2011), URL https://doi.org/10.1088%2F0957-4484%2F22% 2F33%2F335704. M. Veldhorst, C. H. Yang, J. C. C. Hwang, W. Huang, J. P. Dehollain, J. T. Muhonen, S. Simmons, A. Laucht, F. E. Hudson, K. M. Itoh, et al., Nature 526, 410 (2015), ISSN 1476-4687, URL https://doi.org/10.1038/nature15263. J. M. Elzerman, R. Hanson, L. H. Willems van Beveren, B. Witkamp, L. M. K. Vandersypen, and L. P. Kouwenhoven, Nature 430, 431 (2004), ISSN 1476- 4687, URL https://doi.org/10.1038/nature02693. R. Hanson, L. H. W. van Beveren, I. T. Vink, J. M. Elzerman, W. J. M. Naber, F. H. L. Koppens, L. P. Kouwenhoven, and L. M. K. Vandersypen, Phys. Rev. Lett. 94, 196802 (2005), URL https://link.aps.org/doi/10. 1103/PhysRevLett.94.196802. A. C. Johnson, J. R. Petta, C. M. Marcus, M. P. Hanson, and A. C. Gossard, Phys. Rev. B 72, 165308 (2005), URL https://link.aps.org/doi/10.1103/ PhysRevB.72.165308. K. D. Petersson, C. G. Smith, D. Anderson, P. Atkinson, G. A. C. Jones, and D. A. Ritchie, Nano Letters 10, 2789 (2010), ISSN 1530-6984, URL https: //doi.org/10.1021/nl100663w. C. Barthel, M. Kjærgaard, J. Medford, M. Stopa, C. M. Marcus, M. P. Hanson, and A. C. Gossard, Phys. Rev. B 81, 161308 (2010), URL https://link.aps. org/doi/10.1103/PhysRevB.81.161308. J. I. Colless, A. C. Mahoney, J. M. Hornibrook, A. C. Doherty, H. Lu, A. C. Gossard, and D. J. Reilly, Phys. Rev. Lett. 110, 046805 (2013), URL https: //link.aps.org/doi/10.1103/PhysRevLett.110.046805. J. M. Fink, M. G¨oppl, M. Baur, R. Bianchetti, P. J. Leek, A. Blais, and A. Wallraff, Nature 454, 315 (2008), ISSN 1476-4687, URL https://doi.org/10. 1038/nature07112. X. Mi, J. V. Cady, D. M. Zajac, J. Stehlik, L. F. Edge, and J. R. Petta, Applied Physics Letters 110, 043502 (2017), URL https://doi.org/10.1063/ 1.4974536 G. Burkard and J. R. Petta, Phys. Rev. B 94, 195305 (2016), URL https: //link.aps.org/doi/10.1103/PhysRevB.94.195305. M. Benito, X. Mi, J. M. Taylor, J. R. Petta, and G. Burkard, Phys. Rev. B 96, 235434 (2017), URL https://link.aps.org/doi/10.1103/PhysRevB.96. 235434. B. D’Anjou and G. Burkard, Phys. Rev. B 100, 245427 (2019), URL https: //link.aps.org/doi/10.1103/PhysRevB.100.245427. A. J. Landig, J. V. Koski, P. Scarlino, U. C. Mendes, A. Blais, C. Reichl, W. Wegscheider, A. Wallraff, K. Ensslin, and T. Ihn, Nature 560, 179 (2018), ISSN 1476-4687, URL https://doi.org/10.1038/s41586-018-0365-y. G. Zheng, N. Samkharadze, M. L. Noordam, N. Kalhor, D. Brousse, A. Sammak, G. Scappucci, and L. M. K. Vandersypen, Nat. Nanotechnol. 14, 742–746 (2019), URL https://doi.org/10.1038/s41565-019-0488-9. H. Levine, A. Keesling, G. Semeghini, A. Omran, T. T. Wang, S. Ebadi, H. Bernien, M. Greiner, V. Vuleti´c, H. Pichler, et al., Phys. Rev. Lett. 123, 170503 (2019), URL https://link.aps.org/doi/10.1103/PhysRevLett. 123.170503. B. Hensen, W. Wei Huang, C.-H. Yang, K. Wai Chan, J. Yoneda, T. Tanttu, F. E. Hudson, A. Laucht, K. M. Itoh, T. D. Ladd, et al., Nature Nanotechnology 15, 13 (2020), ISSN 1748-3395, URL https://doi.org/10.1038/ s41565-019-0587-7 J. M. Nichol, L. A. Orona, S. P. Harvey, S. Fallahi, G. C. Gardner, M. J. Manfra, and A. Yacoby, npj Quantum Information 3, 3 (2017), ISSN 2056-6387, URL https://doi.org/10.1038/s41534-016-0003-1 C. D. Bruzewicz, J. Chiaverini, R. McConnell, and J. M. Sage, Applied Physics Reviews 6, 021314 (2019), URL https://doi.org/10.1063/1.5088164. R. Barends, J. Kelly, A. Megrant, A. Veitia, D. Sank, E. Jeffrey, T. C. White, J. Mutus, A. G. Fowler, B. Campbell, et al., Nature 508, 500 (2014), ISSN 1476-4687, URL https://doi.org/10.1038/nature13171 M. Veldhorst, J. C. C. Hwang, C. H. Yang, A. W. Leenstra, B. de Ronde, J. P. Dehollain, J. T. Muhonen, F. E. Hudson, K. M. Itoh, A. Morello, et al., Nature Nanotechnology 9, 981 (2014), ISSN 1748-3395, URL https://doi.org/10. 1038/nnano.2014.216. J. Yoneda, K. Takeda, T. Otsuka, T. Nakajima, M. R. Delbecq, G. Allison, T. Honda, T. Kodera, S. Oda, Y. Hoshi, et al., Nature Nanotechnology 13, 102 (2018), ISSN 1748-3395, URL https://doi.org/10.1038/ s41565-017-0014-x W. Huang, C. H. Yang, K. W. Chan, T. Tanttu, B. Hensen, R. C. C. Leon, M. A. Fogarty, J. C. C. Hwang, F. E. Hudson, K. M. Itoh, et al., Nature 569, 532 (2019), ISSN 1476-4687, URL https://doi.org/10.1038/ s41586-019-1197-0 T. D. Ladd, F. Jelezko, R. Laflamme, Y. Nakamura, C. Monroe, and J. L. O’Brien, Nature 464, 45 (2010), ISSN 1476-4687, URL https://doi.org/10. 1038/nature08812. R. P. Feynman, International Journal of Theoretical Physics 21, 467 (1982), ISSN 1572-9575, URL https://doi.org/10.1007/BF02650179. D. Deutsch, Proc. R. Soc. Lond. A 400, 97–117 (1985), URL https://doi. org/10.1007/BF02650179 D. E. Deutsch, Proc. R. Soc. Lond. A 425, 73–90 (1989), URL http://doi. org/10.1098/rspa.1989.0099. P. W. Shor, SIAM Review 41, 303 (1999), URL https://doi.org/10.1137/ S0036144598347011 L. K. Grover, p. 212–219 (1996), URL https://doi.org/10.1145/237814. 237866 D. P. DiVincenzo, Fortschritte der Physik 48, 771 (2000), URL https://onlinelibrary.wiley.com/doi/abs/10.1002/1521-3978% 28200009%2948%3A9/11%3C771%3A%3AAID-PROP771%3E3.0.CO%3B2-E. A. G. Fowler, M. Mariantoni, J. M. Martinis, and A. N. Cleland, Phys. Rev. A 86, 032324 (2012), URL https://link.aps.org/doi/10.1103/PhysRevA. 86.032324. R. Hanson, I. T. Vink, D. P. DiVincenzo, L. M. K. Vandersypen, J. M. Elzerman, L. H. W. van Beveren, and L. P. Kouwenhoven, Determination of the tunnel rates through a few-electron quantum dot (2004), cond-mat/0407793. B. D’Anjou and W. A. Coish, Phys. Rev. A 89, 012313 (2014), URL https: //link.aps.org/doi/10.1103/PhysRevA.89.012313 A. West, B. Hensen, A. Jouan, T. Tanttu, C.-H. Yang, A. Rossi, M. F. Gonzalez-Zalba, F. Hudson, A. Morello, D. J. Reilly, et al., Nature Nanotechnology 14, 437 (2019), ISSN 1748-3395, URL https://doi.org/10.1038/ s41565-019-0400-7. A. Blais, R.-S. Huang, A. Wallraff, S. M. Girvin, and R. J. Schoelkopf, Phys. Rev. A 69, 062320 (2004), URL https://link.aps.org/doi/10.1103/ PhysRevA.69.062320 I. Ahmed, J. A. Haigh, S. Schaal, S. Barraud, Y. Zhu, C.-m. Lee, M. Amado, J. W. A. Robinson, A. Rossi, J. J. L. Morton, et al., Phys. Rev. Applied 10, 014018 (2018), URL https://link.aps.org/doi/10.1103/PhysRevApplied. 10.014018. T. Meunier, V. E. Calado, and L. M. K. Vandersypen, Phys. Rev. B 83, 121403 (2011), URL https://link.aps.org/doi/10.1103/PhysRevB.83.121403. C. W. Gardiner and M. J. Collett, Phys. Rev. A 31, 3761 (1985), URL https: //link.aps.org/doi/10.1103/PhysRevA.31.3761 J. Koch, T. M. Yu, J. Gambetta, A. A. Houck, D. I. Schuster, J. Majer, A. Blais, M. H. Devoret, S. M. Girvin, and R. J. Schoelkopf, Phys. Rev. A 76, 042319 (2007), URL https://link.aps.org/doi/10.1103/PhysRevA.76.042319. J. Yoneda, T. Otsuka, T. Takakura, M. Pioro-Ladri`ere, R. Brunner, H. Lu, T. Nakajima, T. Obata, A. Noiri, C. J. Palmstrøm, et al., Applied Physics Express 8, 084401 (2015), URL https://doi.org/10.7567%2Fapex.8.084401 J. Gambetta, W. A. Braff, A. Wallraff, S. M. Girvin, and R. J. Schoelkopf, Phys. Rev. A 76, 012325 (2007), URL https://link.aps.org/doi/10.1103/ PhysRevA.76.012325. | |
| dc.identifier.uri | http://tdr.lib.ntu.edu.tw/jspui/handle/123456789/59805 | - |
| dc.description.abstract | 半導體自旋量子位元是一個有潛力的實現量子電腦的方法,不只是因為它能相容於現今的半導體工業而能規模化,同時在也是因為純化後它在「自旋真空」中有很長的同協時間。但是,長久以來相較於其他固態系統如超導量子位元,它受制於較長的操作與測量時間。此外,現今常用的額外感測器如量子點接觸或單電子電晶體需要置於每個量子位元旁,這會成為規模化時的阻礙。一個解決的方法是將它連接到超導共震器上,而這已經在超導量子系統中作為 ”circuit quantumelectrodynamics” 廣為研究。 在這篇論文中,我們將建立一個完全量子化的模型來分析單重態─三重態量子位元與超導共平面空腔交互作用,並指出量子位元與空腔於 電子態─空腔態共 振、自旋態-空腔態共振、與 E− -空腔態共振的 straddling regime,使得空腔頻率變化量提升或彼此抵消的現象。此外,我們預期輸出結果在正失諧時會比現在常用的參數區間好。然後,我們也用了這個模型來分析三量子點交換量子位元的讀取測量,並可以與最近的實驗結果良好地吻合。 | zh_TW |
| dc.description.abstract | Semiconductor silicon-based spin quibt system is promising platform for quantum computg due to not only its scalability of being compatible to nowadays MOS industry but also its long coherence in the purified ”spin vacuum”. However, it long suffer from longer gate and measurement times than other solid-state systems, like superconductor qubit system. Moreover, the additional measurement electrometers like quantum point contact or single electron transistor used nowadays must be placed nearby every qubits, which will be a burden when scaling up. One of the solution is to connect it to the superconductor resonator, which is widely used in superconductor qubit system and long studied as circuit quantum electrodynamics. In this thesis, we build a full quantum model of the Singlet-Triplet qubit coupling to the superconductor coplanar cavity and show the straddling regime, where the cavity frequency shift is enhanced or canceled each other, between charge-cavity resonance, spin-cavity resonance, and E− - cavity resonance. Further, the readout performance is predicted to be higher in positive detuning regime contrast to usual one. Besides, we also use this model to deal with the readout measurement of the triple-quantum-dot exchange qubit and the result we obtain fits well with recent experiment result. | en |
| dc.description.provenance | Made available in DSpace on 2021-06-16T09:38:53Z (GMT). No. of bitstreams: 1 U0001-1308202017245000.pdf: 6580786 bytes, checksum: 8562ef82c9c064877840e77abbf50cb3 (MD5) Previous issue date: 2020 | en |
| dc.description.tableofcontents | Acknowledgments I 摘要 II Abstract III List of Figures VI List of Tables XII 1 Introduction 1 1.1 Qubit . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 2 1.2 Semiconductor Spin Qubit . . . . . . . . . . . . . . . . . . . . . . . . 3 2 Measurement Scheme 5 2.1 Selective Tunneling Readout . . . . . . . . . . . . . . . . . . . . . . . 5 2.2 Single Electron Readout . . . . . . . . . . . . . . . . . . . . . . . . . 5 2.3 Pauli Spin Blockade . . . . . . . . . . . . . . . . . . . . . . . . . . . . 6 3 Measurement Electrometers 8 3.1 Electormeters . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 8 3.2 Gate-Based Measurement . . . . . . . . . . . . . . . . . . . . . . . . 9 3.3 Quantum Capacitance . . . . . . . . . . . . . . . . . . . . . . . . . . 9 3.4 Cavity QED . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 10 4 Qubit-Cavity Hamiltonian 13 4.1 Degrees of Freedom . . . . . . . . . . . . . . . . . . . . . . . . . . . . 13 4.2 Measurement Basis . . . . . . . . . . . . . . . . . . . . . . . . . . . . 14 4.3 Qubit-Cavity Coupling . . . . . . . . . . . . . . . . . . . . . . . . . . 18 5 Analysis 21 5.1 Transition Terms and Higher Order Terms . . . . . . . . . . . . . . . 21 5.2 Coupling-Inducing Decay . . . . . . . . . . . . . . . . . . . . . . . . . 22 5.3 Input-Output Theory . . . . . . . . . . . . . . . . . . . . . . . . . . . 22 5.4 Signal-Noise Ratio and Fidelity . . . . . . . . . . . . . . . . . . . . . 23 6 Simulation 25 6.1 Single Electron Basis . . . . . . . . . . . . . . . . . . . . . . . . . . . 25 6.2 Double Electrons Basis . . . . . . . . . . . . . . . . . . . . . . . . . . 27 6.3 Triple Electrons Basis . . . . . . . . . . . . . . . . . . . . . . . . . . . 31 6.4 Compare to Recent Experiment . . . . . . . . . . . . . . . . . . . . . 35 7 Summary 36 A Schrieffer-Wolff Transformation 37 B Dipole Operator 39 C Quantum Langevin Equation 41 D The Order of QLEs and SW Transformation 44 E Fidelity 46 F General Case 49 Bibliography 51 | |
| dc.language.iso | en | |
| dc.subject | Circuit QED | zh_TW |
| dc.subject | 半導體雙量子點 | zh_TW |
| dc.subject | 包立自旋封鎖測量 | zh_TW |
| dc.subject | Circuit QED | en |
| dc.subject | Pauli Spin Blockade Readout | en |
| dc.subject | Semiconductor Double Quantum Dots | en |
| dc.title | 矽基量子點自旋量子位元測量方法的理論分析 | zh_TW |
| dc.title | Analysis of Readout Measurements for Silicon-based Quantum-dot Spin Qubits | en |
| dc.type | Thesis | |
| dc.date.schoolyear | 108-2 | |
| dc.description.degree | 碩士 | |
| dc.contributor.oralexamcommittee | 梁啟德(Chi-Te Liang),陳士元(Shih-Yuan Chen),李峻霣(Jiun-Yun Li) | |
| dc.subject.keyword | 半導體雙量子點,包立自旋封鎖測量,Circuit QED, | zh_TW |
| dc.subject.keyword | Semiconductor Double Quantum Dots,Pauli Spin Blockade Readout,Circuit QED, | en |
| dc.relation.page | 56 | |
| dc.identifier.doi | 10.6342/NTU202003299 | |
| dc.rights.note | 有償授權 | |
| dc.date.accepted | 2020-08-17 | |
| dc.contributor.author-college | 理學院 | zh_TW |
| dc.contributor.author-dept | 應用物理研究所 | zh_TW |
| 顯示於系所單位: | 應用物理研究所 | |
文件中的檔案:
| 檔案 | 大小 | 格式 | |
|---|---|---|---|
| U0001-1308202017245000.pdf 未授權公開取用 | 6.43 MB | Adobe PDF |
系統中的文件,除了特別指名其著作權條款之外,均受到著作權保護,並且保留所有的權利。
