請用此 Handle URI 來引用此文件:
http://tdr.lib.ntu.edu.tw/jspui/handle/123456789/597完整後設資料紀錄
| DC 欄位 | 值 | 語言 |
|---|---|---|
| dc.contributor.advisor | 葉光勝(Kuang-Sheng Yeh) | |
| dc.contributor.author | Yi-Hsuan Huang | en |
| dc.contributor.author | 黃伊萱 | zh_TW |
| dc.date.accessioned | 2021-05-11T04:40:23Z | - |
| dc.date.available | 2020-09-01 | |
| dc.date.available | 2021-05-11T04:40:23Z | - |
| dc.date.copyright | 2019-08-20 | |
| dc.date.issued | 2019 | |
| dc.date.submitted | 2019-08-20 | |
| dc.identifier.citation | 1. 劉雨田 嵇, 周啟馥, 林文博, 林憲德, 陳春香, 汪蕙蘭: 新編微生物學 (第三版). 臺灣 2009, 永大書局有限公司.
2. Paterson DL, Bonomo RA: Extended-spectrum beta-lactamases: a clinical update. Clin Microbiol Rev 2005, 18(4):657-686. 3. Lalak A, Wasyl D, Zajac M, Skarzynska M, Hoszowski A, Samcik I, Wozniakowski G, Szulowski K: Mechanisms of cephalosporin resistance in indicator Escherichia coli isolated from food animals. Vet Microbiol 2016, 194:69-73. 4. Ewers C, Bethe A, Semmler T, Guenther S, Wieler LH: Extended-spectrum beta-lactamase-producing and AmpC-producing Escherichia coli from livestock and companion animals, and their putative impact on public health: a global perspective. Clin Microbiol Infect 2012, 18(7):646-655. 5. Costa D, Poeta P, Saenz Y, Vinue L, Rojo-Bezares B, Jouini A, Zarazaga M, Rodrigues J, Torres C: Detection of Escherichia coli harbouring extended-spectrum beta-lactamases of the CTX-M, TEM and SHV classes in faecal samples of wild animals in Portugal. Journal of Antimicrobial Chemotherapy 2006, 58(6):1311-1312. 6. Blaak H, de Kruijf P, Hamidjaja RA, van Hoek AH, de Roda Husman AM, Schets FM: Prevalence and characteristics of ESBL-producing E. coli in Dutch recreational waters influenced by wastewater treatment plants. Vet Microbiol 2014, 171(3-4):448-459. 7. Blaak H, van Hoek AH, Veenman C, Docters van Leeuwen AE, Lynch G, van Overbeek WM, de Roda Husman AM: Extended spectrum beta-lactamase- and constitutively AmpC-producing Enterobacteriaceae on fresh produce and in the agricultural environment. Int J Food Microbiol 2014, 168-169:8-16. 8. Korzeniewska E, Harnisz M: Extended-spectrum beta-lactamase (ESBL)-positive Enterobacteriaceae in municipal sewage and their emission to the environment. J Environ Manage 2013, 128:904-911. 9. Laube H, Friese A, von Salviati C, Guerra B, Rosler U: Transmission of ESBL/AmpC-producing Escherichia coli from broiler chicken farms to surrounding areas. Vet Microbiol 2014, 172(3-4):519-527. 10. Johnson JR, Russo TA: Extraintestinal pathogenic Escherichia coli : “The other bad E. coli ”. J Lab Clin Med 2002, 139(3):155-162. 11. Marques C, Belas A, Franco A, Aboim C, Gama LT, Pomba C: Increase in antimicrobial resistance and emergence of major international high-risk clonal lineages in dogs and cats with urinary tract infection: 16 year retrospective study. J Antimicrob Chemother 2018, 73(2):377-384. 12. Bogaerts P, Huang TD, Bouchahrouf W, Bauraing C, Berhin C, El Garch F, Glupczynski Y, ComPath Study G: Characterization of ESBL- and AmpC-producing Enterobacteriaceae from diseased companion animals in Europe. Microb Drug Resist 2015, 21(6):643-650. 13. Picozzi SCM, Casellato S, Rossini M, Paola G, Tejada M, Costa E, Carmignani L: Extended-spectrum beta-lactamase-positive Escherichia coli causing complicated upper urinary tract infection: Urologist should act in time. Urol Ann 2014, 6(2):107-112. 14. Pitout JDD, Laupland KB: Extended-spectrum β-lactamase-producing Enterobacteriaceae: an emerging public-health concern. Lancet Infect Dis 2008, 8(3):159-166. 15. Lartigue MF, Poirel L, Aubert D, Nordmann P: In vitro analysis of ISEcp1B-mediated mobilization of naturally occurring beta-lactamase gene blaCTX-M of Kluyvera ascorbata. Antimicrob Agents Chemother 2006, 50(4):1282-1286. 16. Kluytmans-van den Bergh, Q. MF, Rossen JWA, Bruijning-Verhagen PCJ, Bonten MJM, Friedrich AW, Vandenbroucke-Grauls CMJE, Willems RJL, Kluytmans JAJW, Ledeboer NA: Whole-genome multilocus sequence typing of extended-spectrum-beta-lactamase-producing Enterobacteriaceae. J Clin Microbiol 2016, 54(12):2919-2927. 17. Hacker J, Blum-Oehler G: In appreciation of Theodor Escherich. Nat Rev Microbiol 2007, 5:902. 18. Cowan ST: A review of names for coliform organisms. Int Bull Bacteriol Nomencl Taxon 1954, 4:119-124. 19. Dawes J, Foster M.A: Vitamin B12 and methionine synthesis in Escherichia coli. Biochim Biophys Acta 1971, 237(3):455-464. 20. Bentley R, Meganathan R: Biosynthesis of vitamin K (menaquinone) in bacteria. Microbiol Rev 1982, 46(3):241-280. 21. Bielaszewska M, Kock R, Friedrich AW, von Eiff C, Zimmerhackl LB, Karch H, Mellmann A: Shiga toxin-mediated hemolytic uremic syndrome: time to change the diagnostic paradigm? PLoS One 2007, 2(10):e1024. 22. Chen H-Y, Chan M-C, Sun J-R: Infection with Escherichia coli O157 and its molecular mechanisms. Infect Control J 2011, 21(6):323-331. 23. Sixma TK, Kalk KH, van Zanten BA, Dauter Z, Kingma J, Witholt B, Hol WG: Refined structure of Escherichia coli heat-labile enterotoxin, a close relative of cholera toxin. J Mol Biol 1993, 230(3):890-918. 24. Bernier C, Gounon P, Le Bouguenec C: Identification of an aggregative adhesion fimbria (AAF) type III-encoding operon in enteroaggregative Escherichia coli as a sensitive probe for detecting the AAF-encoding operon family. Infect Immun 2002, 70(8):4302-4011. 25. Pasqua M, Michelacci V, Di Martino ML, Tozzoli R, Grossi M, Colonna B, Morabito S, Prosseda G: The intriguing evolutionary journey of enteroinvasive E. coli (EIEC) toward pathogenicity. Front Microbiol 2017, 8:2390. 26. Moreira CG, Palmer K, Whiteley M, Sircili MP, Trabulsi LR, Castro AF, Sperandio V: Bundle-forming pili and EspA are involved in biofilm formation by enteropathogenic Escherichia coli. J Bacteriol 2006, 188(11):3952-3961. 27. Stenutz R, Weintraub A, Widmalm G: The structures of Escherichia coli O-polysaccharide antigens. FEMS Microbiol Rev 2006, 30(3):382-403. 28. Cornick NA, Jelacic S, Ciol MA, Tarr PI: Escherichia coli O157:H7 infections: discordance between filterable fecal shiga toxin and disease outcome. J Infect Dis 2002, 186(1):57-63. 29. Kaper JB, Nataro JP, Mobley HL: Pathogenic Escherichia coli. Nat Rev Microbiol 2004, 2(2):123-140. 30. Cag Y, Caskurlu H, Fan Y, Cao B, Vahaboglu H: Resistance mechanisms. Ann Transl Med 2016, 4(17):326. 31. Yoshida T, Qin L, Egger LA, Inouye M: Transcription regulation of ompF and ompC by a single transcription factor, OmpR. J Biol Chem 2006, 281(25):17114-17123. 32. Nikaido H: Prevention of drug access to bacterial targets: permeability barriers and active efflux. Science 1994, 264(5157):382-388. 33. Alekshun MN, Levy SB: Molecular mechanisms of antibacterial multidrug resistance. Cell 2007, 128(6):1037-1050. 34. Wright GD: Molecular mechanisms of antibiotic resistance. Chem Commun (Camb) 2011, 47(14):4055-4061. 35. Bush LM, Calmon J, Johnson CC: Newer penicillins and beta-lactamase inhibitors. Infect Dis Clin North Am 1995, 9(3):653-686. 36. Parsons A: Exploring Everyday Chemistry. Retrieved from https://www.futurelearn.com/courses/everyday-chemistry/0/steps/22312 (May 10, 22019). 37. Shaikh S, Fatima J, Shakil S, Rizvi SM, Kamal MA: Antibiotic resistance and extended spectrum beta-lactamases: Types, epidemiology and treatment. Saudi J Biol Sci 2015, 22(1):90-101. 38. Pitout JD, Sanders CC, Sanders WE Jr: Antimicrobial resistance with focus on beta-lactam resistance in gram-negative bacilli. Am J Med 1997, 103(1):51-59. 39. DePestel DD, Benninger MS, Danziger L, LaPlante KL, May C, Luskin A, Pichichero M, Hadley JA: Cephalosporin use in treatment of patients with penicillin allergies. J Am Pharm Assoc (2003) 2008, 48(4):530-540. 40. Moellering RC Jr, Eliopoulos GM, Sentochnik DE: The carbapenems: new broad spectrum beta-lactam antibiotics. J Antimicrob Chemother 1989, 24:1-7. 41. Chow JW, Fine MJ, Shlaes DM, Quinn JP, Hooper DC, Johnson MP, Ramphal R, Wagener MM, Miyashiro DK, VL. Y: Ann Intern Med 1991, 115(8):585-590. 42. Schmidt J, Pollack CVJ: Antibiotic use in the emergency department. III. The quinolones, new beta lactams, beta lactam combination agents, and miscellaneous antibiotics. J Emerg Med 1996, 14(4):483-496. 43. K Bush, G A Jacoby, A A Medeiros: A functional classification scheme for beta-lactamases and its correlation with molecular structure. Antimicrob Agents Chemother 1995, 39(6):1211-1233. 44. Hall BG, Barlow M: Revised Ambler classification of β-lactamases. J Antimicrob Chemother 2005, 55(6):1050-1051. 45. Bush K, Jacoby GA: Updated functional classification of beta-lactamases. Antimicrob Agents Chemother 2010, 54(3):969-976. 46. Bonnet R: Growing group of extended-spectrum beta-lactamases: the CTX-M enzymes. Antimicrob Agents Chemother 2004, 48(1):1-14. 47. Santos LLd, Moura RA, Aguilar-Ramires P, Castro AP, Lincopan N: Current status of extended-spectrum β-lactamase (ESBL)-producing Enterobacteriaceae in animals. Microbial pathogens and strategies for combating them: science, technology and education 2013, 3:1600-1607. 48. Datta N, Kontomichalou P: Penicillinase synthesis controlled by infectious R factors in Enterobacteriaceae. Nature 1995, 208(5007):239-241. 49. Jacoby GA , Medeiros AA More extended-spectrum beta-lactamases. Antimicrob Agents Chemother 1991, 35(9):1697-1704. 50. Sougakoff W, Goussard S, Gerbaud G, Courvalin P: Plasmid-mediated resistance to third-generation cephalosporins caused by point mutations in TEM-type penicillinase genes. Rev Infect Dis 1988, 10(4):879-884. 51. Liakopoulos A, Mevius D, Ceccarelli D: A review of SHV extended-spectrum β-lactamases: neglected yet ubiquitous. Front Microbiol 2016, 7:1374. 52. D'Andrea MM, Arena F, Pallecchi L, Rossolini GM: CTX-M-type beta-lactamases: a successful story of antibiotic resistance. Int J Med Microbiol 2013, 303(6-7):305-317. 53. Bradford PA: Extended-spectrum beta-lactamases in the 21st Century: characterization, epidemiology, and detection of this important resistance threat. Clinical Microbiology Reviews 2001, 14(4):933-951. 54. CLSI: Performance standards for antimicrobial susceptibility testing; twenty-third informational supplement M100-S23. 2013. 55. Rahman M, Rahman M, Jahan WA: Clinical laboratory and molecular detection of extended spectrum beta lactamases: a review update. Bangladesh J Infect Dis 2014, 1:12-17. 56. Naas T, Oueslati S, Bonnin RA, Dabos ML, Zavala A, Dortet L, Retailleau P, Iorga BI: Beta-lactamase database (BLDB) - structure and function. J Enzyme Inhib Med Chem 2017, 32(1):917-919. 57. Nemoy LL, Kotetishvili M, Tigno J, Keefer-Norris A, Harris AD, Perencevich EN, Johnson JA, Torpey D, Sulakvelidze A, Morris JG, Jr. et al: Multilocus sequence typing versus pulsed-field gel electrophoresis for characterization of extended-spectrum beta-lactamase-producing Escherichia coli isolates. J Clin Microbiol 2005, 43(4):1776-1781. 58. Müller A, Stephan R, Nüesch-Inderbinen M: Distribution of virulence factors in ESBL-producing Escherichia coli isolated from the environment, livestock, food and humans. Sci Total Environ 2016, 541:667-672. 59. Gao L, Tan Y, Zhang X, Hu J, Miao Z, Wei L, Chai T: Emissions of Escherichia coli carrying extended-spectrum beta-lactamase resistance from pig farms to the surrounding environment. Int J Environ Res Public Health 2015, 12(4):4203-4213. 60. Yu WL, Winokur PL, Von Stein DL, Pfaller MA, Wang JH, Jones RN: First description of Klebsiella pneumoniae harboring CTX-M beta-lactamases (CTX-M-14 and CTX-M-3) in Taiwan. Antimicrob Agents Chemother 2002, 46(4):1098-1100. 61. Branger C, Zamfir O, Geoffroy S, Laurans G, Arlet G, Thien HV, Gouriou S, Picard B, Denamur E: Genetic background of Escherichia coli and extended-spectrum β-lactamase type. Emerg Infect Dis 2005, 11(1):54-61. 62. Jacoby GA, Medeiros AA, O'Brien TF, Pinto ME, H. J: Broad-spectrum, transmissible beta-lactamases. N Engl J Med 1988, 319(11):723-724. 63. Thaden JT, Fowler VG, Sexton DJ, Anderson DJ: Increasing incidence of extended-spectrum beta-lactamase-producing Escherichia coli in community hospitals throughout the Southeastern United States. Infect Control Hosp Epidemiol 2016, 37(1):49-54. 64. Rossolini GM, D'Andrea MM, Mugnaioli C: The spread of CTX-M-type extended-spectrum beta-lactamases. Clin Microbiol Infect 2008, 14 Suppl 1:33-41. 65. Pavez M, Troncoso C, Osses I, Salazar R, Illesca V, Reydet P, Rodríguez C, Chahin C, Concha C, Barrientos L: High prevalence of CTX-M-1 group in ESBL-producing enterobacteriaceae infection in intensive care units in southern Chile. Braz J Infect Dis 2019, S1413-8670(18):30663-30669. 66. Canton R, Novais A, Valverde A, Machado E, Peixe L, Baquero F, Coque TM: Prevalence and spread of extended-spectrum beta-lactamase-producing Enterobacteriaceae in Europe. Clin Microbiol Infect 2008, 14 Suppl 1:144-153. 67. Chang YT, Coombs G, Ling T, Balaji V, Rodrigues C, Mikamo H, Kim MJ, Rajasekaram DG, Mendoza M, Tan TY et al: Epidemiology and trends in the antibiotic susceptibilities of Gram-negative bacilli isolated from patients with intra-abdominal infections in the Asia-Pacific region, 2010-2013. Int J Antimicrob Agents 2017, 49(6):734-739. 68. Xia S, Fan X, Huang Z, Xia L, Xiao M, Chen R, Xu Y, Zhuo C: Dominance of CTX-M-type extended-spectrum beta-lactamase (ESBL)-producing Escherichia coli isolated from patients with community-onset and hospital-onset infection in China. PLoS One 2014, 9(7):e100707. 69. Nakamura T, Komatsu M, Yamasaki K, Fukuda S, Miyamoto Y, Higuchi T, Ono T, Nishio H, Sueyoshi N, Kida K et al: Epidemiology of Escherichia coli, Klebsiella species, and Proteus mirabilis strains producing extended-spectrum beta-lactamases from clinical samples in the Kinki Region of Japan. Am J Clin Pathol 2012, 137(4):620-626. 70. Tsai WL, Hung CH, Chen HA, Wang JL, Huang IF, Chiou YH, Chen YS, Lee SS, Hung WY, Cheng MF: Extended-spectrum beta-lactamase-producing Escherichia coli bacteremia: Comparison of pediatric and adult populations. J Microbiol Immunol Infect 2018, 51(6):723-731. 71. Huang IF, Lee WY, Wang JL, Hung CH, Hu HH, Hung WY, Hung YJ, Chen WC, Shen YT, Cheng MF: Fecal carriage of multidrug-resistant Escherichia coli by community children in southern Taiwan. BMC Gastroenterol 2018, 18(1):86. 72. Jean SS, Lu MC, Shi ZY, Tseng SH, Wu TS, Lu PL, Shao PL, Ko WC, Wang FD, Hsueh PR: In vitro activity of ceftazidime-avibactam, ceftolozane-tazobactam, and other comparable agents against clinically important Gram-negative bacilli: results from the 2017 surveillance of multicenter antimicrobial resistance in Taiwan (SMART). Infect Drug Resist 2018, 11:1983-1992. 73. Matsumoto Y, Ikeda F, Kamimura T, Yokota Y, Y. M: Novel plasmid-mediated beta-lactamase from Escherichia coli that inactivates oxyimino-cephalosporins. Antimicrob Agents Chemother 1988, 32(8):1243-1246. 74. Pomba C, da Fonseca JD, Baptista BC, Correia JD, Martinez-Martinez L: Detection of the pandemic O25-ST131 human virulent Escherichia coli CTX-M-15-producing clone harboring the qnrB2 and aac(6')-Ib-cr genes in a dog. Antimicrob Agents Chemother 2009, 53(1):327-328. 75. O'Keefe A, Hutton TA, Schifferli DM, Rankin SC: First detection of CTX-M and SHV extended-spectrum beta-lactamases in Escherichia coli urinary tract isolates from dogs and cats in the United States. Antimicrob Agents Chemother 2010, 54(8):3489-3492. 76. Liu X, Liu H, Li Y, Hao C: High prevalence of beta-lactamase and plasmid-mediated quinolone resistance genes in extended-spectrum cephalosporin-resistant Escherichia coli from dogs in Shaanxi, China. Front Microbiol 2016, 7:1843. 77. Kuan N-L, Chang C-W, Lee C-A, Yeh K-S: Extended-spectrum beta-lactamase-producing Escherichia coli and Klebsiella pneumoniae isolates from the urine of dogs and cats suspected of urinary tract infection in a veterinary teaching hospital. Taiwan Vet J 2016, 42(03):143-148. 78. Ewers C, Grobbel M, Stamm I, Kopp PA, Diehl I, Semmler T, Fruth A, Beutlich J, Guerra B, Wieler LH et al: Emergence of human pandemic O25:H4-ST131 CTX-M-15 extended-spectrum-beta-lactamase-producing Escherichia coli among companion animals. J Antimicrob Chemother 2010, 65(4):651-660. 79. Rogers BA, Sidjabat HE, Paterson DL: Escherichia coli O25b-ST131: a pandemic, multiresistant, community-associated strain. J Antimicrob Chemother 2011, 66(1):1-14. 80. CLSI: Performance standards for antimicrobial susceptibility testing; twenty-first informational supplement M100-21. 2011. 81. Wirth T, Falush D, Lan R, Colles F, Mensa P, Wieler LH, Karch H, Reeves PR, Maiden MC, Ochman H et al: Sex and virulence in Escherichia coli: an evolutionary perspective. Mol Microbiol 2006, 60(5):1136-1151. 82. Clermont O, Dhanji H, Upton M, Gibreel T, Fox A, Boyd D, Mulvey MR, Nordmann P, Ruppe E, Sarthou JL et al: Rapid detection of the O25b-ST131 clone of Escherichia coli encompassing the CTX-M-15-producing strains. J Antimicrob Chemother 2009, 64(2):274-277. 83. Tsuyuki Y, Kurita G, Murata Y, Takahashi T: Bacteria isolated from companion animals in Japan (2014–2016) by blood culture. J Infect Chemother 2018, 24(7):583-587. 84. Sun Y, Zeng Z, Chen S, Ma J, He L, Liu Y, Deng Y, Lei T, Zhao J, Liu JH: High prevalence of blaCTX-M extended-spectrum β-lactamase genes in Escherichia coli isolates from pets and emergence of CTX-M-64 in China. Clin Microbiol Infect 2010, 16(9):1475-1481. 85. Tamang MD, Nam HM, Jang GC, Kim SR, Chae MH, Jung SC, Byun JW, Park YH, Lim SK: Molecular characterization of extended-spectrum-beta-lactamase-producing and plasmid-mediated AmpC beta-lactamase-producing Escherichia coli isolated from stray dogs in South Korea. Antimicrob Agents Chemother 2012, 56(5):2705-2712. 86. Moyaert H, Morrissey I, de Jong A, El Garch F, Klein U, Ludwig C, Thiry J, Youala M: Antimicrobial susceptibility monitoring of bacterial pathogens isolated from urinary tract infections in dogs and cats across Europe: ComPath results. Microb Drug Resist 2017, 23(3):391-403. 87. Marques C, Gama LT, Belas A, Bergstrom K, Beurlet S, Briend-Marchal A, Broens EM, Costa M, Criel D, Damborg P et al: European multicenter study on antimicrobial resistance in bacteria isolated from companion animal urinary tract infections. BMC Vet Res 2016, 12(1):213. 88. Kumar D, Singh AK, Ali MR, Chander Y: Antimicrobial susceptibility profile of extended spectrum beta-lactamase (ESBL) producing Escherichia coli from various clinical samples. Infect Dis (Auckl) 2014, 7:1-8. 89. Kizirgil A, Demirdag K, Ozden M, Bulut Y, Yakupogullari Y, Toraman ZA: In vitro activity of three different antimicrobial agents against ESBL producing Escherichia coli and Klebsiella pneumoniae blood isolates. Microbiological research 2005, 160(2):135-140. 90. Munoz-Price LS, Hooper DC, Bloom A: Extended-spectrum beta-lactamases. UpToDate 2019. 91. Beytur A, Yakupogullari Y, Oguz F, Otlu B, Kaysadu H: Oral amoxicillin-clavulanic acid treatment in urinary tract infections caused by extended-spectrum beta-lactamase-producing organisms. Jundishapur J Microbiol 2015, 8(1):e13792. 92. Tamma PD, Rodriguez-Bano J: The use of noncarbapenem beta-lactams for the treatment of extended-spectrum beta-lactamase infections. Clin Infect Dis 2017, 64(7):972-980. 93. Zeynudin A, Pritsch M, Schubert S, Messerer M, Liegl G, Hoelscher M, Belachew T, Wieser A: Prevalence and antibiotic susceptibility pattern of CTX-M type extended-spectrum beta-lactamases among clinical isolates of gram-negative bacilli in Jimma, Ethiopia. BMC Infect Dis 2018, 18(1):524. 94. Woodford N, Fagan EJ, Ellington MJ: Multiplex PCR for rapid detection of genes encoding CTX-M extended-spectrum (beta)-lactamases. J Antimicrob Chemother 2006, 57(1):154-155. 95. Kiratisin P, Apisarnthanarak A, Saifon P, Laesripa C, Kitphati R, Mundy LM: The emergence of a novel ceftazidime-resistant CTX-M extended-spectrum beta-lactamase, CTX-M-55, in both community-onset and hospital-acquired infections in Thailand. Diagn Microbiol Infect Dis 2007, 58(3):349-355. 96. Zhang J, Zheng B, Zhao L, Wei Z, Ji J, Li L, Xiao Y: Nationwide high prevalence of CTX-M and an increase of CTX-M-55 in Escherichia coli isolated from patients with community-onset infections in Chinese county hospitals. BMC Infect Dis 2014, 14:659. 97. Norizuki C, Kawamura K, Wachino JI, Suzuki M, Nagano N, Kondo T, Arakawa Y: Detection of Escherichia coli producing CTX-M-1-group extended-spectrum beta-lactamases from pigs in Aichi Prefecture, Japan, between 2015 and 2016. Jpn J Infect Dis 2018, 71(1):33-38. 98. Kawamura K, Sugawara T, Matsuo N, Hayashi K, Norizuki C, Tamai K, Kondo T, Arakawa Y: Spread of CTX-Type extended-spectrum β-lactamase-producing Escherichia coli isolates of epidemic clone B2-O25-ST131 among dogs and cats in Japan. Microb Drug Resist 2017, 23(8):1059-1066. 99. Nguyen VT, Jamrozy D, Matamoros S, Carrique-Mas JJ, Ho HM, Thai QH, Nguyen TNM, Wagenaar JA, Thwaites G, Parkhill J et al: Limited contribution of non-intensive chicken farming to ESBL-producing Escherichia coli colonization in humans in Vietnam: an epidemiological and genomic analysis. J Antimicrob Chemother 2019, 74(3):561-570. 100. Poirel L, Potron A, De La Cuesta C, Cleary T, Nordmann P, Munoz-Price LS: Wild coastline birds as reservoirs of broad-spectrum-beta-lactamase-producing Enterobacteriaceae in Miami Beach, Florida. Antimicrob Agents Chemother 2012, 56(5):2756-2758. 101. Wang J, Ma ZB, Zeng ZL, Yang XW, Huang Y, Liu JH: The role of wildlife (wild birds) in the global transmission of antimicrobial resistance genes. Zool Res 2017, 38(2):55-80. 102. Zogg AL, Zurfluh K, Schmitt S, Nuesch-Inderbinen M, Stephan R: Antimicrobial resistance, multilocus sequence types and virulence profiles of ESBL producing and non-ESBL producing uropathogenic Escherichia coli isolated from cats and dogs in Switzerland. Vet Microbiol 2018, 216:79-84. 103. Maeyama Y, Taniguchi Y, Hayashi W, Ohsaki Y, Osaka S, Koide S, Tamai K, Nagano Y, Arakawa Y, Nagano N: Prevalence of ESBL/AmpC genes and specific clones among the third-generation cephalosporin-resistant Enterobacteriaceae from canine and feline clinical specimens in Japan. Vet Microbiol 2018, 216:183-189. 104. Dahmen S, Haenni M, Chatre P, Madec JY: Characterization of blaCTX-M IncFII plasmids and clones of Escherichia coli from pets in France. J Antimicrob Chemother 2013, 68(12):2797-2801. 105. Day MJ, Rodriguez I, van Essen-Zandbergen A, Dierikx C, Kadlec K, Schink AK, Wu G, Chattaway MA, DoNascimento V, Wain J et al: Diversity of STs, plasmids and ESBL genes among Escherichia coli from humans, animals and food in Germany, the Netherlands and the UK. J Antimicrob Chemother 2016, 71(5):1178-1182. 106. Pietsch M, Eller C, Wendt C, Holfelder M, Falgenhauer L, Fruth A, Grossl T, Leistner R, Valenza G, Werner G et al: Molecular characterisation of extended-spectrum beta-lactamase (ESBL)-producing Escherichia coli isolates from hospital and ambulatory patients in Germany. Vet Microbiol 2017, 200:130-137. 107. Alsharapy SA, Yanat B, Lopez-Cerero L, Nasher SS, Diaz-De-Alba P, Pascual A, Rodriguez-Martinez JM, Touati A: Prevalence of ST131 clone producing both ESBL CTX-M-15 and AAC(6')Ib-cr among ciprofloxacin-resistant Escherichia coli isolates from Yemen. Microb Drug Resist 2018. 108. Kim YA, Lee K, Chung JE: Risk factors and molecular features of sequence type (ST) 131 extended-spectrum-beta-lactamase-producing Escherichia coli in community-onset female genital tract infections. BMC Infect Dis 2018, 18(1):250. 109. Campos ACC, Andrade NL, Ferdous M, Chlebowicz MA, Santos CC, Correal JCD, Lo Ten Foe JR, Rosa ACP, Damasco PV, Friedrich AW et al: Comprehensive molecular characterization of Escherichia coli isolates from urine samples of hospitalized patients in Rio de Janeiro, Brazil. Front Microbiol 2018, 9:243. 110. Lifshitz Z, Sturlesi N, Parizade M, Blum SE, Gordon M, Taran D, Adler A: Distinctiveness and similarities between extended-spectrum beta-lactamase-producing Escherichia coli isolated from cattle and the community in Israel. Microb Drug Resist 2018, 24(6):868-875. 111. Lim JS, Choi DS, Kim YJ, Chon JW, Kim HS, Park HJ, Moon JS, Wee SH, Seo KH: Characterization of Escherichia coli-producing extended-spectrum beta-lactamase (ESBL) isolated from chicken slaughterhouses in South Korea. Foodborne Pathog Dis 2015, 12(9):741-748. 112. Dierikx CM, van Duijkeren E, Schoormans AH, van Essen-Zandbergen A, Veldman K, Kant A, Huijsdens XW, van der Zwaluw K, Wagenaar JA, Mevius DJ: Occurrence and characteristics of extended-spectrum-beta-lactamase- and AmpC-producing clinical isolates derived from companion animals and horses. J Antimicrob Chemother 2012, 67(6):1368-1374. 113. Jiang W, Men S, Kong L, Ma S, Yang Y, Wang Y, Yuan Q, Cheng G, Zou W, Wang H: Prevalence of plasmid-mediated fosfomycin resistance gene fosA3 among CTX-M-producing Escherichia coli isolates from chickens in China. Foodborne Pathog Dis 2017, 14(4):210-218. 114. McGann P, Snesrud E, Maybank R, Corey B, Ong AC, Clifford R, Hinkle M, Whitman T, Lesho E, Schaecher KE: Escherichia coli harboring mcr-1 and blaCTX-M on a novel IncF plasmid: First report of mcr-1 in the United States. Antimicrob Agents Chemother 2016, 60(7):4420-4421. 115. Vangchhia B, Abraham S, Bell JM, Collignon P, Gibson JS, Ingram PR, Johnson JR, Kennedy K, Trott DJ, Turnidge JD et al: Phylogenetic diversity, antimicrobial susceptibility and virulence characteristics of phylogroup F Escherichia coli in Australia. Microbiology 2016, 162(11):1904-1912. 116. Li S, Liu J, Zhou Y, Miao Z: Characterization of ESBL-producing Escherichia coli recovered from companion dogs in Tai'an, China. J Infect Dev Ctries 2017, 11(3):282-286. 117. Brolund A, Edquist PJ, Makitalo B, Olsson-Liljequist B, Soderblom T, Wisell KT, Giske CG: Epidemiology of extended-spectrum beta-lactamase-producing Escherichia coli in Sweden 2007-2011. Clin Microbiol Infect 2014, 20(6):O344-352. 118. de Souza da-Silva AP, de Sousa VS, Martins N, da Silva Dias RC, Bonelli RR, Riley LW, Moreira BM: Escherichia coli sequence type 73 as a cause of community acquired urinary tract infection in men and women in Rio de Janeiro, Brazil. Diagn Microbiol Infect Dis 2017, 88(1):69-74. 119. Lau SH, Reddy S, Cheesbrough J, Bolton FJ, Willshaw G, Cheasty T, Fox AJ, Upton M: Major uropathogenic Escherichia coli strain isolated in the northwest of England identified by multilocus sequence typing. J Clin Microbiol 2008, 46(3):1076-1080. 120. Cordoni G, Woodward MJ, Wu H, Alanazi M, Wallis T, La Ragione RM: Comparative genomics of European avian pathogenic E. coli (APEC). BMC Genomics 2016, 17(1):960. 121. Atterby C, Borjesson S, Ny S, Jarhult JD, Byfors S, Bonnedahl J: ESBL-producing Escherichia coli in Swedish gulls-A case of environmental pollution from humans? PLoS One 2017, 12(12):e0190380. 122. Zhao X, Yang J, Ju Z, Chang W, Sun S: Molecular characterization of antimicrobial resistance in Escherichia coli from rabbit farms in Tai'an, China. Biomed Res Int 2018, 2018:8607647. 123. Mohsin M, Raza S, Schaufler K, Roschanski N, Sarwar F, Semmler T, Schierack P, Guenther S: High prevalence of CTX-M-15-type ESBL-producing E. coli from migratory avian species in Pakistan. Front Microbiol 2017, 8:2476. 124. Joo EJ, Kim SJ, Baek M, Choi Y, Seo J, Yeom JS, Ko KS: Fecal carriage of antimicrobial-resistant Enterobacteriaceae in healthy Korean adults. J Microbiol Biotechnol 2018, 28(7):1178-1184. 125. Pitout JDD, Thomson KS, Hanson ND, Ehrhardt AF, Moland ES, Sanders CC: β-Lactamases responsible for resistance to expanded-spectrum cephalosporins in Klebsiella pneumoniae, Escherichia coli, and Proteus mirabilis isolates recovered in South Africa. Antimicrob Agents Chemother 1998, 42(6):1350-1354. 126. Chia JH, Chu C, Su LH, Chiu CH, Kuo AJ, Sun CF, Wu TL: Development of a multiplex PCR and SHV melting-curve mutation detection system for detection of some SHV and CTX-M-lactamases of Escherichia coli, Klebsiella pneumoniae, and Enterobacter cloacae in Taiwan. J Clin Microbiol 2005, 43(9):4486-4491. 127. Yu Y, Ji S, Chen Y, Zhou W, Wei Z, Li L, Ma Y: Resistance of strains producing extended-spectrum β-lactamases and genotype distribution in China. J Infect 2007, 54(1):53-57. 128. Zhang J, Zheng B, Zhao L, Wei Z, Ji J, Li L, Xiao Y: Nationwide high prevalence of CTX-M and an increase of CTX-M-55 in Escherichia coli isolated from patients with community-onset infections in Chinese county hospitals. BMC Infect Dis 2014, 1 | |
| dc.identifier.uri | http://tdr.lib.ntu.edu.tw/handle/123456789/597 | - |
| dc.description.abstract | 超廣譜性乙內醯胺酶(extended-spectrum-β-lactamases, ESBLs)為可以水解β-內醯胺類抗菌藥物的酵素,包括第三代頭孢子菌素,如獸醫常用的ceftiofur。ESBL的產生主要是藉由質體傳遞,並且此類質體通常包含對其他種類的抗生素如胺基配糖體和氟喹諾酮類具有抗藥性的基因,限制了可用於治療的有效抗微生物劑的選擇。ESBLs廣泛分佈於腸桿菌科的成員中,特別是在大腸桿菌中。在犬貓中最常見的疾病為尿路感染,然而引起尿路感染 (urinary tract infections, UTIs) 的病原體又以大腸桿菌居多,這時就需要抗生素的治療,進而可能會導致ESBL-producing E. coli的產生。儘管帶有ESBL的微生物是全球性問題,但在臺灣,目前對於在獸醫中產ESBL的微生物的報告有限。因此,本研究目的在於分析2014至2017年間,就診臺大動物醫院的狗貓所分離帶有超廣譜性乙內醯胺酶大腸桿菌的盛行率及特性。本研究收集了285個大腸桿菌的檢體,並經由臨床與實驗室標準協會所規範的雙盤紙錠試驗去鑑定ESBL表現型,結果發現有65株大腸桿菌帶有ESBL (22.8%)。所有的65株分離株都對ampicillin呈抗藥性,對β-lactams類的ceftiofur、四環素類的doxycycline以及喹諾酮類的enrofloxacin、ciprofloxacin,則分別呈現93.8%、73.8%、80%,以及78.5% 的抗藥性。對於β-lactams類的imipenem與胺基配糖體類的gentamicin,則有相對較高的感受性。CTX-M-1和CTX-M-2 group為最主要的ESBL基因型。屬於CTX-M-1 group的分離株共有38株 (58.5%),以CTX-M-55 (24/65, 36.9%) 為主要的ESBL基因。屬於CTX-M-2 group的分離株共12株 (18.5%),其ESBL基因均為CTX-M-124 (12/65, 18.5%)。多重基因座序列分型法結果顯示ST457、ST131、ST648為最常見的無性繁殖系 (clone)。其中ST131、ST648又是屬於全球流行高危險群的無性繁殖系。然而,ST131 O25b是引起全球人畜共通傳染並造成公共衛生問題的clone。在本研究中發現有8株大腸桿菌屬於ST131 O25b,又以CTX-M-14和CTX-M-15的衍生物為主要ESBL基因型。伴侶動物如犬貓與人類會有親密的接觸,有可能成為人類產生ESBL細菌的潛在來源。因此,從公共衛生和獸醫學角度來看,鑑定與分析ESBL細菌的抗藥性問題與流行病學,是一個值得繼續深入探討的議題。 | zh_TW |
| dc.description.abstract | Extended-spectrum-β-lactamases (ESBLs) is a group of enzymes that can hydrolyze β-latctams antimicrobial agents, including the third generation cephalosporins such as ceftiofur frequently used in veterinary medicine. Production of ESBL is primarily plasmid-mediated and such plasmids often comprise the genes that exhibit resistance to other classes of antimicrobials like aminoglycosides and fluoroquinolones, limiting the choice of effective antimicrobial agents available for treatment. ESBLs are widely distributed in the members of the family Enterobacteriaceae, particularly in Escherichia coli. In both dogs and cats, the most common pathogen was E. coli, which could cause urinary tract infections (UTIs) and should be treated by antimicrobial agents. Urinary tract infections (UTIs) is the most common disease in dogs and cats, and the most commonly seen pathogen is E. coli. Therapy of UTIs requires antimicrobials; however, usage of such antimicrobials may also result in producing of ESBL-producing E. coli. Although presence of ESBL-producing microorganisms is a global problem, the information regarding the ESBL-producing E. coli is limited in veterinary medicine in Taiwan. Therefore, the objective of this study is to characterize the E. coli strains isolated in National Taiwan University Veterinary Hospital (NTUVH) from 2014 to 2017 in dogs and cats, analyzing the prevalence of ESBL-producing E. coli, the ESBL gene groups, and the sequence type of these ESBL producers. The double disc test specified by Clinical and Laboratory Standards Institute (CLSI) detected 65 ESBL-producing E. coli (22.8%) from 285 E. coli isolates recovered from dogs and cats in this study. All the 65 ESBL-producing E. coli were resistant to ampicillin. The resistant rate to ceftiofur, doxycycline, enrofloxacin, and ciprofloxacin was 93.8%, 73.8%, 80%, and 78.5% respectively. The ESBL-producing E. coli were relatively more sensitive to imipenem and gentamicin. The CTX-M-1 and CTX-M-2 was the most commonly found ESBL gene groups. A total of 38 isolates belonged to CTX-M-1 group; the main ESBL gene was CTX-M-55 (24/65, 36.9%). Twelve isolates belonged to CTX-M-2 group and the ESBL gene were all CTX-M-124 (12/65, 18.5%). Multilocus sequence typing (MLST) showed that ST457, ST131 and ST648 were the most commonly found clones, and the ST131 and ST648 were the globally distributed high risk clones. The E. coli ST131/O25b is a zoonotic global clone of public health concern and our study found 8 E. coli ST131/O25b isolates whose major ESBL genes were CTX-M-14 and CTX-M-15 variants. Since companion animals like dogs and cats are in close contact with humans, From the perspective of public health and veterinary medicine, characterization of the ESBL-producers and epidemiology is an issue warrants further investigation. | en |
| dc.description.provenance | Made available in DSpace on 2021-05-11T04:40:23Z (GMT). No. of bitstreams: 1 ntu-108-R06629003-1.pdf: 1620011 bytes, checksum: e2af8d75b20534a63095baa490f8ded6 (MD5) Previous issue date: 2019 | en |
| dc.description.tableofcontents | 中文摘要………………………………………………….....…………………………i
英文摘要………………………………………………………………………………iii 目錄……………………………………………………………………………………v 第一章 緒論…………………………………………………………………………1 第二章 文獻回顧……………………………………………………………………3 第一節 大腸桿菌………………………………………………………………3 2-1-1. 型態與背景介紹…………………………………………………3 2-1-2. 大腸桿菌型態與生化特徵………………………………………4 2-1-3. 大腸桿菌的血清型與毒素………………………………………4 第二節 大腸桿菌的抗藥性機制………………………………………………6 2-2-1. 細胞膜通透性的改變……………………………………………7 2-2-2. 藥物排出幫浦系統………………………………………………7 2-2-3. 改變藥物的結合標的或流程……………………………………8 2-2-4. 產生酵素將藥物不活化…………………………………………8 第三節 β-lactam類抗生素…………………………………………………….9 2-3-1. 青黴素類………………………………………………………..10 2-3-2. 頭孢子菌素類…………………………………………………..11 2-3-3. 碳青黴烯類……………………………………………………..11 2-3-4. 單環內醯胺類…………………………………………………..11 第四節 超廣譜性乙內醯胺酶………………………………………………..12 2-4-1. β-lactamaes分類………………………………………………..13 2-4-2. ESBLs基因型…………………………………………………..15 2-4-3. ESBL表現型的檢測…………………………………………16 2-4-4. ESBL基因型的檢測…………………………………………18 第五節 多重基因座序列分型法 (Multilocus sequence typing, MLST) …..18 第六節 ESBLs流行病學相關研究…………………………………………19 2-6-1. ESBLs在人醫的流行概況……………………………………20 2-6-2. ESBLs在獸醫的流行概況……………………………………22 第七節 ST131/O25b的流行概況…………………………………………...23 第八節 研究目的…………………………………………………………....25 第三章 材料與方法……………………………………………………………....26 第一節 菌株來源…………………………………………………………....26 第二節 ESBL表現型鑑定……………………………………………….....26 第三節 萃取細菌DNA (加熱煮沸法) …………………………………….27 第四節 抗微生物藥物感受性試驗………………………………………....27 第五節 β-lactamaes基因型測定…………………………………………....28 第六節 MLST序列定序分析……………………………………………....29 第七節 PCR檢測ST131 O25b之測試………………………………….....29 第四章 研究結果……………………………………………………………........31 第一節 ESBL菌株分離率與採樣來源………………………………….....31 第二節 ESBL菌株之抗微生物藥物感受性試驗結果………………….....31 第三節 β-lactamaes基因型檢測結果…………………………………........32 第四節 ESBL-producing E. coli之MLST分析結果…………………........33 第五節 ESBL-producing E. coli之ST131 O25b之檢測結果…………......34 第五章 討論…………………………………………………………………........35 5-1. ESBL菌株分離率與採樣來源………………………………..........35 5-2. ESBL菌株之抗微生物藥物感受性試驗結果……………….….....35 5-3. β-lactamase基因型測定結果……………………………………....37 5-4. ESBL-producing E. coli之MLST序列定序分析……………........37 5-5. ESBL-producing E. coli ST131 O25b之檢測結果…………….......39 第六章 結論………………………………………………………………….........41 第七章 參考文獻…………………………………………………………….........43 表次 Table 1. ……………………………………………………………….......56 Table 2. ……………………………………………………………….......57 Table 3. ……………………………………………………………….......58 Table 4. ……………………………………………………………….......58 Table 5. ……………………………………………………………….......59 Table 6. ……………………………………………………………….......60 Table 7. ……………………………………………………………….......61 Table 8. ……………………………………………………………….......62 圖次 Figure 1. ………………………………………………………………......63 Figure 2. ………………………………………………………………......64 附錄 Appendix 1. ……………………………………………………………....65 Appendix 2. ……………………………………………………………....66 Appendix 3. ……………………………………………………………....67 Appendix 4. ……………………………………………………………....68 | |
| dc.language.iso | zh-TW | |
| dc.subject | 超廣譜性乙內醯胺? | zh_TW |
| dc.subject | 大腸桿菌 | zh_TW |
| dc.subject | 多重抗藥性 | zh_TW |
| dc.subject | 多重基因座序列分型法 | zh_TW |
| dc.subject | ST131/O25b | zh_TW |
| dc.subject | ST131/O25b | en |
| dc.subject | Extended-spectrum β-lactamases | en |
| dc.subject | Escherichia coli | en |
| dc.subject | Multidrug-resistance | en |
| dc.subject | Multilocus sequence typing | en |
| dc.title | 由2014至2017年從就診臺大動物醫院的犬貓所分離帶有超廣譜性乙內醯胺酶大腸桿菌的盛行率及特性分析 | zh_TW |
| dc.title | Prevalence and characterization of the extended-spectrum-β-lactamase (ESBL)-producing Escherichia coli isolated from the dogs and cats admitted to National Taiwan University veterinary hospital from 2014 to 2017 | en |
| dc.date.schoolyear | 107-2 | |
| dc.description.degree | 碩士 | |
| dc.contributor.oralexamcommittee | 宣詩玲(Shih-Ling Hsuan),王裕智(Yu-Chih Wang) | |
| dc.subject.keyword | 超廣譜性乙內醯胺?,大腸桿菌,多重抗藥性,多重基因座序列分型法,ST131/O25b, | zh_TW |
| dc.subject.keyword | Extended-spectrum β-lactamases,Escherichia coli,Multidrug-resistance,Multilocus sequence typing,ST131/O25b, | en |
| dc.relation.page | 68 | |
| dc.identifier.doi | 10.6342/NTU201901115 | |
| dc.rights.note | 同意授權(全球公開) | |
| dc.date.accepted | 2019-08-20 | |
| dc.contributor.author-college | 獸醫專業學院 | zh_TW |
| dc.contributor.author-dept | 獸醫學研究所 | zh_TW |
| 顯示於系所單位: | 獸醫學系 | |
文件中的檔案:
| 檔案 | 大小 | 格式 | |
|---|---|---|---|
| ntu-108-1.pdf | 1.58 MB | Adobe PDF | 檢視/開啟 |
系統中的文件,除了特別指名其著作權條款之外,均受到著作權保護,並且保留所有的權利。
