請用此 Handle URI 來引用此文件:
http://tdr.lib.ntu.edu.tw/jspui/handle/123456789/59776完整後設資料紀錄
| DC 欄位 | 值 | 語言 |
|---|---|---|
| dc.contributor.advisor | 周子賓(Tze-Bin Chou) | |
| dc.contributor.author | Yue-Hong Tasi | en |
| dc.contributor.author | 蔡岳宏 | zh_TW |
| dc.date.accessioned | 2021-06-16T09:37:25Z | - |
| dc.date.available | 2020-02-16 | |
| dc.date.copyright | 2017-02-16 | |
| dc.date.issued | 2017 | |
| dc.date.submitted | 2017-02-10 | |
| dc.identifier.citation | References
1. Lantz, V.A., S.E. Clemens, and K.G. Miller, The actin cytoskeleton is required for maintenance of posterior pole plasm components in the Drosophila embryo. Mech. Dev., 1999. 2. Robinson, D.N. and L. Cooley, Genetic analysis of the actin cytoskeleton in the Drosophila ovary. Annu Rev Cell Dev Biol, 1997. 13: p. 147-70. 3. Grunert, S. and D. St Johnston, RNA localization and the development of asymmetry during Drosophila oogenesis. Curr Opin Genet Dev, 1996. 6(4): p. 395-402. 4. Gonzalez-Reyes, A. and D. St Johnston, Role of oocyte position in establishment of anterior-posterior polarity in Drosophila. Science, 1994. 266(5185): p. 639-42. 5. Theurkauf., et al., Reorganization of the cytoskeleton during Drosophila oogenesis: implications for axis specification and intercellular transport. Development, 1992. 115(4): p. 923-36. 6. Neuman-Silberberg, F.S. and T. Schupbach, The Drosophila dorsoventral patterning gene gurken produces a dorsally localized RNA and encodes a TGF alpha-like protein. Cell, 1993. 75(1): p. 165-74. 7. Schnorrer, F., K. Bohmann, and C. Nusslein-Volhard, The molecular motor dynein is involved in targeting Swallow and bicoid RNA to the anterior pole of Drosophila oocytes. Nature Cell Biology, 2000. 2(4): p. 185-190. 8. Ephrussi, A., L.K. Dickinson, and R. Lehmann, Oskar organizes the germ plasm and directs localization of the posterior determinant nanos. Cell, 1991. 66(1): p. 37-50. 9. Kim-Ha, J., J.L. Smith, and P.M. Macdonald, oskar mRNA is localized to the posterior pole of the Drosophila oocyte. Cell, 1991. 66(1): p. 23-35. 10. Gonzalez-Reyes, A., H. Elliott, and D. St Johnston, Polarization of both major body axes in Drosophila by gurken-torpedo signalling. Nature, 1995. 375(6533): p. 654-8. 11. Roth, S., et al., Cornichon and the Egf Receptor Signaling Process Are Necessary for Both Anterior-Posterior and Dorsal-Ventral Pattern-Formation in Drosophila. Cell, 1995. 81(6): p. 967-978. 12. Ephrussi, A. and R. Lehmann, Induction of germ cell formation by oskar. Nature, 1992. 358(6385): p. 387-92. 13. Markussen, F.H., et al., Translational control of oskar generates short OSK, the isoform that induces pole plasma assembly. Development, 1995. 121(11): p. 3723-32. 14. Breitwieser, W., et al., Oskar protein interaction with Vasa represents an essential step in polar granule assembly. Genes Dev, 1996. 10(17): p. 2179-88. 15. Vanzo, N.F. and A. Ephrussi, Oskar anchoring restricts pole plasm formation to the posterior of the Drosophila oocyte. Development, 2002. 129(15): p. 3705-14. 16. Huynh JR1, M.T., Smith-Litière K, Lepesant JA, St Johnston D., The Drosophila hnRNPA/B Homolog, Hrp48, Is Specifically Required for a Distinct Step in osk mRNA Localization. 2004. 17. Goodrich, J.S., K.N. Clouse, and T. Schupbach, Hrb27C, Sqd and Otu cooperatively regulate gurken RNA localization and mediate nurse cell chromosome dispersion in Drosophila oogenesis. Development, 2004. 131(9): p. 1949-58. 18. Hachet, O. and A. Ephrussi, Splicing of oskar RNA in the nucleus is coupled to its cytoplasmic localization. Nature, 2004. 428(6986): p. 959-63. 19. Simon L. Bullock and David Ish-Horowicz, Conserved signals and machinery for RNA transport in Drosophila oogenesis and embryogenesis. Nature Cell Biology, 2001. 20. Clark, A., C. Meignin, and I. Davis, A Dynein-dependent shortcut rapidly delivers axis determination transcripts into the Drosophila oocyte. Development, 2007. 134(10): p. 1955-65. 21. Brendza, R.P., et al., A function for kinesin I in the posterior transport of oskar mRNA and Staufen protein. Science, 2000. 289(5487): p. 2120-2. 22. Akira Nakamura, Keiji Sato, and K. Hanyu-Nakamura, Drosophila Cup Is an eIF4E Binding Protein that Associates with Bruno and Regulates oskar mRNA Translation in Oogenesis. Developmental Cel, 2004. 23. Gingras AC, Raught B, and S. N., eIF4 initiation factors: effectors of mRNA recruitment to ribosomes and regulators of translation. Annu Rev Biochem, 1999. 24. Haghighat A, et al., Repression of cap-dependent translation by 4E-binding protein 1: competition with p220 for binding to eukaryotic initiation factor-4E. Embo Journal, 1995. 25. Wilhelm, J.E., et al., Cup is an eIF4E binding protein required for both the translational repression of oskar and the recruitment of Barentsz. J Cell Biol, 2003. 163(6): p. 1197-204. 26. S., J., L.T. Chang, and P. Schedl, The Drosophila CPEB Homolog, Orb, Is Required for Oskar Protein Expression in Oocytes. 1999. 27. Benoit, P., et al., PAP- and GLD-2-type poly(A) polymerases are required sequentially in cytoplasmic polyadenylation and oogenesis in Drosophila. Development, 2008. 135(11): p. 1969-79. 28. Cha, B.J., et al., Kinesin I-dependent cortical exclusion restricts pole plasm to the oocyte posterior. Nat Cell Biol, 2002. 4(8): p. 592-8. 29. Tanaka, T., et al., Drosophila Mon2 couples Oskar-induced endocytosis with actin remodeling for cortical anchorage of the germ plasm. Development, 2011. 138(12): p. 2523-32. 30. Vanzo, N., et al., Stimulation of endocytosis and actin dynamics by Oskar polarizes the Drosophila oocyte. Dev Cell, 2007. 12(4): p. 543-55. 31. Tanaka, T. and A. Nakamura, The endocytic pathway acts downstream of Oskar in Drosophila germ plasm assembly. Development, 2008. 135(6): p. 1107-17. 32. Eulalio, A., I. Behm-Ansmant, and E. Izaurralde, P bodies: at the crossroads of post-transcriptional pathways. Nat Rev Mol Cell Biol, 2007. 8(1): p. 9-22. 33. Parker, R. and U. Sheth, P bodies and the control of mRNA translation and degradation. Mol Cell, 2007. 25(5): p. 635-46. 34. Yu, J.H., et al., Ge-1 is a central component of the mammalian cytoplasmic mRNA processing body. RNA, 2005. 11(12): p. 1795-802. 35. Cougot, N., S. Babajko, and B. Seraphin, Cytoplasmic foci are sites of mRNA decay in human cells. J Cell Biol, 2004. 165(1): p. 31-40. 36. Coller, J. and R. Parker, General translational repression by activators of mRNA decapping. Cell, 2005. 122(6): p. 875-86. 37. Kato, Y. and A. Nakamura, Roles of cytoplasmic RNP granules in intracellular RNA localization and translational control in the Drosophila oocyte. Dev Growth Differ, 2012. 54(1): p. 19-31. 38. Lin, M.D., et al., Drosophila processing bodies in oogenesis. Dev Biol, 2008. 322(2): p. 276-88. 39. Aizer A, et al., The Dynamics of Mammalian P Body Transport, Assembly, and Disassembly In Vivo. Mol Biol Cell, 2008. 40. Adva Aizer and Y. Shav-Tal., Intracellular trafficking and dynamics of P bodies. Prion, 2008. 41. Zeitelhofer, M., et al., Dynamic interaction between P-bodies and transport ribonucleoprotein particles in dendrites of mature hippocampal neurons. J Neurosci, 2008. 28(30): p. 7555-62. 42. Bretscher, A., K. Edwards, and R.G. Fehon, ERM proteins and merlin: integrators at the cell cortex. Nat Rev Mol Cell Biol, 2002. 3(8): p. 586-99. 43. Athar H Chishti, et al., The FERM domain: a unique module involved in the linkage of cytoplasmic proteins to the membrane. 1998. 44. O Turunen, T Wahlström, and A. Vaheri., Ezrin has a COOH-terminal actin-binding site that is conserved in the ezrin protein family. The Journal of Cell Biology, 1994. 45. Polesello, C., et al., Dmoesin controls actin-based cell shape and polarity during Drosophila melanogaster oogenesis. Nat Cell Biol, 2002. 4(10): p. 782-9. 46. Fumihiko Nakamura, Manuel R. Amieva, and H. Furthmayr., Phosphorylation of Threonine 558 in the Carboxyl-terminal Actin-binding Domain of Moesin by Thrombin Activation of Human Platelets. J. Biol. Chem, 1995. 47. McCartney and Fehon., Distinct cellular and subcellular patterns of expression imply distinct functions for the Drosophila homologues of moesin and the neurofibromatosis 2 tumor suppressor, merlin. The Journal of Cell Biology, 1996. 48. Verdier., et al., Drosophila Rho-kinase (DRok) is required for tissue morphogenesis in diverse compartments of the egg chamber during oogenesis. Dev Biol, 2006. 297(2): p. 417-32. 49. T Matsui, et al., Rho-associated kinase, a novel serine/threonine kinase, as a putative target for small GTP binding protein Rho. 1996. 50. Riento, K. and A.J. Ridley, Rocks: multifunctional kinases in cell behaviour. Nat Rev Mol Cell Biol, 2003. 4(6): p. 446-56. 51. Shi, Y., Serine/threonine phosphatases: mechanism through structure. Cell, 2009. 139(3): p. 468-84. 52. Lin, et al., Molecular Evolution of Type 1 Serine/Threonine Protein Phosphatases. Molecular Phylogenetics and Evolution, 1999. 53. Dombrádi V, et al., Protein phosphatase 1 activity in Drosophila mutants with abnormalities in mitosis and chromosome condensation. FEBS Lett., 1990. 54. Yang, Y., et al., The PP1 phosphatase flapwing regulates the activity of Merlin and Moesin in Drosophila. Dev Biol, 2012. 361(2): p. 412-26. 55. Kunda, P., et al., PP1-mediated moesin dephosphorylation couples polar relaxation to mitotic exit. Curr Biol, 2012. 22(3): p. 231-6. 56. Roubinet, C., et al., Molecular networks linked by Moesin drive remodeling of the cell cortex during mitosis. J Cell Biol, 2011. 195(1): p. 99-112. 57. Jankovics, F., et al., MOESIN crosslinks actin and cell membrane in Drosophila oocytes and is required for OSKAR anchoring. Curr Biol, 2002. 12(23): p. 2060-5. 58. Coller, J. and R. Parker, Eukaryotic mRNA decapping. Annu Rev Biochem, 2004. 73: p. 861-90. 59. Chuang TW, et al., The RNA-binding protein Y14 inhibits mRNA decapping and modulates processing body formation. Mol Biol Cell, 2013. 60. Quinlan, et al., Drosophila Spire is an actin nucleation factor. nature, 2005. 61. Dahlgaard, K., et al., Capu and Spire assemble a cytoplasmic actin mesh that maintains microtubule organization in the Drosophila oocyte. Dev Cell, 2007. 13(4): p. 539-53. 62. Emmons., S., et al., Cappuccino, a Drosophila maternal effect gene required for polarity of the egg and embryo, is related to the vertebrate limb deformity locus. 1995. 63. Theurkauf, W.E., Premature microtubule-dependent cytoplasmic streaming in cappuccino and spire mutant oocytes. Science, 1994. 265(5181): p. 2093-6. 64. Mizuno., T., et al., Identification and characterization of Drosophila homolog of Rho-kinase. 1999. 65. Magie, et al., Mutations in the Rho1 small GTPase disrupt morphogenesis and segmentation during early Drosophila development. Development, 1999. 66. Manseau., L.J. and T. Schupbach., cappuccino and spire: two unique maternal-effect loci required for both the anteroposterior and dorsoventral patterns of the Drosophila embryo. 1989. 67. Presgraves, D.C., A Fine-Scale Genetic Analysis of Hybrid Incompatibilities in Drosophila. Genetics, 2003. 68. Chou, T.B. and N. Perrimon, The autosomal FLP-DFS technique for generating germline mosaics in Drosophila melanogaster. Genetics, 1996. 144(4): p. 1673-9. 69. Verdier, V., et al., Drosophila Rho-kinase (DRok) is required for tissue morphogenesis in diverse compartments of the egg chamber during oogenesis. Dev Biol, 2006. 297(2): p. 417-32. 70. Grusche, F.A., et al., Sds22, a PP1 phosphatase regulatory subunit, regulates epithelial cell polarity and shape [Sds22 in epithelial morphology]. BMC Dev Biol, 2009. 9: p. 14. 71. Queenan., A.M., A. Ghabrial., and T. Schüpbach., Ectopic activation of torpedoEgfr, a Drosophila receptor tyrosine kinase. Development, 1997. 72. Sun, Y., et al., Regulation of somatic myosin activity by protein phosphatase 1beta controls Drosophila oocyte polarization. Development, 2011. 138(10): p. 1991-2001. 73. Speck, et al., Moesin functions antagonistically to the Rho pathway to maintain epithelial integrity. Nature, 2003. 74. N.C. Grieder, M.d.C., A.C. Spradling, The fusome organizes the microtubule network during oocyte differentiation in Drosophila. 2000. 75. Yamamoto, S., et al., Protein phosphatase 1ss limits ring canal constriction during Drosophila germline cyst formation. PLoS One, 2013. 8(7): p. e70502. 76. Vereshchagina, N., et al., The essential role of PP1beta in Drosophila is to regulate nonmuscle myosin. Mol Biol Cell, 2004. 15(10): p. 4395-405. 77. Martin, et al., The identification of novel genes required for Drosophila anteroposterior axis formation in a germline clone screen using GFP-Staufen. Development, 2003. 130(17): p. 4201-4215. 78. Noriko Oshiro, Yuko Fukata, and K. Kaibuch., Phosphorylation of Moesin by Rho-associated Kinase (Rho-kinase) Plays a Crucial Role in the Formation of Microvilli-like Structures. THE JOURNAL OF BIOLOGICAL CHEMISTRY, 1998. 79. M Amano; K Chihara; K Kimura; Y Fukata; Nao Nakamura, Y., Formation of Actin Stress Fibers and Focal Adhesions Enhanced by Rho-Kinase. SCIENCE, 1997. 80. Hipfner, D.R., N. Keller, and S.M. Cohen, Slik Sterile-20 kinase regulates Moesin activity to promote epithelial integrity during tissue growth. Genes Dev, 2004. 18(18): p. 2243-8. 81. Winter, et al., Drosophila Rho-Associated Kinase (Drok) Links Frizzled-Mediated Planar Cell Polarity Signaling to the Actin Cytoskeleton. Cell, 2001. 82. Zimyanin, V., N. Lowe, and D. St Johnston, An oskar-dependent positive feedback loop maintains the polarity of the Drosophila oocyte. Curr Biol, 2007. 17(4): p. 353-9. 83. Dombra´di, V., Mann, D.J., Saunders, R.D.C., Cohen, P.T.W., Cloning of the fourth functional gene for Protein Phosphatase 1 in Drosophila melanogaster from its chromosomal location. 1993. 84. Wilhelm, J.E., M. Buszczak, and S. Sayles, Efficient protein trafficking requires trailer hitch, a component of a ribonucleoprotein complex localized to the ER in Drosophila. Dev Cell, 2005. 9(5): p. 675-85. 85. Riechmann, V. and A. Ephrussi, Axis formation during Drosophila oogenesis. Current Opinion in Genetics & Development, 2001. 11(4): p. 374-383. 86. Tanaka, T. and A. Nakamura, Oskar-induced endocytic activation and actin remodeling for anchorage of the Drosophila germ plasm. Bioarchitecture, 2011. 1(3): p. 122-126. 87. Clucas, J. and F. Valderrama, ERM proteins in cancer progression. J Cell Sci, 2015. 128(6): p. 1253. | |
| dc.identifier.uri | http://tdr.lib.ntu.edu.tw/jspui/handle/123456789/59776 | - |
| dc.description.abstract | 在果蠅卵細胞發育的過程中,oskar (osk)訊息核醣核酸(mRNA)座落在卵母細胞後端以決定胚胎的體軸 (axial determination) 和生殖前驅細胞的發育。我們過去的研究發現降解體成員,果蠅去頭蓋蛋白質2 (Drosophila decapping protein 2,Dcp2) 與磷酸化的Dmoesin (Dmoe)形成anchor 幫助dDcp1-osk mRNP 坐落於後端。
我們提出假說:非磷酸化Dmoe 連接dDcp2,並且和dGe1-dDcp1-osk mRNP互動形成transporting complex 並傾向位於卵中央,當Dmoe 磷酸化改變,則p-Dmoe 與dDcp2 -dGe1-dDcp1-osk mRNP 形成anchorage complex 傾向坐落於後端。Transporting complex 和anchoring complex 的分配受Dmoe 磷酸化狀態決定。 本論文的第一部份: 尋找Dmoesin 磷酸化狀態上游的調控因子 我們證實在Drosophila Rho-kinase (Drok)缺失的卵中發現磷酸化Dmoe 表現降低,以及Osk 散落,顯示Drok 可能調控Dmoe 影響Osk 坐落。然而在卵中大量表現Drok,並無觀察到明顯的磷酸化Dmoe 和Osk 蛋白上升。關於Drok 是否藉調控Dmoe 來影響Osk 坐落需進一步分析。 另外,利用Protein Phosphatase 1 (PP1) RNAi 於卵內降解PP1 時,觀察到些許卵內Dmoe 被過度磷酸化,也產生了不正常的網狀結構。然而,Osk 蛋白質卻出現約十分之一的脫落和消失的性狀。顯示PP1 在卵內可能調控Dmoe 磷酸化,進而影響Osk 坐落。 本論文的第二部份:探討dDcp2 與actin nucleators 的互動關係。 osk mRNP 坐落需要F-肌動蛋白絲狀物(F-actin projections)。已知dDcp2 能促進 F- 肌動蛋白絲狀物產生, 但是機制不明。我們利用共同免疫沉澱(Co-immunoprecipitation)法,發現dDcp2 並不與actin nucleator Spire 互動,但與Capu 有微弱互動。dDcp2 與Capu 可能是間接互動關係。 | zh_TW |
| dc.description.abstract | During Drosophila oogenesis, oskar (osk) mRNA anchoring to the posterior end of the Drosophila oocyte defines axial determination and development of the precursor of germ cells. We previously found that Drosophila decapping protein 2 (dDcp2) and phosphorylated Dmoesin (p-Dmoe) form the anchor which localizes dDcp1-osk mRNP at the posterior pole of the oocyte.
We proposed that non-phosphorylated Dmoe (nonp-Dmoe) interacts with dDcp2-dGe-1-dDcp1-osk mRNP to form the transporting complex which tends to reside in the ooplasm. p-Dmoe interacts with dDcp2-dGe1-dDcp1-osk mRNP to form the anchorage complex which tends to anchor at the posterior end of the oocyte. The phosphorylation status of Dmoe determines the allocation of both complexes. The first part of the thesis:Investigate the upstream regulators for Dmoesin phosphorylation in the oocyte. We found that the expression of p-Dmoe was reduced and Osk was mislocalized in Drosophila Rho-kinase (Drok) mutant oocytes. It indicates that Drok might affect Osk localization via regulating phosphorylation of Dmoe in the oocyte. However, overexpression of Drok cannot elevate the expression of p-Dmoe and promote the accumulation of Osk at the posterior end of the oocyte. Whether Drok regulates the phosphorylation status of Dmoe and consequently affects Osk behavior needs further experiments. We expressed Protein Phosphatase 1 (PP1) RNAi to knock-down PP1 in oocytes and found hyper-phosphorylated Dmoe with a special reticular-like structure along oocyte cortex. Besides, Osk proteins mis-localized and disappeared from the posterior end of the oocyte. This suggested that PP1 might regulate the phosphorylation status of Dmoe and consequently affects Osk behavior in the oocyte. The second part of this thesis: Examine the relationship between dDcp2 and Cappuccino. Actin cytoskeleton is required for the localization of osk mRNA [1]. Our previous results found that dDcp2 could promote F-actin projections in the oocyte (Yi-Mei Lee, unpublished data), but the mechanism is not clear. Our co-immunoprecipitation results showed that dDcp2 cannot interact with the actin nucleator, Spire but interacts ambiguously with Capu. This indicated that the interaction between dDcp2 and Capu might be indirect. | en |
| dc.description.provenance | Made available in DSpace on 2021-06-16T09:37:25Z (GMT). No. of bitstreams: 1 ntu-106-R03b43028-1.pdf: 5777743 bytes, checksum: 28086c04da21281d78072652ca91966b (MD5) Previous issue date: 2017 | en |
| dc.description.tableofcontents | 目錄
致謝 ........................................................................................................................................................... I 中文摘要 ................................................................................................................................................. II Abstract .................................................................................................................................................. III Abbreviations .......................................................................................................................................... V 目錄 ...................................................................................................................................................... VII Introduction .............................................................................................................................................. 1 1. The axial development in Drosophila oogenesis ..................................................................... 1 1.1 Drosophila oogenesis ......................................................................................................... 1 1.2 Axis determination ............................................................................................................. 1 2. The process of osk mRNP transportation and localization. ..................................................... 2 2.1 Function of Osk proteins during oogenesis. ....................................................................... 2 2.2 Factors involve in osk mRNA localization. ........................................................................ 3 2.3 osk mRNP localization models. .......................................................................................... 6 3. Processing body (P body). ....................................................................................................... 8 3.1 Components of P bodies. .................................................................................................... 8 3.2 Function of P bodies. .......................................................................................................... 8 3.3 The mobility of P body. ...................................................................................................... 9 4. ERMs protein family, Dmoesin. ............................................................................................ 10 4.1 Regulation of ERM function. .......................................................................................... 10 4.2 Drosophila Rho-kinase (Drok) phosphorylates Dmoe. ..................................................... 10 4.3 Protein phosphatase type 1 (PP1) dephosphorylates p-Dmoe. ......................................... 11 4.4 The role of Dmoe in osk mRNP localization. ................................................................... 13 5. Previous studies in roles of P body components and Dmoe in osk mRNP localization. ........ 13 5.1 Drosophila decapping protein 2. ...................................................................................... 13 5.2 The P Body component, dDcp2, dGe-1 and dDcp1 form a complex in oocyte. .............. 15 5.3 dDcp2 interacts with Dmoe in a mutually-dependent manner. ........................................ 15 5.4 Dmoe modulates the decapping activity of dDcp2. .......................................................... 17 5.5 Phosphorylation status of Dmoe determines the allocation of dDcp2 and osk mRNP. .... 17 5.6 Propose our osk mRNP anchorage model. ....................................................................... 18 6. Previous studies roles of dDcp2 in regulation of micotubule. ............................................... 19 doi:10.6342/NTU201700453 VIII 7. Previous studies roles of dDcp2 in regulation of actin cytoskeleton...................................... 20 8. Aims of this thesis.................................................................................................................. 22 Materials and Methods ........................................................................................................................... 23 Results .................................................................................................................................................... 29 Part 1 :Investigate the upstream regulators for Dmoesin phosphorylation in the oocyte. ................... 29 1. Investigate the role of Rho-associated protein kinase (Drok) in the regulation of Dmoe phosphorylation in the oocyte. .......................................................................................................... 29 1.1. Drok might be implicated in regulation of Dmoe phosphorylation in the oocyte. ........... 29 1.2. Overexpression of Drok cannot elevate phosphorylated Dmoe in the oocyte. ................. 31 2. Investigate the role of Protein phosphatase type 1 in the regulation of Dmoe phosphorylation ……………………………………………………………………………………………….32 2.1 PP1 RNAi was not functional when driving by the single maternal GAL4 in the oocyte. …………………………………………………………………………………………...33 2.2 PP1 RNAi in posterior follicle cells resulted in abnormal expression of p-Dmoe in egg chambers. ..................................................................................................................................... 34 2.3 The MTD-GAL4-driven flw and PP1-96A RNAi resulted in hyper-phosphorylation Dmoe in the oocyte. ..................................................................................................................... 36 2.4 The expression of dDcp2 was normal in flw and PP1-96A RNAi oocytes. ..................... 37 2.5 The MTD-GAL4-driven flw and PP1-96A RNAi resulted in mis-localized Osk from the posterior end of the oocyte. ......................................................................................................... 38 2.6 The posterior localization of Osk was reduced in flw mutant oocytes. ............................ 39 Part 2 The relationship between dDcp2 and Cappuccino. ...................................................................... 41 1.1. dDcp2 cannot interact with Spir but the interaction between dDcp2 and Capu was ambiguous. .................................................................................................................................. 41 1.2. The cortical localization of Cappuccino might require dDcp2 in the oocyte. .................. 42 1.3. The cortical expression of dDcp2 might not require Capu in the oocyte. ........................ 43 1.4. Cappuccino, dDcp2 and Dmoein might not form a complex in vivo. .............................. 43 1.5. Dmoe might not improve the capability for dDcp2 to bind to Cappuccino. ..................... 44 Discussion .............................................................................................................................................. 45 Section I:Investigate the upstream regulators for Dmoesin phosphorylation in the oocyte. ................ 45 Dmoe is a substrate of Drosophila Rho-kinase (Drok). .................................................................... 45 Mis-localized Osk might result from shortage of Dmoe-dDcp2 anchor in the Drok mutant oocyte. 46 doi:10.6342/NTU201700453 IX The overexpression of Drok is not able to significantly promote the phosphorylation of Dmoe. ..... 47 The flw and PP1-96A mutant posterior follicle cells non-autonomously induced hyper-phosphorylated Dmoe in the germ cell. .................................................................................. 50 The flw and PP1-96A mutant oocytes induce distinct hyper-phosphorylated Dmoe pattern. ........... 52 The flw and PP1-96A mutant oocytes result in mis-localized Osk. .................................................. 53 Section II:The relationship between dDcp2 and Cappuccino. ............................................................. 55 dDcp2 has an ambiguous interaction with Capu. .............................................................................. 55 References .............................................................................................................................................. 89 Figures list Figure 1. Schematic diagrams of the Drosophila ovary. ......................................................................... 57 Figure 2. Axis formation during Drosophila oogenesis. ......................................................................... 58 Figure 3. A cortical exclusion model for osk mRNP posterior localization. ........................................... 60 Figure 4. A model for pole plasm anchoring to the posterior cortex of the Drosophila oocyte .............. 62 Figure 5. The General Complexes for Degradation of Eukaryotic mRNAs. .......................................... 63 Figure 6. Structure of Dmoesin protein and Dmoesin activation. .......................................................... 64 Figure 7. Our hypothesis of osk mRNP anchorage. ................................................................................ 65 Figure 8. The cortical expression of phosphorylated Dmoesin was reduced in Drok2 mutant oocytes. . 66 Figure 9. Osk protein diffused in the Drok2 mutant. ............................................................................... 67 Figure 10. The cortical expression of dDcp2 was affected in Drok2 GLC oocytes. ............................... 68 Figure 11. The overexpression of Drok cannot significantly promote the expression of p-Dmoe in the oocyte. .................................................................................................................................................... 69 Figure 12. The cortical expression of dDcp2 was not affected in Drok-overexpression oocytes. .......... 70 Figure 13. The overexpression of Drok cannot promote posterior accumulation of Osk in the oocyte.. 71 Figure 14. The expression of p-Dmoe was normal when driving PP1 RNAi by the single maternal GAL4 in the oocyte. ............................................................................................................................... 72 Figure 15. The inhibition of Flw in posterior follicle cells resulted in the abnormal expression of p-Dmoe in whole egg chambers. ............................................................................................................ 74 Figure 16. The inhibition of PP1-96A in posterior follicle cells resulted in the abnormal expression of p-Dmoe in whole egg chambers. ............................................................................................................ 75 Figure 17. Oxpressing flw RNAi and PP1-96A RNAi with Maternal Triple Driver Gal4 (MTD-GAL4) in the oocyte resulted hyper-phosphorylated Dmoe. .............................................................................. 76 Figure 18. The cortical expression of dDcp2 was not affected in MTD-GLA4-driven flw RNAi and PP1-96A RNAi oocytes. ......................................................................................................................... 78 Figure 19. Osk proteins mis-localized in MTD-GAL4-driven flw RNAi and PP1-96A RNAi oocytes. 79 Figure 20. Osk protein mis-localized in the flwFP41 mutant oocytes. ...................................................... 81 Figure 21. Co-immunoprecipitation assay in dDcp2, Cappuccino and Spire. ........................................ 82 Figure 22. The expression of Cappuccino was normal in dDcp2 mutant oocytes. ................................. 83 doi:10.6342/NTU201700453 XI Figure 23.The cortical expression of dDcp2 was normal in capu mutant oocytes.................................. 84 Figure 24. Triple-immunoprecipitation in dDcp2, Cappuccino and Dmoe. ........................................... 85 Supplementary figure S1. Drok foci is closed to the ectopic Osk in the middle of the oocyte in the UASp-Osk oocyte. .................................................................................................................................. 86 Supplementary figure S2. Expressing GFP in the posterior follicle cells with E4-GAL4. ..................... 87 Supplementary figure S3. Interaction between dDcp2 and Capu was ambiguous. ................................. 87 Table list Table 1. ................................................................................................................................................... 88 Table 2. ................................................................................................................................................... 88 | |
| dc.language.iso | en | |
| dc.subject | 奧斯卡蛋白 | zh_TW |
| dc.subject | 奧斯卡蛋白 | zh_TW |
| dc.subject | oskar protein | en |
| dc.subject | oskar protein | en |
| dc.title | 論探詢果蠅卵中Dmoesin上游磷酸化調控因子以及果蠅去頭蓋蛋白質2和Cappuccino蛋白的關係 | zh_TW |
| dc.title | Investigate the upstream regulators for Dmoesin phosphorylation in the oocyte and the relationship between Drosophila decapping protein 2 and Cappuccino | en |
| dc.type | Thesis | |
| dc.date.schoolyear | 105-1 | |
| dc.description.degree | 碩士 | |
| dc.contributor.oralexamcommittee | 王致恬(Chih-Tien Wang),溫進德(Jin-Der Wen) | |
| dc.subject.keyword | 奧斯卡蛋白, | zh_TW |
| dc.subject.keyword | oskar protein, | en |
| dc.relation.page | 94 | |
| dc.identifier.doi | 10.6342/NTU201700453 | |
| dc.rights.note | 有償授權 | |
| dc.date.accepted | 2017-02-12 | |
| dc.contributor.author-college | 生命科學院 | zh_TW |
| dc.contributor.author-dept | 分子與細胞生物學研究所 | zh_TW |
| 顯示於系所單位: | 分子與細胞生物學研究所 | |
文件中的檔案:
| 檔案 | 大小 | 格式 | |
|---|---|---|---|
| ntu-106-1.pdf 未授權公開取用 | 5.64 MB | Adobe PDF |
系統中的文件,除了特別指名其著作權條款之外,均受到著作權保護,並且保留所有的權利。
