請用此 Handle URI 來引用此文件:
http://tdr.lib.ntu.edu.tw/jspui/handle/123456789/59766
完整後設資料紀錄
DC 欄位 | 值 | 語言 |
---|---|---|
dc.contributor.advisor | 廖運炫(Yunn-Shiuan Liao) | |
dc.contributor.author | Chin-Hsi Liao | en |
dc.contributor.author | 廖金喜 | zh_TW |
dc.date.accessioned | 2021-06-16T09:36:54Z | - |
dc.date.available | 2018-01-01 | |
dc.date.copyright | 2017-02-21 | |
dc.date.issued | 2017 | |
dc.date.submitted | 2017-02-11 | |
dc.identifier.citation | [1] H. Schulz and T. Moriwaki, 'High-speed Machining,' CIRP Annals - Manufacturing Technology, vol. 41, pp. 637-643, 1992.
[2] M. C. Shaw, Metal Cutting Principles, 2nd. ed.: Oxford University Press, 2005. [3] A. Shokrani, V. Dhokia, and S. T. Newman, 'Environmentally conscious machining of difficult-to-machine materials with regard to cutting fluids,' International Journal of Machine Tools and Manufacture, vol. 57, pp. 83-101, 2012. [4] D. Dudzinski, A. Devillez, A. Moufki, D. Larrouquère, V. Zerrouki, and J. Vigneau, 'A review of developments towards dry and high speed machining of Inconel 718 alloy,' International Journal of Machine Tools and Manufacture, vol. 44, pp. 439-456, 2004. [5] M. Rahman, A. S. Kumar, and M. U. Salam, 'Experimental evaluation on the effect of minimal quantities of lubricant in milling,' International Journal of Machine Tools & Manufacture, vol. 42, pp. 539-547, 2002. [6] U. Heisel and M. Lutz, 'Application of minimum quantity cooling lubrication technology in cutting processes,' Production Engineering Research and Development in Germany, vol. 2(1), pp. 49-54, 1994. [7] A. R. Machado and J. Wallbank, 'The effect of extremely low lubricant volumes in machining,' Wear, vol. 210, pp. 76-82, 1997. [8] J. F. Kelly and M. G. Cotterell, 'Minimal lubrication machining of aluminium alloys,' Journal of Materials Processing Technology, vol. 120, pp. 327-334, 2002. [9] Y. Saikawa, T. Ichikawa, T. Aoyama, and T. Takada, 'High speed drilling and tapping using the technique of spindle through MQL supply,' Key Engineering Materials, vol. 257-258, pp. 559-564, 2004. [10] J. M. Liu, Takagi, and K. Yanagida, 'A study of chip formation and chip removal in dry drilling of aluminum cast alloy,' Key Engineering Materials vol. 257-258, pp. 575-580, 2004. [11] H. A. Kishawy, M. Dumitrescu, E.-G. Ng, and M. A. Elbestawi, 'Effect of coolant strategy on tool performance, chip morphology and surface quality during high speedmachining of A356 aluminum alloy,' International Journal of Machine Tools and Manufacture, vol. 45(2), pp. 219-227, 2005. [12] N. R. Dhar, M. Kamruzzaman, and M. Ahmed, 'Effect of minimum quantity lubrication (MQL) on tool wear and surface roughness in turning AISI-4340 steel,' Journal of Materials Processing Technology, vol. 172, pp. 299-304, 2006. [13] N. R. Dhar, M. W. Islam, S. Islam, and M. A. H. Mithu, 'The influence of minimum quantity of lubrication (MQL) on cutting temperature, chip and dimensional accuracy in turning AISI-1040 steel,' Journal of Materials Processing Technology, vol. 171, pp. 93-99, 2006. [14] J. Sun, Y. S. Wong, M. Rahman, Z. G. Wang, K. S. Neo, C. H. Tan, et al., 'Effects of coolant supply methods and cutting conditions on tool life in end milling titanium alloy,' Machining Science and Technology, vol. 10(3), pp. 355-370, 2006. [15] W. Zhao, N. He, and L. Li, 'High speed milling of Ti6Al4V alloy with minimal quantity lubrication,' Key Engineering Materials, vol. 329, pp. 663-668, 2007. [16] S. Zhang, J. F. Li, and Y. W. Wang, 'Tool life and cutting forces in end milling Inconel 718 under dry and minimum quantity cooling lubrication cutting conditions,' Journal of Cleaner Production, vol. 32, pp. 81-87, 2012. [17] C. A. I. D. (2015). The output value of aviation industry of ROC. Available: http://www.casid.org.tw/ [18] E. O. Ezugwu, 'Key improvements in the machining of difficult-to-cut aerospace superalloys,' International Journal of Machine Tools and Manufacture, vol. 45, pp. 1353-1367, 2005. [19] E. O. Ezugwu, J. Bonney, D. A. Fadare, and W. F. Sales, 'Machining of nickel-base, Inconel 718, alloy with ceramic tools under finishing conditions with various coolant supply pressures,' Journal of Materials Processing Technology, vol. 162-163, pp. 609-614, 2005. [20] E. O. Ezugwu, Z. M. Wang, and A. R. M. b, 'The machinability of nickel-based alloys.. a review,' Journal of Materials Processing Technology, vol. 86, pp. 1-16, 1999. [21] T. AKASAWA and Y. HASHIGUTI, 'Crater wear mechanism of wc-co tools at high cutting speeds,' Wear, vol. 65, pp. 141-150. [22] Y. S. Liao, H. M. Lin, and J. H. Wang, 'Behaviors of end milling Inconel 718 superalloy by cemented carbide tools,' Journal of Materials Processing Technology, vol. 201, pp. 460-465, 2008. [23] H. Li, H. Zeng, and X. Chen, 'An experimental study of tool wear and cutting force variation in the end milling of Inconel 718 with coated carbide inserts,' Journal of Materials Processing Technology, vol. 180, pp. 296-304, 2006. [24] D. G. Thakur, B. Ramamoorthy, and L. Vijayaraghavan, 'Study on the machinability characteristics of superalloy Inconel 718 during high speed turning,' Materials & Design, vol. 30, pp. 1718-1725, 2009. [25] A. Devillez, F. Schneider, S. Dominiak, D. Dudzinski, and D. Larrouquere, 'Cutting forces and wear in dry machining of Inconel 718 with coated carbide tools,' Wear, vol. 262, pp. 931-942, 2007. [26] S. Dolinšek, B. Šuštaršič, and J. Kopač, 'Wear mechanisms of cutting tools in high-speed cutting processes,' Wear, vol. 250, pp. 349-356, 2001. [27] S. K. Bhaumik, C. Divakar, and A. K. Singh, 'Machining Ti-6AI-4V Alloy with a wBN-cBN,' Material and Design, vol. 16, pp. 221-226, 1995. [28] N. Narutaki and A. Murakoshi, 'Study on Machining of Titanium Alloys,' Annals of the CIRP 46, vol. 32/1, pp. 65-69, 1983. [29] E. O. Ezugwu and Z. M. Wang, 'Titanium alloy and their machinability—a review,' Journal of Materials Processing Technology, vol. 68, pp. 262-274, 1997. [30] N. Corduan, T. Himbart, G. Poulachon, M. Dessoly, M. Lambertin, J. Vigneau, et al., 'Wear Mechanisms of New Tool Materials for Ti-6AI-4V High Performance Machining,' CIRP Annals - Manufacturing Technology, vol. 52, pp. 73-76, 2003. [31] Z. Liu, Q. An, J. Xu, M. Chen, and S. Han, 'Wear performance of (nc-AlTiN)/(a-Si3N4) coating and (nc-AlCrN)/(a-Si3N4) coating in high-speed machining of titanium alloys under dry and minimum quantity lubrication (MQL) conditions,' Wear, vol. 305, pp. 249-259, 2013. [32] Y. Su, N. He, L. Li, and X. L. Li, 'An experimental investigation of effects of cooling/lubrication conditions on tool wear in high-speed end milling of Ti-6Al-4V,' Wear, vol. 261, pp. 760-766, 2006. [33] I. Deiab, S. W. Raza, and S. Pervaiz, 'Analysis of Lubrication Strategies for Sustainable Machining during Turning of Titanium Ti-6Al-4V Alloy,' Procedia CIRP, vol. 17, pp. 766-771, 2014. [34] S. K. Bhattacharyya, I. R. Pashby, E. O. Ezugwu, and M. A.R., presented at the UNICAMP, Campinas, SP, Brazil(Eng. Mater. Sci. Brazilian Conf.), 1988. [35] P. D. Darvey, Engineering Properties of Steels: American Society for Metals, 1982. [36] J. G. Lima, R. F. Ávila, A. M. Abrão, M. Faustino, and J. P. Davim, 'Hard turning: AISI 4340 high strength low alloy steel and AISI D2 cold work tool steel,' Journal of Materials Processing Technology, vol. 169, pp. 388-395, 2005. [37] J. G. d. Lima, R. F. d. Avila, and A. M. Abrao, 'Turning of hardened AISI 4340 steel using coated carbide inserts,' Proceedings of the IMechE, Part B: Journal of Engineering Manufacture, vol. 221, pp. 1359-1366, 2007. [38] J. A. Williams and D. Tabor, 'The role of lubricants in maching,' Wear, vol. 43, pp. 275-292, 1977. [39] T. Obikawa, Y. Kamata, and J. Shinozuka, 'High-speed grooving with applying MQL,' International Journal of Machine Tools and Manufacture, vol. 46, pp. 1854-1861, 2006. [40] F. Itoigawa, T. H. C. Childs, W. T. Nakamura, and Belluco, 'Effects and mechanisms in minimal quantity lubrication machining of an aluminum alloy,' Wear vol. 260(3), pp. 339-344, 2006. [41] M. A. Hadi, J. A. Ghani, C. H. C. Haron, and M. S. Kasim, 'CoMParison between Up-milling and Down-milling Operations on Tool Wear in Milling Inconel 718,' Procedia Engineering, vol. 68, pp. 647-653, 2013. [42] M. Z. A. Yazid, C. H. CheHaron, J. A. Ghani, G. A. Ibrahim, and A. Y. M. Said, 'Surface integrity of Inconel 718 when finish turning with PVD coated carbide tool under MQL,' Procedia Engineering, vol. 19, pp. 396-401, 2011. [43] C. Salomon, 'Process for the machining of metals and similarly acting materials when being worked by cutting tools,' German Patent 523594, 1931. [44] R. I. King, Handbook of High Speed Machining Technology: Chapman and Hall, 1985. [45] H. Schulz and T. Moriwaki, 'High-Speed Machining,' Annals of CIRP, vol. 41(2), pp. 637-643, 1992. [46] R. Komanduri, K. Subramanian, and B. F. V. Turkovich, High Speed Machining: ASME, 1984. [47] W. Grzesik, Advanced Machining Processes of Metallic Materials vol. VIII, 2008. [48] G. Byrne, D. Dornfeld, and B. Denkena, 'Advancing cutting technology,' CIRP Annals, vol. 52/2, pp. 483-507, 2003. [49] L. R. Rudnick, Synthetics, Mineral Oils, and Bio-Based Lubricants: Chemistry and Technology. Boca Raton: Taylor & Francis, 2006. [50] Y. Kamata and T. Obikawa, 'High speed MQL finish-turning of Inconel 718 with different coated tools,' Journal of Materials Processing Technology, vol. 192-193, pp. 281-286, 2007. [51] A. Attanasio, M. Gelfi, C. Giardini, and C. Remino, 'Minimal quantity lubrication in turning: Effect on tool wear,' Wear, vol. 260, pp. 333-338, 2006. [52] S. Ekinović, E. Begović, and A. Lušija, 'MQL Machining – Oil on Water Droplet System,' Journal of Science and Technology, vol. 2, pp. 15-25, 2014. [53] S. Suda, T. Wakabayashi, S. Fujimura, I. Inasaki, and S. Min, 'Investigation of adsorption behaviour of lubricants in near-dry machining,' Proceedings of the Institution of Mechanical Engineers, Part B: Journal of Engineering Manufacture, vol. 219, pp. 665-671, 2005. [54] F. Klocke and G. Eisenblätter, 'Dry Cutting,' CIRP Annals - Manufacturing Technology, vol. 46, pp. 519-526, 1997. [55] A. S. Varadarajan, P. K. Philip, and B. Ramamoorthy, 'Investigations on hard turning with minimal cutting fluid application (HTMF) and its coMParison with dry and wet turning,' International Journal of Machine Tools & Manufacture, vol. 42, pp. 193–200, 2002. [56] S. Suda, H. Yokota, I. Inasaki, and T. Wakabayashi, 'A Synthetic Ester as an Optimal Cutting Fluid for Minimal Quantity Lubrication Machining,' CIRP Annals - Manufacturing Technology, vol. 51, pp. 95-98, 2002. [57] K. Weinert, I. Inasaki, J. W. Sutherland, and T. Wakabayashi, 'Dry Machining and Minimum Quantity Lubrication,' CIRP Annals - Manufacturing Technology, vol. 53, pp. 511-537, 2004. [58] Y. S. Liao and H. M. Lin, 'Mechanism of minimum quantity lubrication in high-speed milling of hardened steel,' International Journal of Machine Tools and Manufacture, vol. 47, pp. 1660-1666, 2007. [59] İ. Ucun, K. Aslantas, and F. Bedir, 'An experimental investigation of the effect of coating material on tool wear in micro milling of Inconel 718 super alloy,' Wear, vol. 300, pp. 8-19, 2013. [60] D. G. Thakur, B. Ramamoorthy, and L. Vijayaraghavan, 'Investigation and optimization of lubrication parameters in high speed turning of superalloy Inconel 718,' The International Journal of Advanced Manufacturing Technology, vol. 50, pp. 471-478, 2010. [61] T. Obikawa, Comprehensive Materials Processing, 2014. [62] K. Nakayama, M. Arai, and T. Kanda, 'Machining Characteristics of Hard Materials,' CIRP Annals - Manufacturing Technology, vol. 37, pp. 89-92, 1988. [63] H. Zhen-Bin and R. Komanduri, 'On a Thermomechanical Model of Shear Instability in Machining,' CIRP Annals - Manufacturing Technology, vol. 44, pp. 69-73, 1995. [64] G. Boothroyd and W. A. Knight, Fundamentals of Machining and Machine Tools, 3rd. ed. Boca Raton: Taylor & Francis, 2006. [65] B. M. Kramer, 'On tool materials for high speed machining,' Journal of Engineering for Industry,Transactions of the ASME 109, pp. 87-91, 1987. [66] E. M. Trent and P. K. Wright, Metal Cutting, 4th. ed. London: Butterworth-Heinemann, 2000. [67] H. Chandrasekaran and J. O. Johansson, 'Chip flow and notch wear mechanisms during the machining of high austenitic stainless steels,' Annals of CIRP, vol. 43(1), pp. 101-105, 1994. [68] G. Tlusty, Manufacturing Processes and Equipment. New Jersey: Prentice Hall, 2000. [69] R. Ramaswami, 'The effect of the built-up-edge(BUE) on the wear of cutting tools,' Wear, vol. 18, pp. 1-10, 1971. [70] R. Krishnamurthy and A. S. Choudhury, 'Comb Cracking in Cemented Carbides,' presented at the International Conference on Fracture Houston, 1989. [71] C. Hagart-Alexander, 'Temperature Measurement,' pp. 269-326, 2010. [72] L. N. López de lacalle, J. Pérez, J. I. Llorente, and J. A. Sánchez, 'Advanced cutting conditions for the milling of aeronautical alloys,' Journal of Materials Processing Technology, vol. 100, pp. 1-11, 4/3/ 2000. [73] E. O. Ezugwu and I. R. Pashby, 'High speed milling of nickel-based superalloys,' Journal of Materials Processing Technology, vol. 33, pp. 429-437, 1992. [74] H. Liu, J. Zhang, Y. Jiang, Y. He, X. Xu, and W. Zhao, 'Investigation on Morphological Evolution of Chips for Ti6Al4V Alloys with the Increasing Milling Speed,' Procedia CIRP, vol. 46, pp. 408-411, 2016. [75] Chetan, B. C. Behera, S. Ghosh, and P. V. Rao, 'Wear behavior of PVD TiN coated carbide inserts during machining of Nimonic 90 and Ti6Al4V superalloys under dry and MQL conditions,' Ceramics International, vol. 42, pp. 14873-14885, 2016. [76] C. Y. Wang, Y. X. Xie, Z. Qin, H. S. Lin, Y. H. Yuan, and Q. M. Wang, 'Wear and breakage of TiAlN- and TiSiN-coated carbide tools during high-speed milling of hardened steel,' Wear, vol. 336-337, pp. 29-42, 2015. [77] D. W. Oxtoby, H. P. Gillis, and L. J. Butle, Principles of Modern Chemistry, 8th ed.: American Society of Heating and Ventilating Engineers, 1959. [78] P. Perrot, A to Z of thermodynamics. New York Oxford University Press, 1998. [79] C. Tian, C. Cui, L. Xu, Y. Gu, and X. Sun, 'Dynamic Strain Aging in a Newly Developed Ni–Co-Base Superalloy with Low Stacking Fault Energy,' Journal of Materials Science & Technology, vol. 29, pp. 873-878, 2013. [80] I. Takasu, T. Kasai, and M. Nakasaki, 'Practical Use of Numerical Analysis and Physical Simulation to Cold Die Forging Process,' 2000. [81] W. Ma, X. Chen, and F. Shuang, 'The chip-flow behaviors and formation mechanisms in the orthogonal cutting process of Ti6Al4V alloy,' Journal of the Mechanics and Physics of Solids, vol. 98, pp. 245-270, 2017. [82] Y. Okazaki, Y. Ito, K. Kyo, and T. Tateishi, 'Corrosion resistance and corrosion fatigue strength of new titanium alloys for medical implants without V and A1,' Materials Science and Engineering, vol. A213, pp. 138-147, 1996. | |
dc.identifier.uri | http://tdr.lib.ntu.edu.tw/jspui/handle/123456789/59766 | - |
dc.description.abstract | 本文使用鍍層碳化物刀具在最少量潤滑(MQL)條件下高速銑削Inconel 718、Ti-6Al-4V與SKD 11等三種難切削材,藉由切削液油水比例與噴流量的改變,觀察切削力、刀具磨耗與切屑的變化,討論切削液的作用機制並提出切削液油水比例與噴流量的最適當值。銑削有加工硬化現象的難切削材如Inconel 718時,提高切削液油水比例與噴流量有助於形成邊界潤滑層與擴散障礙層以減少刀具磨耗。但是,超過飽和值的噴流量無法進一步減少刀具磨耗。因此,高速銑削加工硬化型難切削材時,切削液油水比例與噴流量的最適當值分別是60:40與60 ml/hr。高速銑削容易產生BUE的難切削材如Ti-6Al-4V時,低油水比例切削液能夠穩定BUE,減少BUE脫落時造成的刀刃缺損。提高噴流量也會促使BUE更加不穩定而增加刀具磨耗,因此,高速銑削容易產生BUE的難切削材時,切削液油水比例與噴流量的最適當值分別是10:90與20 ml/hr。高速銑削高硬度難切削材如SKD 11時,切屑對刀面的磨耗區域較小,刀刃上的黏屑與BUE也較少。另外,高油水比例與低油水比例分別會增加刀腹磨耗與刀面磨耗,提高噴流量也會擴大刀面磨耗區域,因此,高速銑削高硬度難切削材時,切削液油水比例與噴流量的最適當值分別是40:60與20 ml/hr。研究結果顯示高油水比例切削液適用於容易加工硬化的難切削材,低油水比例切削液適用於容易產生BUE的難切削材。 | zh_TW |
dc.description.provenance | Made available in DSpace on 2021-06-16T09:36:54Z (GMT). No. of bitstreams: 1 ntu-106-D94522040-1.pdf: 6633831 bytes, checksum: 2ccaa685336189aca4b1ec2866c027c8 (MD5) Previous issue date: 2017 | en |
dc.description.tableofcontents | 誌謝 I
中文摘要 II Abstract III 目錄 V 圖目錄 IX 表目錄 XV 符號說明 XVI 第 1 章 緒論 1 1.1 研究背景與動機 1 1.2 研究目的 9 1.3 本文架構 9 第 2 章 高速切削與相關學理 11 2.1 高速切削 11 2.1.1 高速切削緣起 11 2.1.2 高速切削發展歷程 13 2.1.3 高速切削的相關研究 15 2.2 切削液 16 2.3 切屑的形成與分類 22 2.4 刀具的磨耗機制與型式 24 2.4.1 刀具磨耗機制 25 2.4.2 刀具磨耗型式 28 2.4.3 刀刃積屑 32 2.4.4 梳狀裂紋 32 2.5 邊界潤滑 34 2.6 維恩位移定律 34 第 3 章 實驗配置、實驗材料與實驗步驟 36 3.1 實驗配置 36 3.1.1 實驗裝置 36 3.1.2 模擬裝置 42 3.2 實驗材料 43 3.2.1 Inconel 718 43 3.2.2 Ti-6Al-4V 44 3.2.3 SKD 11 44 3.2.4 MQL切削液 45 3.3 實驗步驟 47 第 4 章 切削液對銑削難切削材的影響 49 4.1 切削液的散熱分析 49 4.2 切削液的噴霧與滲透分布 52 4.3 Inconel 718的MQL銑削 56 4.3.1 刀具磨耗 57 4.3.2 切屑觀察 60 4.3.3 切削力比較 61 4.3.4 EDX分析 64 4.3.5 噴流量的影響 66 4.4 Ti-6Al-4V的MQL銑削 69 4.4.1 刀具磨耗 69 4.4.2 切屑觀察 73 4.4.3 切削力比較 74 4.4.4 EDX分析 76 4.4.5 噴流量的影響 78 4.5 SKD 11的MQL銑削 80 4.5.1 刀具磨耗觀察 80 4.5.2 切屑觀察 85 4.5.3 切削力比較 87 4.5.4 EDX分析 89 4.5.5 噴流量的影響 90 4.6 小結 92 第 5 章 切削液的選擇 93 5.1 材料性質的影響 93 5.2 切削液的作用機制 94 5.3 小結 96 第 6 章 結論與未來展望 97 6.1 結論 97 6.2 未來展望 98 參考文獻 99 作者簡歷 108 | |
dc.language.iso | zh-TW | |
dc.title | 最少量潤滑(MQL)切削液應用於高速銑削難切削材之研究 | zh_TW |
dc.title | The Study of Minimum Quantity Lubrication (MQL) Cutting Fluid in High Speed Milling of Hard-to-Cut Materials | en |
dc.type | Thesis | |
dc.date.schoolyear | 105-1 | |
dc.description.degree | 博士 | |
dc.contributor.oralexamcommittee | 林榮慶(Zone-Ching Lin),陳政雄(Jenq-Shyong chen),林憲茂(Hsien-Mou Lin),蔡曜陽(Yao-Yang Tsai),李貫銘(Kuan-Ming Li) | |
dc.subject.keyword | MQL,高速銑削,MQL切削液的作用,油水比例,噴流量,Inconel 718,Ti-6Al-4V,SKD 11, | zh_TW |
dc.subject.keyword | MQL,high speed milling,action of MQL fluid,oil-water ratio,flow rate,Inconel 718,Ti-6Al-4V,SKD 11, | en |
dc.relation.page | 108 | |
dc.identifier.doi | 10.6342/NTU201700461 | |
dc.rights.note | 有償授權 | |
dc.date.accepted | 2017-02-12 | |
dc.contributor.author-college | 工學院 | zh_TW |
dc.contributor.author-dept | 機械工程學研究所 | zh_TW |
顯示於系所單位: | 機械工程學系 |
文件中的檔案:
檔案 | 大小 | 格式 | |
---|---|---|---|
ntu-106-1.pdf 目前未授權公開取用 | 6.48 MB | Adobe PDF |
系統中的文件,除了特別指名其著作權條款之外,均受到著作權保護,並且保留所有的權利。