Skip navigation

DSpace

機構典藏 DSpace 系統致力於保存各式數位資料(如:文字、圖片、PDF)並使其易於取用。

點此認識 DSpace
DSpace logo
English
中文
  • 瀏覽論文
    • 校院系所
    • 出版年
    • 作者
    • 標題
    • 關鍵字
    • 指導教授
  • 搜尋 TDR
  • 授權 Q&A
    • 我的頁面
    • 接受 E-mail 通知
    • 編輯個人資料
  1. NTU Theses and Dissertations Repository
  2. 醫學院
  3. 醫學檢驗暨生物技術學系
請用此 Handle URI 來引用此文件: http://tdr.lib.ntu.edu.tw/jspui/handle/123456789/59753
完整後設資料紀錄
DC 欄位值語言
dc.contributor.advisor方偉宏
dc.contributor.authorCho-Yuan Wuen
dc.contributor.author吳卓遠zh_TW
dc.date.accessioned2021-06-16T09:36:17Z-
dc.date.available2018-02-14
dc.date.copyright2017-02-24
dc.date.issued2017
dc.date.submitted2017-02-12
dc.identifier.citationCao, W. (2013). 'Endonuclease V: An unusual enzyme for repair of DNA deamination.' Cellular and Molecular Life Sciences 70(17): 3145-3156.
Fang, W. H., J. Y. Wu and M. J. Su (1997). 'Methyl-directed repair of mismatched small heterologous sequences in cell extracts from Escherichia coli.' Journal of Biological Chemistry 272(36): 22714-22720.
Feng, H., L. Dong, A. M. Klutz, N. Aghaebrahim and W. Cao (2005). 'Defining amino acid residues involved in DNA-protein interactions and revelation of 3’-exonuclease activity in endonuclease V.' Biochemistry 44(34): 11486-11495.
Frederico, L. A., T. A. Kunkel and B. R. Shaw (1990). 'A sensitive genetic assay for the detection of cytosine deamination: Determination of rate constants and the activation energy.' Biochemistry 29(10): 2532-2537.
Gates Iii, F. T. and S. Linn (1977). 'Endonuclease from Escherichia coli that acts specifically upon duplex DNA damaged by ultraviolet light, osmium tetroxide, acid, or X rays.' Journal of Biological Chemistry 252(9): 2802-2807.
Gros, L., M. K. Saparbaev and J. Laval (2002). 'Enzymology of the repair of free radicals-induced DNA damage.' Oncogene 21(58 REV. ISS. 8): 8905-8925.
Hang, B., B. Singer, G. P. Margison and R. H. Elder (1997). 'Targeted deletion of alkylpurine-DNA-N-glycosylase in mice eliminates repair of 1,N6-ethenoadenine and hypoxanthine but not of 3,N4- ethenocytosine or 8-oxoguanine.' Proceedings of the National Academy of Sciences of the United States of America 94(24): 12869-12874.
Hitchcock, T. M., H. Gao and W. Cao (2004). 'Cleavage of deoxyoxanosine-containing oligodeoxyribonucleotides by bacterial endonuclease V.' Nucleic Acids Research 32(13): 4071-4080.

Howard-Flanders, P., R. P. Boyce and L. Theriot (1966). 'Three loci in Escherichia coli K-12 that control the excision of pyrimidine dimers and certain other mutagen products from DNA.' Genetics 53(6): 1119-1136.
Hsiao, Y. Y., W. H. Fang, C. C. Lee, Y. P. Chen and H. S. Yuan (2014). 'Structural Insights Into DNA Repair by RNase T-An Exonuclease Processing 3′ End of Structured DNA in Repair Pathways.' PLoS Biology 12(3).
Karran, P. and T. Lindahl (1980). 'Hypoxanthine in deoxyribonucleic acid: Generation by heat-induced hydrolysis of adenine residues and release in free form by a deoxyribonucleic acid glycosylase from calf thymus.' Biochemistry 19(26): 6005-6011.
Kawase, Y., S. Iwai, H. Inoue, K. Miura and E. Ohtsuka (1986). 'Studies on nucleic acid interactions I. Stabilities of mini-duplexes (dG2A4XA4G2.dC2T4YT 4C2) and self-complementary d(GGGAAXYTTCCC) containing deoxyinosine and other mismatched bases.' Nucleic Acids Research 14(19): 7727-7736.
Lahue, R. S., K. G. Au and P. Modrich (1989). 'DNA mismatch correction in a defined system.' Science 245(4914): 160-164.
Lee, C. C., Y. C. Yang, S. D. Goodman, C. J. Lin, Y. A. Chen, Y. T. Wang, W. C. Cheng, L. I. Lin and W. H. Fang (2013). 'The excision of 3' penultimate errors by DNA polymerase I and its role in endonuclease V-mediated DNA repair.' DNA Repair 12(11): 899-911.
Lee, C. C., Y. C. Yang, S. D. Goodman, Y. H. Yu, S. B. Lin, J. T. Kao, K. S. Tsai and W. H. Fang (2010). 'Endonuclease V-mediated deoxyinosine excision repair in vitro.' DNA Repair 9(10): 1073-1079.
Lindahl, T. (1993). 'Instability and decay of the primary structure of DNA.' Nature 362(6422): 709-715.
Lindahl, T. and R. D. Wood (1999). 'Quality control by DNA repair.' Science 286(5446): 1897-1905.

Lucas, L. T., D. Gatehouse and D. E. G. Shuker (1999). 'Efficient nitroso group transfer from N-nitrosoindoles to nucleotides and 2'-deoxyguanosine at physiological pH. A new pathway for N- nitrosocompounds to exert genotoxicity.' Journal of Biological Chemistry 274(26): 18319-18326.
Martin, F. H., M. M. Castro, F. Aboul-Ela and I. Tinoco (1985). 'Base pairing involving deoxyinosine: Implications for probe design.' Nucleic Acids Research 13(24): 8927-8938.
Modrich, P. (1991). 'Mechanisms and biological effects of mismatch repair.' Annual Review of Genetics 25: 229-253.
Moe, A., J. Ringvoll, L. M. Nordstrand, L. Eide, M. Bj?r, E. Seeberg, T. Rognes and A. Klungland (2003). 'Incision at hypoxanthine residues in DNA by a mammalian homologue of the Escherichia coli antimutator enzyme endonuclease V.' Nucleic Acids Research 31(14): 3893-3900.
Myrnes, B., P. H. Guddal and H. Krokan (1982). 'Metabolism of dITP in hela cell extracts, incorporation into DNA by isolated nuclei and release of hypoxanthine from DNA by a hypoxanthine-DNA glycosylase activity.' Nucleic Acids Research 10(12): 3693-3701.
Nguyen, T., D. Brunson, C. L. Crespi, B. W. Penman, J. S. Wishnok and S. R. Tannenbaum (1992). 'DNA damage and mutation in human cells exposed to nitric oxide in vitro.' Proceedings of the National Academy of Sciences of the United States of America 89(7): 3030-3034.
Ponnamperuma, C., R. M. Lemmon, E. L. Bennett and M. Calvin (1961). 'Deamination of adenine by ionizing radiation.' Science 134(3472): 113.
Sancar, A. (1996). DNA excision repair. Annual Review of Biochemistry. 65: 43-81.
Saparbaev, M., K. Kleibl and J. Laval (1995). 'Escherichia coil, Saccharomyces cerevisiae, rat and human 3-methyladenine DNA glycosylases repair 1,N6-ethenoadenine when present in DNA.' Nucleic Acids Research 23(18): 3750-3755.

Saparbaev, M., J. C. Mani and J. Laval (2000). 'Interactions of the human, rat, Saccharomyces cerevisiae and Escherichia coli 3-methyladenine-DNA glycosylases with DNA containing dIMP residues.' Nucleic Acids Research 28(6): 1332-1339.
Schouten, K. A. and B. Weiss (1999). 'Endonuclease V protects Escherichia coli against specific mutations caused by nitrous acid.' Mutation Research - DNA Repair 435(3): 245-254.
Shapiro, R. (1968). 'The reaction of ribonucleosides with nitrous acid. Side products and kinetics.' Biochemistry 7(1): 448-455.
Su, S. S., R. S. Lahue, K. G. Au and P. Modrich (1988). 'Mispair specificity of methyl-directed DNA mismatch correction in vitro.' Journal of Biological Chemistry 263(14): 6829-6835.
Van Houten, B. (1990). 'Nucleotide excision repair in Escherichia coli.' Microbiological Reviews 54(1): 18-51.
Watkins Jr, N. E. and J. SantaLucia Jr (2005). 'Nearest-neighbor thermodynamics of deoxyinosine pairs in DNA duplexes.' Nucleic Acids Research 33(19): 6258-6267.
Weiss, B. (2008). 'Removal of deoxyinosine from the Escherichia coli chromosome as studied by oligonucleotide transformation.' DNA Repair 7(2): 205-212.
Yao, M., Z. Hatahet, R. J. Melamede and Y. W. Kow (1994). 'Purification and characterization of a novel deoxyinosine-specific enzyme, deoxyinosine 3′ endonuclease, from Escherichia coli.' Journal of Biological Chemistry 269(23): 16260-16268.
Yao, M. and Y. W. Kow (1995). 'Interaction of deoxyinosine 3′-endonuclease from Escherichia coli with DNA containing deoxyinosine.' Journal of Biological Chemistry 270(48): 28609-28616.
Yao, M. and Y. W. Kow (1996). 'Cleavage of insertion/deletion mismatches, flap and pseudo-Y DNA structures by deoxyinosine 3'-endonuclease from Escherichia coli.' Journal of Biological Chemistry 271(48): 30672-30676.
Zhou, B., Q. Dong, R. Ma, Y. Chen, J. Yang, L. Z. Sun and C. Huang (2009). 'Rapid isolation of highly pure single-stranded DNA from phagemids.' Analytical Biochemistry 389(2): 177-179.
尤詠絮 (2009) 亞黃嘌呤核酸鹼基切除修復試管中測定系統之研發。
吳佩蓉 (2014) 第五型核酸內切酶主導之修復系統於生物體內亞黃嘌呤核酸修復之分析。
鄧宇捷 (2014) 以質體為基礎之活體內DNA修復試驗研究。
黎羿鈴 (2014) 第五型核酸內切酶及第一型核酸聚合酶校正外切酶 處理亞硝酸傷害之生物學意義。
dc.identifier.urihttp://tdr.lib.ntu.edu.tw/jspui/handle/123456789/59753-
dc.description.abstract細胞的腺嘌呤 (Adenine; A) 發生自發性的脫胺作用 (deamination) 或受到外源性的氧化壓力等傷害會變成次黃嘌呤 (Hypoxanthine; Hx)。以Hx為鹼基與五碳糖結合,則稱為次黃嘌呤核酸 (Deoxyinosine;dI)。第五型核酸內切酶修復系統 (Endonuclease V alternative excision repair;Endo V AER) 是大腸桿菌主要修復次黃嘌呤核酸的修復途徑之一。
實驗室先前利用噬菌體 M13mp18 衍生的異雙股核酸,以不同基因突變之大腸桿菌萃取液及純化蛋白系統探討試管中次黃嘌呤核酸之修復反應,結果顯示僅需 Endo V、第一型去氧核醣核酸聚合酶 (DNA polymerase I, DNA Pol I) 以及連接酶 (DNA ligase) 即可完成修復。因此推論在 Endo V 產生DNA缺口 (nick) 後,由 DNA Pol I 3’端往 5’端核酸外切酶 (3’-5’ exonuclease, 3’exo-) 活性負責移除 dI,最後再由 DNA ligase 修補缺口完成修復。實驗室也以質體pUC18製作I-T mismatch DNA受質分別轉形到BW25113 (WT)、JW5547 (nfi-)、KA796 (polA+)、KA796 D424A (polA exo-)、四株不同的大腸桿菌中,發現在第五型核酸內切酶缺失的JW5547 (nfi-)細胞株中DNA修復效率和野生株BW25113 (WT)相比大幅降低,而PolI校對活性缺乏的KA796 D424A (polA exo-)大腸桿菌中,其修復效率和對照組KA796 (polA+)無差異,我們懷疑是在第五型核酸內切酶所造成DNA缺口後,第一型DNA聚合酶大次單元無法移除錯誤片段完成修復,進而使DNA複製崩壞所造成的現象,因此無法正確分析DNA受質有無被修復。
本實驗設計一個新的I-T mismatch DNA,其中在I的3’端帶有C-C mismatch,此錯誤配對在大腸桿菌中不會被修復,可做為用來觀察DNA因複製崩壞等因素造成股損失 (strand loss) 的標記,且把此位置設計在endoV pathway對dI的修復範圍外。以此DNA受質分別轉形到BW25113 (WT)、JW5547 (nfi-)、KA796 (polA+)、KA796 D424A (polA exo-)四株不同的大腸桿菌中,隨機挑50個單一菌落,少量放大並抽取DNA,以限制酶進行水解分析,結果可以看到在BW25113 (WT)、KA796 (polA+) 兩株細胞中I-T受質都有70%以上的修復,在JW5547 (nfi-) 細胞中I-T受質只有約3%的背景訊號,在KA796 D424A (polA exo-) 中I-T受質修復約19%,但分析C-C mismatch 發現strand loss現象約有57%。
此實驗確認先前KA796 D424A (polA exo-)大腸桿菌中,其修復效率和對照組KA796 (polA+)無差異是I-T受質無法被修復產生複製崩壞所造成的假性修復現象。並對大腸桿菌中第一型DNA聚合酶3’外切酶活性及第五型核酸內切酶,於第五型核酸內切酶修復系統修復次黃嘌呤核酸的重要性提供有力證據。
zh_TW
dc.description.abstractThe highly mutagenic deoxyinosine (dI) lesion can be produced in DNA spontaneously deamination, and is enhanced by nitrous ion exposure. In Escherichia coli, dI is repaired through endonuclease V (EndoV) pathway. Our previous in vitro assay demonstrated that EndoV, DNA polymerase I (Pol I), and E. coli DNA ligase were sufficient to reconstitute the dI repair. To confirm Pol I proofreading exonuclease is the integral part of Endo V repair pathway, we employed a dI-containing plasmid for in vivo repair assay. The nfi- mutant showed dramatic decrease as expected in dI repair compared to its isogenic wild type. However, the repair efficiency of polAexo- was as high as wild type strains. We suspected this observation might result from mutant Pol I of polAexo- strain inhibited the ligation of the dI-containing strand after EndoV nicking. During plasmid replication the unrepaired nicked strand was lost because of replication fork collapse. Only continuous template strand survived the replication and was scored by our assay. To confirm this hypothesis, we redesigned a substrate containing a C-C mismatch (not repaired in E. coli) away from proposed Endo V repair-patch as the secondary markers for strand loss. For both PolI wild type BW25113 and KA796 (polA+), over 70% of dI were repaired with only dI marker removed and about 20% strain loss by missing both markers on dI-containing strand. For nfi- strain over 85% showed mixed colonies at both markers with less 10% of strand loss and 5% of background repair. As to polAexo- mutant, more than 50% were strand loss, more than 20% were unrepaired, and only less than 20% were repaired. This observation confirmed our hypothesis and provided solid evidence to support Pol I proofreading exonuclease is the major enzyme activity to remove dI lesion in EndoV repair pathway.en
dc.description.provenanceMade available in DSpace on 2021-06-16T09:36:17Z (GMT). No. of bitstreams: 1
ntu-106-R03424025-1.pdf: 1881495 bytes, checksum: c4c620ecad408a7b44f1c06ae54117d9 (MD5)
Previous issue date: 2017
en
dc.description.tableofcontents總目次
誌謝 II
中文摘要 III
英文摘要 V
圖目次 VIII
表目次 IX
附錄目次 X
縮寫表 XI
前言 1
1.1核酸基本修復機制 1
1.2次黃嘌呤受損核酸的產生 2
1.3次黃嘌呤核酸於細胞中的修復路徑 3
1.4第五型核酸內切酶主導之修復系統 3
1.5 研究動機與目的 4
材料與方法 7 2.1 菌株 7
2.2 載體 8
2.3 酵素 8
2.4 異雙股變異DNA鹼基質體之設計與建構 9
2.41 變異DNA鹼基質體設計 9
2.42 變異DNA鹼基質體建構 11
2.43 Construct 2雙股核酸製備 13
2.44 Construct 1-1單股核酸製備 14
2.45 具錯誤配對異雙股核酸製備 14
2.5 DNA受質於細菌體內修復之測試 16
結果 17
3.1 變異DNA鹼基質體建構 17
3.2 DNA受質於細菌體內修復之測試 18
討論 21
4.1 異雙股變異DNA鹼基質體之設計與建構 21
4.2 使用phagemid的益處 22
4.3 DNA受質於細菌體內修復之測試 22
圖 26
表 34
參考文獻 36
附錄 41
dc.language.isozh-TW
dc.subject脫胺作用zh_TW
dc.subject第五型核酸內切?zh_TW
dc.subject第五型核酸內切?修復系統zh_TW
dc.subject第五型核酸內切?zh_TW
dc.subject次黃嘌呤核酸zh_TW
dc.subject第一型去氧核醣核酸聚合?zh_TW
dc.subject第一型去氧核醣核酸聚合?zh_TW
dc.subject第五型核酸內切?修復系統zh_TW
dc.subject次黃嘌呤核酸zh_TW
dc.subject脫胺作用zh_TW
dc.subjectEndo V repair pathwayen
dc.subjectDeaminationen
dc.subjectDeoxyinosineen
dc.subjectEndonuclease Ven
dc.subjectDNA polymerase Ien
dc.subjectEndo V repair pathwayen
dc.subjectDeaminationen
dc.subjectDeoxyinosineen
dc.subjectEndonuclease Ven
dc.subjectDNA polymerase Ien
dc.title細菌第一型DNA聚合酶校對外切酶參與第五型核酸內切酶修復之體內證明zh_TW
dc.titleDNA polymerase I proofreading exonuclease activity is required for Endonuclease V pathway in vivoen
dc.typeThesis
dc.date.schoolyear105-1
dc.description.degree碩士
dc.contributor.oralexamcommittee楊雅倩,許濤,蔡芷季
dc.subject.keyword脫胺作用,次黃嘌呤核酸,第五型核酸內切?,第一型去氧核醣核酸聚合?,第五型核酸內切?修復系統,zh_TW
dc.subject.keywordDeamination,Deoxyinosine,Endonuclease V,DNA polymerase I,Endo V repair pathway,en
dc.relation.page45
dc.identifier.doi10.6342/NTU201700440
dc.rights.note有償授權
dc.date.accepted2017-02-13
dc.contributor.author-college醫學院zh_TW
dc.contributor.author-dept醫學檢驗暨生物技術學研究所zh_TW
顯示於系所單位:醫學檢驗暨生物技術學系

文件中的檔案:
檔案 大小格式 
ntu-106-1.pdf
  未授權公開取用
1.84 MBAdobe PDF
顯示文件簡單紀錄


系統中的文件,除了特別指名其著作權條款之外,均受到著作權保護,並且保留所有的權利。

社群連結
聯絡資訊
10617臺北市大安區羅斯福路四段1號
No.1 Sec.4, Roosevelt Rd., Taipei, Taiwan, R.O.C. 106
Tel: (02)33662353
Email: ntuetds@ntu.edu.tw
意見箱
相關連結
館藏目錄
國內圖書館整合查詢 MetaCat
臺大學術典藏 NTU Scholars
臺大圖書館數位典藏館
本站聲明
© NTU Library All Rights Reserved