Please use this identifier to cite or link to this item:
http://tdr.lib.ntu.edu.tw/jspui/handle/123456789/59736Full metadata record
| ???org.dspace.app.webui.jsptag.ItemTag.dcfield??? | Value | Language |
|---|---|---|
| dc.contributor.advisor | 王亞男(Ya-nan Wang) | |
| dc.contributor.author | Chung-I Chen | en |
| dc.contributor.author | 陳忠義 | zh_TW |
| dc.date.accessioned | 2021-06-16T09:35:28Z | - |
| dc.date.available | 2018-02-16 | |
| dc.date.copyright | 2017-02-16 | |
| dc.date.issued | 2017 | |
| dc.date.submitted | 2017-02-13 | |
| dc.identifier.citation | 于貴瑞、王秋風、朱先進 (2011)區域尺度陸地生態系統碳收支評估方法及其不確定性。地理科學進展30(1): 103–113。
王亞男 (2000) 柳杉、樟樹對溫室氣體效益之研究。89年度國科會/環保署科技合作研究計畫期末報告:41pp。 王亞男、周宏祈、王介鼎、陳秋萍 (2010)溪頭三叉崙柳杉生長量及碳貯存量效益之研究。臺大實驗林研究報告 24(3): 157–167。 王亞男、劉秀卿、蕭英倫 (2005a)行道樹水黃皮二氧化碳固定效益之研究。中華林學季刊38(2): 151–161。 王亞男、劉秀卿、蕭英倫 (2005b)行道樹黑板樹二氧化碳固定效益之研究。中華林學季刊38(3): 279–290。 王松永 (2005)森林與木材對二氧化碳涵存之貢獻。台灣林業 31(3): 20–28。 王槐榮 (2006)簡介日本林業在防止地球溫暖化所採對策。台灣林業 32(3): 71–72。 王興昌、王傳寬 (2015) 森林生態系統碳循環的基本概念和野外測定方法評述。生態學報 35(13): 4241–4256。 方精云、柯金虎、唐志堯、陳安平 (2001) 生物生產力的“4P”概念、估算及其相互關係。植物生態學報25(4): 414–419。 江博能、王亞男、梁治文 (2010)臺灣中部地區光臘樹人工林生長量與碳存量之研究。臺大實驗林研究報告 24(3): 185–194。 杜大治、王亞男、蕭英倫 (2003)孟宗竹在不同冠層二氧化碳固定效益之研究。臺大實驗林研究報告17(3): 187–194。 李國忠、林俊成、陳麗琴 (2000)台灣杉人工林碳吸存潛力及其成本效益分析。台灣林業科學15(1): 115–123。 李國忠、林俊成、賴建興、林麗貞 (2004)台大實驗林森林生態系不同林分經營策略之碳貯存效果。臺大實驗林研究報告18(4): 261–272。 李玲玲 (2008)氣候變遷下生物多樣性研究的重要性及展望。林業研究專訊15(2): 20–22。 何英 (2005)森林固碳估算方法綜述。世界林業研究 18(1): 22–27。 余瑞珠、王亞男、江博能、蔡明哲、蔡僑隆 (2012a)屏東平地造林地二氧化碳通量塔樣區枯落物動態之研究。臺大實驗林研究報告 26(3): 201–209。 余瑞珠、陳忠義、江博能、賴彥任、蔡明哲、王亞男 (2012b)屏東平地造林地區二氧化碳通量初探。臺大實驗林研究報告 26(3): 163–174。 余瑞珠、吳宗賢、黃文俊、王亞男 (2011)福山地區鋸葉長尾栲不同冠層二氧化碳固定功能之研究。臺大實驗林研究報告 25(3): 193–200。 宋霞、劉允芬、徐小鋒、于貴瑞、溫學發 (2004)紅壤丘陵區人工林冬春時段碳、水、熱量的觀測與分析。資源科學 26(3): 96–104。 邱志明 (2006)台灣人工林何去何從。台灣林業 32(3): 54–63。 邱志明、鍾智昕、林謙佑、唐盛林、林振榮 (2010)重要平地造林樹種林木生長特性之研究。林業研究專訊17(6): 10–16。 林天培 (2015)台灣屏東萬隆農場四種平地造林樹種之枯落物動態變化及落葉養分分析。國立臺灣大學森林環境暨資源學系碩士論文。 林世宗、鍾智昕、邱祈榮、林朝欽 (2008)台灣二葉松地上部生物量及碳吸存量之估算。中華林學季刊41(4): 521–535。 林俊成、鄭美如、劉淑芬、李國忠 (2002)全民造林運動二氧化碳吸存潛力之經濟效益評估。台灣林業科學17(3): 311–321。 林俊成、李國忠 (2005)京都議定書生效後之森林資源碳吸存策略。台灣林業 31(3): 12–19。 林俊成 (2007)日本森林碳吸存貢獻與減量策略。台灣林業33(3): 64–69。 林俊成、劉一新、湯適謙 (2014)闊葉樹混合林之生長表現與碳儲存量變化。林業研究季刊 36(1): 57–66。 林郁評 (2011)平地景觀造林樹種臺灣櫸、光臘樹樹冠特性及碳貯存量之研究–以雲林地區為例。國立中興大學森林學系碩士論文。 林映儒、鄭智馨、曾聰堯 (2011)台灣平地造林之碳吸存潛能:以長期果園廢耕地與造林地為例。中華林學季刊 44(4): 567–588。 林國銓、杜清澤、徐嘉君、黃菊美 (2006)六龜試驗林亞熱帶天然闊葉林地上部碳貯存量之估算。臺大實驗林研究報告 20(3): 153–164。 林國銓、杜清澤、黃菊美 (2009)台東地區相思樹與楓香兩人工林碳累積量。林業研究季刊31(3): 55–68。 林國銓、杜清澤、黃菊美 (2010)光蠟樹人工林碳貯存量和吸存量之估算。中華林學季刊43(2): 261–276。 林國銓、黃菊美、王巧萍、張乃航 (2004)六龜台灣杉人工林碳和氮的累積和分布。台灣林業科學19(3): 225–235。 林國慶、柳婉郁 (2007) 平地景觀造林政策之執行成果與實證分析。法制論叢 40: 175–211。 吳亭潔 (2014)四種平地原生造林樹種枯落物之動態變化及養分分析-以臺灣屏東萬隆農場為例。國立臺灣大學森林環境暨資源學系碩士論文。 吳俊賢、林俊成、李國忠、陳溢宏、林麗貞、林瑞進 (2005)森林能源作物之二氧化碳吸存效果與能源產出效率。臺大實驗林研究報告19(1): 43–53。 哀力民頁 (2006)紅檜與柳杉人工林地上部碳貯存量之推估。國立中興大學森林學研究所碩士論文。 洪志遠、林宜蓁、陳明杰 (2014)溪頭柳杉人工林能量收支特性之研究。臺大實驗林研究報告28(1): 1–15。 洪儷文、王亞男 (2003)樟樹不同冠層位置之光合作用淨生產力。中華林學季刊 36(1): 27–38。 胡启鵬、郭志華、李春燕、馬履一 (2008)不同光環境下亞熱帶常綠闊葉樹種和落葉闊葉樹種幼苗的葉形態和光合生理特徵。生態學報28(7): 3262–3270。 姚銘輝、陳俊仁、黃國祥 (2011)荔枝園潛熱及二氧化碳通量之研究。台灣農業研究 60(3): 211–220。 紀怡嘉 (2008)台灣中部地區桂竹林生物量與碳貯存量之研究。國立中興大學森林學研究所碩士論文。 馬子斌、陳政靜、熊如珍、黃清吟、陳欣欣、翟思湧 (1992)重要商用木材質之一般性質。林業叢刊第1號。 高裕閔、王兆桓 (2014)和平事業區森林永久樣區調查與分析CO2吸存效應。宜蘭大學生物資源學刊 10: 1–22。 高毓斌、張添榮 (1989)馬來麻竹人工林之生長與生物量生產。林業試驗所研究報告季刊4(1): 31–42。 高毓斌 (1991)巨竹與馬來麻竹物質生產之比較研究。林業試驗所研究報告季刊6(3): 249–282。 許原瑞、洪富文、陳永修、張乃航 (2001)原生闊葉樹種在六龜瘠劣地的栽植表現。台灣林業科學162(2): 115–124。 陳忠義、王亞男、葉玲薇、謝忠諺、余瑞珠、吳宗賢 (2012)屏東萬隆農場櫸木之生長及CO2吸存量。臺大實驗林研究報告26(3): 191–199。 陳忠義、王亞男、酈學文、廖宜俊、余瑞珠、吳宗賢 (2013)屏東萬隆農場楝樹之生長及CO2吸存量。中華林學季刊46(2): 125–134。 陳忠義、余瑞珠、王亞男 (2015)屏東萬隆農場大葉桃花心木之生長及CO2吸存量。中華林學季刊48(4): 331–342。 陳忠義、謝忠諺、余瑞珠、王亞男 (2014)屏東萬隆農場印度紫檀之生長及CO2吸存量。臺大實驗林研究報告28(3): 185–194。 陳忠義、酈學文、余瑞珠、王亞男 (2016)屏東萬隆農場無患子之二氧化碳吸存潛力。臺大實驗林研究報告30(2): 119–126。 陳淯婷、顏添明、李介祿 (2010)柳杉人工同齡林樹冠特性及形態之研究。中華林學季刊43(2): 213–221。 陳銘瑝、高瑞卿、王秋嫻、許原瑞、潘富俊、洪昆源 (2007) 臺灣地區木麻黃及相思樹下層植物之碳庫存及多樣性現況解析。中華林學季刊40(4): 509–518。 陳麗琴、黃進睦、林俊秀、邱祈榮 (1997) 六龜試驗林台灣杉人工林蓄積量及生長估測之研究。台灣林業科學12(3): 319–327。 郭耀綸、江璧合 (2003)台灣特有樹種台灣假黃楊、小芽新木薑子及台灣梭羅木的生長及光合作用對光量的反應。台灣林業科學 18(1):55–66。 郭耀綸、李彥屏 (2003)台灣南部南仁山迎風與背風分布樹種葉片耐脫水能力及比葉重的比較。台灣林業科學18(4): 283–292。 郭耀綸、范開翔、黃慈薇、李彥屏、吳惠綸、蔡瑞芬 (2004)台灣三十種闊葉樹陽葉氣體交換潛力之研究。台灣林業科學19(4):375–368。 郭耀綸、陳瑄培 (2005)南仁山森林四種台灣特稀有樹種之光合作用光反應及溫度反應。台灣林業科學 20(3):215–226。 黃裕星、鍾智昕、邱志明、林振榮 (2010) 七年生櫸木、苦楝、光臘樹在平地造林的林木樹輪特徵研究。中華林學季刊43(2): 201–212。 葉信廷、李奇峰、吳士緯、施禮正、王亞男、余瑞珠 (2013)屏東平地造林地內取食櫸木之昆蟲功能群。臺灣大學生物資源暨農學院實驗林研究報告 27(4): 251–262。 楊韻平 (2015)溪頭柳杉碳吸存之評估。國立臺灣大學森林環境暨資源學系碩士論文。 褚侯森 (2008)複雜地形中的通量量測-以棲蘭山台灣扁柏森林樣區為例。國立東華大學自然資源管理研究所碩士論文。 廖述惠、王亞男 (2002)樟樹與台灣櫸於林下栽植二氧化碳固定效益之研究。中華林學季刊35(4): 361–373。 廖宜緯、陳美光、陳羽康、鍾玉龍、吳守從 (2011)台糖公司屏東縣平地造林碳貯存量調查。中華林學季刊44(3): 373–384。 劉一新 (2010)闊葉樹育林之研究。中華林學季刊43(4): 569–579。 劉素玲、王亞男、陳德仁、鄭景鵬 (2009)溪頭門田柳杉生長量及二氧化碳貯存量效益之研究。臺大實驗林研究報告 23(3): 189–200。 賴玫君 (2007)以通量變化法估計地表之可感熱、潛熱、以及二氧化碳通量。國立台灣大學生物環境系統工程學系碩士論文。 賴彥任、洪志遠、魏聰輝、張振生、江博能、衛強、余瑞珠、莊振義、謝正義、蔡明哲、王亞男 (2012)溪頭地區二氧化碳通量之初探。臺大實驗林研究報告26(3): 211–224。 謝漢欽、陳弘毅、張鈞媛 (2009)從統計分析看台灣的平地造林地—以2002年至2005年整合平地造林地地理資訊為例。林業研究專訊 16(5): 10–22。 顏添明、黃凱洛 (2006)杉木地上部碳貯存量之推估。台灣林業科學21(2): 273–280。 顏添明、劉兆昌、張維仁 (2006)低密度林分杉木樹冠特性之研究。中華林學季刊39(3): 303–314。 羅紹麟、馮豐隆 (1986)台灣第一次林相變更造林木生長情形及生長量調查計畫報告。林務局。 酈學文、陳忠義、王亞男 (2016)土壤水分對無患子苗木生長及光合生理影響之研究。臺大實驗林研究報告30(2): 127–138。 Amiro B. D., A. G. Barr, J. G. Barr, T. A. Black, R. Bracho, M. Brown, J. Chen, K. L. Clark, K. J. Davis, A. R. Desai, S. Dore, V. Engel, J. D. Fuentes, A. H. Goldstein, M. L. Goulden, T. E. Kolb, M. B. Lavigne, B. E. Law, H. A. Margolis, T. Martin, J. H. McCaughey, L. Misson, M. Montes-Helu, A. Noormets, J. T. Randerson, G. Starr and J. Xiao (2010) Ecosystem carbon dioxide fluxes after disturbance in forests of north America. Journal of Geophysical Research 115(G4). Barford C. C., S. C. Wofsy, M. L. Goulden, J. W. Munger, E. H. Pyle, S. P. Urbanski, L. Hutyra, S. R. Saleska, D. Fitzjarrald and K. Moore (2001) Factors controlling long- and short-term sequestration of atmospheric CO2 in a mid-latitude forest. Science 294: 1688–1690. Barr A. G., T. A. Black, E. H. Hogg, T. J. Griffis, K. Morgenstern, N. Kljun, A. Theede and Z. Nesic (2007) Climatic controls on the carbon and water balances of a boreal aspen forest, 1994–2003. Global Change Biology 13: 561–576. Biswas S., S. Bala and A. Mazumdar (2014) Diurnal and seasonal carbon sequestration potential of seven broadleaved species in a mixed deciduous forest in India. Atomospheric Environment 89: 827–834. Black T. A., W. J. Chen, A. G. Barr, M. A. Arain, Z. Chen, Z. Nesic, E. H. Hogg, H. H. Neumann and P. C. Yang (2000) Increased carbon sequestration by a boreal deciduous forest in years with a warm spring. Geophysical Research Letters 27: 1271–1274. Bonan, G.B. (1993) Importance of leaf area index and forest type when estimating photosynthesis in boreal forests. Remote Sensing of Environment 43: 303–314. Campioli M., B. Gielen, M. Göckede, D. Papale, O. Bouriaud and A. Granier (2011) Temporal variability of the NPP-GPP ratio at seasonal and interannual time scales in a temperate beech forest. Biogeoscience 8: 2481–2492. Campioli M., Y. Malhi, S. Vicca, S. Luyssaert, D. Papale, J. Peñuelas, M. Reichstein, M. Migliavacca, M. A. Arain and I. A. Janssens (2016) Evaluating the convergence between eddy-covariance and biometric methods for assessing carbon budgets of forests. Nature Communications 7: 13717. Ceschia É., C. Damesin, S. Lebaube, J. Y. Pontailler and É. Dufrêne (2002) Spatial and seasonal variations in stem respiration of beech trees. Annals of Forest Science 59: 801–812. Chen C.I., Y. N. Wang, H. W. Lih and J. C. Yu (2016) Three-year study on diurnal and seasonal CO2 sequestration of a young Fraxinus griffithii plantation in southern Taiwan. Forests 7(10): 230. Colom M. R., and C. Vazzana (2003) Photosynthesis and PSII functionality of drought-resistant and drought-sensitive weeping lovegrass plant. Environmental and Experimental Botany 49: 135–144. Cordeiro Y. E. M., H. A. Pinheiro, B. G. Santos Filho, S. S. Corrêa, J. R. R. Silva and M. B. Dias-Filho (2009) Physiological and morphological responses of young mahogany (Swietenia macrophylla King) plants to drought. Forest Ecology and Management 258: 1449–1455. Davis K. J., P. S. Bakwin, C. Yi, B. W. Berger, C. Zhao, R. M. Teclaw and J. G. Isebrands (2003) The annual cycles of CO2 and H2O exchange over a northern mixed forest as observed from a very tall tower. Global Change Biology 9: 1278–1293. Desjardins R. L., M. Mauder, E. Pattey and D. Worth (2008) Improvements in measuring carbon dioxide flux using the eddy covariance technique. Proceedings of the international symposium on CO2 flux monitoring technology. p.1–24. Ding L., K. J. Wang, G. M. Jiang, Y. G. Li, C. D. Jiang, M. Z. Liu, S. L. Niu and Y. Peng (2006) Diurnal variation of gas exchange, chlorophyll fluorescence, and xanthophyll cycle components of maize hybrids released in different years. Photosynthetica. 44: 26–31. Edwards N. T. and P. J. Hanson (1996) Stem respiration in a closed-canopy upland oak forest. Tree Physiology 16: 433–439. Ferster C. J., J. A. Trofymow, N. C. Coops, B. Chen and T. A. Black (2015) Comparison of carbon-stock changes, eddy-covariance carbon fluxes and model estimates in coastal Douglas-fir stands in British Columbia. Forest Ecosystems 2:13. Finkral A. J. and A. M. Evans (2008) The effects of a thinning treatment on carbon stocks in a northern Arizona ponderosa pine forest. Forest Ecology and Management 255: 2743–2750. Frank D., M. Reichstein, M. Bahn, K. Thonicke, D. Frank, M. D. Mahecha, P. Smith, M. van der Velde, S. Vicca, F. Babst, C. Beer, N. Buchmann, J. G. Canadell, P. Ciais, W. Cramer, A. Ibrom, F. Miglietta, B. Poulter, A. Rammig, S. I. Seneviratne, A. Walz, M. Wattenbach, M. A. Zavala and J. Zscheischler (2015) Effects of climate extremes on the terrestrial carbon cycle: concepts, processes and potential future impacts. Global Change Biology 21(8): 2861–2880. Gaboury S., J. F. Boucher, C. Villeneuve, D. Lord and R. Gagnon (2009) Estimating the net carbon balance of boreal open woodland afforestation: A case study in Québec’s closed-crown boreal forest. Forest Ecology and Management 257: 483–494. Gielen B., B. De Vos, M. Campioli, J. Neirynck, D. Papale, A. Verstraeten, R. Ceulemans and I. A. Janssens (2013) Biometric and eddy covariance-based assessment of decadal carbon sequestration of a temperate Scots pine forest. Agricultural and Forest Meteorology 174–175: 135–143. Gómez-aparicio L., F. Valladares and R. Zamora (2006) Different light responses of Mediterranean tree saplings: linking ecophysiology with regeneration niche in four co-occurring species. Tree Physiology 26: 947–958. Gond V., D. G. G. de Pury, F. Veroustraete and R. Ceulemans (1999) Seasonal variations in leaf area index, leaf chlorophyll, and water content; scaling-up to estimate fAPAR and carbon balance in a multispecies temperate forest. Tree Physiology 19: 673–679 Goulden M. L., A. M. S. McMillan, G. C. Winston, A. V. Rocha, K. L. Manies, J. W. Harden and B. P. Bond-Lamberty (2011) Patterns of NPP, GPP, respiration, and NEP during boreal forest succession. Global Change Biology 17: 855–871. Goulden M. L., J. W. Munger, S. M. Fan, B. C. Daube and S. C. Wofsy (1996) Exchange of carbon dioxide by a deciduous forest: Response to interannual climate variability. Science 271: 1576–1578. Grünzweig J. M., T. Lin, E. Rotenberg, A. Schwartz and D. Yakir (2003) Carbon sequestration in arid-land forest. Global Change Biology 9: 791–799. Grzesiak M. T., S. Grzesiak and A. Skoczowski (2006) Changes of leaf water potential and gas exchange during and after drought in triticale and maize genotypes differing in drought tolerance. Photosynthetica. 44: 561–568. Guan D. X., J. B. Wu, X. S. Zhao, S. J. Han, G. R. Yu, X. M. Sun and C. J. Jin (2006) CO2 fluxes over an old, temperate mixed forest in north-eastern China. Agricultural and Forest Meteorology 137: 138–149. Guan, X. and S. Gu (2009) Photorespiration and photoprotection of grapevine (Vitis vinifera L. cv. Cabernet Sauvignon) under water stress. Photosynthetica 47: 437–444. Guerfel M., Y. Ouni, D. Boujnah and M. Zarrouk (2009) Photosynthesis parameters and activities of enzymes of oxidative stress in two young ‘Chemlali’ and ‘Chetoui’ olive trees under water deficit. Photosynthetica 47: 340–346. Hassan, I. A. (2006) Effects of water stress and high temperature on gas exchange and chlorophyll fluorescence in Triticum aestivum L. Photosynthetica 44: 312–315. Hummel S. (2000) Height, diameter and crown dimensions of Cordia alliodora associated with tree density. Forest Ecology and Management 127: 31–40. Hunt Jr E. R., R. D. Kelly, W. K. Smith, J. T. Fahnestock, J. M. Welker and W. A. Reiners (2004) Estimation of carbon sequestration by combining remote sensing and net ecosystem exchange data for northern mixed-grasss prairie and sagebrush-steppe ecosystems. Environmental management 33: 432–441. IPCC (1997) The Science of Climate Change. Cambridge University Press, New York. IPCC (2001) Climate change 2001: The scientific basis. Cambridge University Press, New York. IPCC (2015) Climate change 2014 synthesis report. Cambridge University Press, New York. Jenlins J. C., R. A. Birdsey and Y. Pan (2001) Biomass and NPP estimation for the mid-atlantic region (USA) using plot-level forest inventory data. Ecological Applications 11(4): 1174–1193. Klein T., G. D. Matteo, E. Rotenberg, S. Cohen and D. Yakir (2013) Different ecophysiological response of a major Mediterranean pine species across a climatic gradient. Tree Physiology 33: 26–36. Klemm O., S. C. Chang and Y. J. Hsia (2006) Energy Fluxes at a subtropical mountain cloud forest. Forest Ecology and Management 224: 5–10. Koch G. W., J. S. Amthor and M. L. Goulden (1994) Diurnal patterns of leaf photosynthesis, conductance and water potential at the top of a lowland rain forest canopy in Cameroon: measurements from the Radeau des Cimes. Tree Physiology 14: 347–360. Lachapelle P. P. and B. Shipley (2012) Interspecific prediction of photosynthetic light response curves using specific leaf mass and leaf nitrogen content: effects of differences in soil fertility and growth irradiance. Annals of Botany 109: 1149–1157. Lang Y., M. Wang, G. C. Zhang and Q. C. Zhao (2013) Experimental and simulated light responses of photosynthesis in leaves of three tree species under different soil water conditions. Photosynthetica 51: 370–378. Lasslop G., M. Reichstein, D. Papale, A. D. Richardson, A. Arneth, A. Barr, P. Stoy and G. Wohlfahrt (2010) Sepration of net ecosystem exchange into assimilation and respiration using a light response curve approach: critical issues and global evaluation. Global Change Biology 16: 187–208. Lee S. H., R. H. Jang, K. T. Cho and Y. H. You (2015) Budget and distribution of organic carbon in Quercus serrata Thunb. Ex Murray forest in Mt. Worak. Journal of Ecology and Environment 38(4): 425–436. Leonardo M. (2008) Measuring CO2 exchange by eddy covariance in challenging environment: the state of art. Proceedings of the international symposium on CO2 flux monitoring technology. p.35–66. Leuzinger S., G. Zotz, R. Asshoff and C. Körner (2005) Responses of deciduous forest trees to severe drought in Central Europe. Tree Physiology 25: 641–650. Li X. W. and S. L. Chen (2009) Diurnal changes in gas exchange and chlorophyll fluorescence parameters of Fritillaria cirrhosa and F. delavayi under field conditions. Photosynthetica 47: 191–198. Lin K. C., C. P. Wang, C. M. Huang, F. W. Horng and C. M. Chiu (2003) Estimates of biomass and carbon storage in two Taiwania plantations of the Liukuei experimental forest. Taiwan Journal of Forest Science 18(2): 85–94. Manes F., M. Vitale, E. Donato, M. Giannini and G. Puppi (2006) Different ability of three Mediterranean oak species to tolerate progressive water stress. Photosynthetica 44: 387–393 Monson R. K., A. A.Turnipseed, J. Sparks, P. C. Harley, L. E. Scottdenton, K. Sparks and T. E. Huxman (2002) Carbon sequestration in a high-elevation, subalpine forest. Global Change Biology 8: 459–478. Ngugi M. R., D. Doley, M. A. Hunt, P. Dart and P. Ryan (2004) Leaf water relations of Eucalyptus cloeziana and E. argophloia in response to water deficit. Trees 23: 335–343. Noormets A., J. M. Gavazzi, S. G. Mcnulty, J. C. Domec, G. Sun, J. S. King and J. Chen (2010) Response of carbon fluxes to drought in a coastal plain loblolly pine forest. Global change biology 16: 272–287. Noormets A., S. G. Mcnulty, J. L. Deforest, G. Sun, Q. Li and J. Chen (2008) Drought during canopy development has lasting effect on annual carbon in a deciduous temperate forest. New Phytologist 179: 818−828. Ogaya R. and J. Peñuelas (2003) Comparative field study of Quercus ilex and Phillyrea latifolia: photosynthetic response to experimental drought conditions. Environmental and Experimental Botany. 50: 137–148. Ohtsuka T., N. Saigusa and H. Koizumi (2009) On linking multiyear biometric measurements of tree growth with eddy covariance-based net ecosystem production. Global Change Biology 15: 1015–024. Otieno D., S. Lindner, J. Muhr and W. Borken (2012) Sensitivity of peatland herbaceous vegetation to vapor pressure deficit influences net ecosystem CO2 exchange. Wetlands 32: 895–905. Pan Y., R. A. Birdsey, J. Fang, R. Houghton, P. E. Kauppi, W. A. Kurz, O. Phillips, A. Shvidenko, S. L. Lewis, J. G. Canadell, P. Ciais, R. B. Jackson, S. W. Pacala, A. D. McGuire, S. Piao, A. Rautiainem, S. Sitch and D. Hayes (2011) A large and persistent carbon sink in the world’s forest. Science 333: 988–993. Paul K. I., K. Jacobsen, V. Koul, P. Leppert and J. Smith (2008) Predicting growth and sequestration of carbon by plantations growing in region of low-rainfall in southern Australia. Forest Ecology and Management 254: 205–216. Perez P. J., F. Castellvi, M. Ibañez and J. I. Rosell (1999) Assessment of reliability of Bowen ratio method for partitioning fluxes. Agricultural and Forest Meteorology 97: 141–150. Piao S. J. Fang, P. Ciais, P. Peylin, Y. Huang, S. Sitch and T. Wang (2009) The carbon balance of terrestrial ecosystems in China. Nature 458: 1009–1014. Rochelle C. (2005) Interactive effects of salinity and irradiance on photoprotection in acclimated seedlings of two sympatric mangroves. Trees 19: 596–606. Ruimy A., P. G. Jarvis, D. D. Baldocchi and B. Saugier (1995) CO2 fluxes over plant canopies and solar radiation: A review. Advances in Ecological Research 26: 1–68. Ryan M. G. (1991) Effects of climate change on plant respiration. Ecological applications 1(2): 157–167. Saigusa N., S. Yamamoto, R. Hirata, Y. Ohtani, R. Ide , J. Asanuma, M. Gamo, T. Hirano, H. Kondo, Y. Kosugi, S. G. Li, Y. Nakai, K. Takagi, M. Tani and H. Wang (2008) Temporal and spatial variations in the seasonal patterns of CO2 flux in boreal, temperate, and tropical forests in East Asia. Agricultural and Forest Meteorology 148: 700–713. Saigusa N., S. Yamamoto, R. Hirata, Y. Ohtani, R. Ide, J. Asanuma, M. Gamo, T. Hirano, H. Kondo, Y. Kosugi, S. G. Li, Y. Nakai, K. Takagi, M. Tani and H. Wang (2008) Temporal and spatial variations in the seasonal pattern of CO2 flux in boreal, temperate, and tropical forests in East Asia. Agricultural and Forest Meteorology 148: 700–713. Sands P. J. (1995) Modeling canopy production. II. From single-leaf photosynthetic parameters to daily canopy photosynthesis. Australian Journal of Plant Physiology 22: 603–614. Schwalm C. R., C. A. William, K. Schaefer, A. Arneth, D. Bonal, N. Buchmann, J. Chen, B. E. Law, A. Lindroth, S. Luyssaert, M. Reichstein and A. D. Richardson (2010) Assimilation exceeds respiration sensitivity to drought: A FLUXNET synthesis. Global Change Biology 16: 657–670. Sedjo R. A. (1989) Forest to offset the greenhouse effect. Journal of Forestry 87: 7. Shibata H., T. Hiura, Y. Tanaka, K. Takagi and T. Koike (2005) Carbon cycling and budget in a forested basin of southwestern Hokkaido, northern Japan. Ecological Research 20: 325–331. Soloway A. D., B. D. Amiro, A. L. Dunn and S. C. Wofsy (2017) Carbon neutral or a sink? Uncertainty caused by gap-filling long-term flux measurements for an old-growth boreal black spruce forest. Agricultural and Forest Meteorology 233: 110–121. Stephenson N. L., A. J. Das, R. Condit, S. E. Russo, P. J. Baker, N. G. Beckman, D. A. Coomes, E. R. Lines, W. K. Morris, N. Rüger, E. Álvarez, C. Blundo, S. Bunyavejchewin, G. Chuyong, S. J. Davies, Á. Duque, C. N. Ewango, O. Flores, J. F. Franklin, H. R. Grau, Z. Hao, M. E. Harmon, S. P. Hubbell, D. Kenfack, Y. Lin, J. R. Makana, A. Malizia, L. R. Malizia, R. J. Pabst, N. Pongpattananurak, S. H. Su, I. F. Sun, S. Tan, D. Thomas, P. J. van Mantgem, X. Wang, S. K. Wiser and M. A. Zavala (2014) Rate of tree carbon accumulation increases continuously with tree size. Nature 507: 90–93. Taiz, L. and E. Zeiger (2002) Plant Physiology, 3rd ed.; Sinauer Associates: Sunderland, MA, USA. pp. 592–606. ThornleyJ. H. M. (2002) Instantaneous canopy photosynthesis: analytical expressions for sun and shade leaves based on exponential light decay down the canopy and an acclimated non-rectangular hyperbola for leaf photosynthesis. Annals of Botany 89: 451–458. Tsai J. L., B. J. Tsuang and C. Y. Tu (2008) Characteristics of CO2 flux over different land types in Taiwan and future field experiment plan of TTFRI. Proceedings of the international symposium on CO2 flux monitoring technology. p.25–34. Tucci M. L. S., N. M. Erismann, E. C. Machado and R. V. Ribeiro (2010) Diurnal and seasonal variation in photosynthesis of peach palms grown under subtropical conditions. Photosynthetica 48: 421–429. Turner D. P., M. Guzy, M. A. Lefsky, W. D. Ritts, S. van Tuyl and B. E. Law (2004) Monitoring forest carbon sequestration with remote sensing and carbon cycle modelling. Environmental management 33(4): 457–466. Vickers D., C. Thomas and B. E. Law (2009) Random and systematic CO2 flux sampling errors for tower measurements over forests in the convective boundary layer. Agricultural and Forest Meteorology 149: 73–83. Vose J. M. and M. G. Ryan (2002) Seasonal respiration of foliage, fine roots, and woody tissues in relation to growth , tissue N, and photosynthesis. Global Change Biology 8: 182–193. Wang W. and K. Davis (2008) A numerical study of the influence of a clearcut on eddy-covariance fluxes of CO2 measured above a forest. Agricultural and Forest Meteorology 148: 1488–1500. Way D. A., C. Holly, D. Bruhn, M. C. Ball and O. K. Atkin (2015) Diurnal and seasonal variation in light and dark respiration in field-grown Eucalyptus pauciflora. Tree Physiology 35: 840–849. Whitehead D., J. R. Leathwick and A. S. Walcroft (2001) Modeling annual carbon uptake for the indigenous forests of New Zealand. Forest Science 47(1): 9–20. Wu C., J. M. Chen, T. A. Black, D. T. Price, W. A. Kurz, A. R. Desai, A. Gonsamo, R. S. Jassal, C. M. Gough, G. Bohere, D. Dragoni, M. Herbst, B. Gielen, F. Berninger, T. Vesala, I. Mammarella, K. Pilegaard and P. D. Blanken (2013) Interannual variability of net ecosystem productivity in forests is explained by carbon flux phenology in autumn. Global Ecology and Biogeography 22: 994–1006. Xu B., Y. Yang, P. Li, H. Shen and J. Fang (2014) Global patterns of ecosystem carbon flux in forest: A biometric data-based synthesis. Global Biogeochemical Cycles 28: 962–973. Yan M., X. Tian, Z. Li, E. Chen, C. Li and W. Fan (2016) A long-term simulation of forest carbon fluxes over the Qilian Mountains. International Journal of Applied Earth Observation and Geoinformation 52: 515–526. Yasumura Y., K. Hikosaka and T. Hirose (2006) Seasonal change in photosynthesis, nitrogen content and nitrogen partitioning in Lindera umbellata leaves grown in high or low irradiance. Tree Physiology 26: 1315–1323. Yi C., R. K. Monson, D. E. Anderson, B. Lamb, A. A. Turnipseed, S. P. Burns, Z. Zhai, J. P. Sparks, D. I. Stannard and G. Allwine (2008) Measuring and modeling NEE over complex Terrain. Proceedings of the international symposium on CO2 flux monitoring technology. p.67–88. Yin C. Y., F. Berninger and C. Y. Li (2006). Photosynthetic responses of Populus przewalski subjected to drought stress. Photosynthetica 44: 62–68. Zanotelli D., L. Montagnani, G. Manca and M. Tagliavini (2013) Net primary productivity, allocation pattern and carbon use efficiency in an apple orchard assessed by intergrating eddy covariance, biometric and continuous soil chamber measurements. Biogeoscience 10: 3089–3108. Zha T. S., A. G. Barr, P. Y. Bernier, M. B. Lavigne, J. A. Trofymow, B. D. Amiro, M. A. Arain, J. S. Bhatti, T. A. Black, H. A. Margolis, J. H. McCaughey, Z. S. Xing, K. C. J. Van Rees and C. Coursolle (2013) Gross and aboveground net primary production at Canadian forest carbon flux sites. Agricultural and Forest Meteorology 174–175: 54–64. Zhang X. H., D. Y. Lang, E. H. Zhang, C. C. Bai and H. Z. Wang (2013) Diurnal changes in photosynthesis and antioxidants of Angelica sinensis as influenced by cropping systems. Photosynthetica 51: 252–258. | |
| dc.identifier.uri | http://tdr.lib.ntu.edu.tw/jspui/handle/123456789/59736 | - |
| dc.description.abstract | 為了解平地造林之碳吸存量,本研究針對屏東萬隆農場12種平地造林樹種,分別以生長量、光合作用及渦流相關法估算林木碳吸存量,生長量法以每木調查配合材積式估算;光合作用推估法以光合作用光反應曲線配合葉面積指數估算碳同化;渦流相關法則藉由通量塔儀器架設監測林地碳吸存。結果顯示萬隆農場2010年造林木二氧化碳貯存量為23.36 Mg ha-1。以光合作用估算之二氧化碳吸存量為22.8 Mg ha-1 yr-1。生長量及光合作用推估法求得之林木淨初生產力(net primary production, NPP),四年平均分別為4.13 Mg C ha-1yr-1及4.34 Mg C ha-1yr-1,兩種方法結果相近且有顯著正相關,可相互驗證。渦流相關法(net ecosystem production, NEP)與光合作用推估之碳吸存趨勢相近,且有顯著相關,顯示林木光合作用主導林分碳吸存的動態變化,進一步的回歸分析顯示,楝對試驗地固碳貢獻最高。以林分尺度來看,2010–2014年全林分碳吸存量平均為1.80 Mg C ha-1yr-1,主要受乾濕季影響而變動,年變動範圍在-0.88–4.25 Mg C ha-1yr-1之間,而環境因子中以相對濕度、土壤含水率及風速為主要影響林木固碳之因子。以屏東萬隆農場總面積約290 ha計算,每年可固碳共522 Mg。若欲建立以固碳為目的之森林,造林樹種選擇上應以楝較佳,而光蠟樹、陰香、欖仁、水黃皮、無患子則較不適合。通量塔可長期連續監測森林碳水收支及氣象資料,但仍需配合其他方法以了解各樹種之固碳貢獻,在應用上可配合生物量法或光合作用推估法。三種估算方式的量測與配合,除了可提供造林地在不同時間與空間尺度上,較精準且詳盡的碳吸存估算量,在以固碳為目標的森林經營方向上也能提供樹種選擇資訊。 | zh_TW |
| dc.description.abstract | In this study, we used tree growth, photosynthesis measurement, and eddy covariance methods to estimate carbon sequestration in 12 plantation species in the Wan-Long farm. The tree growth method was based on complete enumeration of sample trees; the photosynthesis measurement method was based on construction of the light-response curve and measurement of leaf area index to estimate carbon assimilation; and the eddy-covariance method was based on measurement of CO2 exchange using instruments on a flux tower. In 2010, the woody tissue in this site fixed 23.36 Mg CO2 ha-1. The average CO2 sequestration was 22.8 Mg ha-1 yr-1, with large variation among years. The average woody net primary production was 4.13 Mg C ha-1 yr-1 as estimated by the tree growth method, and 4.34 Mg C ha-1 yr-1 as estimated by the photosynthesis measurement method (2011–2014). Thus, the significant positive correlation between the two methods provides confidence in the results. The eddy covariance-based net ecosystem production showed a similar pattern to, and a significant correlation with, photosynthetic-based carbon sequestration. According to the regression model, Melia azedarach might be the largest carbon sink among the 12 species. On the stand scale, carbon sequestration ranged from -0.88 to 4.25 Mg C ha-1 yr-1 during 2010–2014, and was 1.80 Mg C ha-1 yr-1 on average. The relative humidity, soil water content, and wind speed were the main factors affecting carbon sequestration. Therefore, the plantations were the main contributors to carbon sequestration in the stand, and the entire stand in the Wan-Long farm sequestered 522 Mg C yr-1. Therefore, we recommend Melia azedarach as the plantation species for the purpose of carbon sequestration in this site, but not Fraxinus formosana, Cinnamomum burmannii, Terminalia catappa, Pongamia pinnata, and Sapindus mukorossi. The flux tower is used for continuous long-term monitoring of the carbon–water budget and microclimate data; however, other estimating methods are required to understand the contribution of each species in the forest ecosystem. The use of a combination of these methods can aid in accurate estimation of carbon sequestration at different temporal and spatial scales. Additionally, this estimation can provide plantation species information for forest management. | en |
| dc.description.provenance | Made available in DSpace on 2021-06-16T09:35:28Z (GMT). No. of bitstreams: 1 ntu-106-D98625001-1.pdf: 3109320 bytes, checksum: 62cd8fdaa5afe5cdfa0865527899bb9f (MD5) Previous issue date: 2017 | en |
| dc.description.tableofcontents | 目 錄
口試委員審定書 I 謝誌 II 摘要 III Abstract IV 目錄 VI 圖目錄 VIII 表目錄 X 一、前言 1 二、前人研究 4 三、材料與方法 11 (一)、試驗地點與材料 11 1. 試驗地資料 11 2. 試驗樹種 11 3. 試驗地微氣候 14 (二)、試驗方法 23 1. 生長量量測與碳貯存量估算 23 2. 光合作用與碳吸存量估算 26 3. 二氧化碳通量監測與碳吸存量估算 30 (三)、統計分析 33 四、結果 35 (一)生長量及碳貯存量 35 (二)光合作用相關參數 42 (三)光合作用估算碳吸存 66 (四)二氧化碳通量監測 83 五、討論 93 (一)生長量與碳貯存量 93 (二)環境因子對林木碳同化之影響 96 (三)光合作用估算碳吸存 99 (四)二氧化碳通量監測 101 (五)三種碳吸存量估算法之比較 104 六、結論 107 七、參考文獻 108 | |
| dc.language.iso | zh-TW | |
| dc.subject | 渦流相關法 | zh_TW |
| dc.subject | 生長量 | zh_TW |
| dc.subject | 光合作用 | zh_TW |
| dc.subject | 葉面積指數 | zh_TW |
| dc.subject | 碳同化 | zh_TW |
| dc.subject | 碳吸存 | zh_TW |
| dc.subject | 生長量 | zh_TW |
| dc.subject | 光合作用 | zh_TW |
| dc.subject | 葉面積指數 | zh_TW |
| dc.subject | 渦流相關法 | zh_TW |
| dc.subject | 碳同化 | zh_TW |
| dc.subject | 碳吸存 | zh_TW |
| dc.subject | eddy covariance method | en |
| dc.subject | tree growth | en |
| dc.subject | carbon sequestration | en |
| dc.subject | carbon assimilation | en |
| dc.subject | carbon sequestration | en |
| dc.subject | photosynthesis | en |
| dc.subject | leaf area index | en |
| dc.subject | carbon assimilation | en |
| dc.subject | tree growth | en |
| dc.subject | photosynthesis | en |
| dc.subject | leaf area index | en |
| dc.subject | eddy covariance method | en |
| dc.title | 以三種方法探討平地造林樹種碳吸存 | zh_TW |
| dc.title | Comparative Study Using Three Estimation Methods for Carbon Sequestration in the Plain Area | en |
| dc.type | Thesis | |
| dc.date.schoolyear | 105-1 | |
| dc.description.degree | 博士 | |
| dc.contributor.oralexamcommittee | 廖天賜,翁仁憲,高文媛,張育森,蕭英倫 | |
| dc.subject.keyword | 生長量,光合作用,葉面積指數,渦流相關法,碳同化,碳吸存, | zh_TW |
| dc.subject.keyword | tree growth,photosynthesis,leaf area index,eddy covariance method,carbon assimilation,carbon sequestration, | en |
| dc.relation.page | 125 | |
| dc.identifier.doi | 10.6342/NTU201700488 | |
| dc.rights.note | 有償授權 | |
| dc.date.accepted | 2017-02-13 | |
| dc.contributor.author-college | 生物資源暨農學院 | zh_TW |
| dc.contributor.author-dept | 森林環境暨資源學研究所 | zh_TW |
| Appears in Collections: | 森林環境暨資源學系 | |
Files in This Item:
| File | Size | Format | |
|---|---|---|---|
| ntu-106-1.pdf Restricted Access | 3.04 MB | Adobe PDF |
Items in DSpace are protected by copyright, with all rights reserved, unless otherwise indicated.
